The proliferation of heterogeneous networks,such as the Internet of Things(IoT),unmanned aerial vehicle(UAV)networks,and edge networks,has increased the complexity of network operation and administration,driving the e...The proliferation of heterogeneous networks,such as the Internet of Things(IoT),unmanned aerial vehicle(UAV)networks,and edge networks,has increased the complexity of network operation and administration,driving the emergence of digital twin networks(DTNs)that create digital-physical network mappings.While DTNs enable performance analysis through emulation testbeds,current research focuses on network-level systems,neglecting equipment-level emulation of critical components like core switches and routers.To address this issue,we propose v Fabric(short for virtual switch),a digital twin emulator for high-capacity core switching equipment.This solution implements virtual switching and network processor(NP)chip models through specialized processes,deployable on single or distributed servers via socket communication.The v Fabric emulator can realize the accurate emulation for the core switching equipment with 720 ports and 100 Gbit/s per port on the largest scale.To our knowledge,this represents the first digital twin emulation framework specifically designed for large-capacity core switching equipment in communication networks.展开更多
We perform micromagnetic simulations on the switching of magnetic vortex core by using spin-polarized currents through a three-nanocontact geometry. Our simulation results show that the current combination with an app...We perform micromagnetic simulations on the switching of magnetic vortex core by using spin-polarized currents through a three-nanocontact geometry. Our simulation results show that the current combination with an appropriate current flow direction destroys the symmetry of the total effective energy of the system so that the vortex core can be easier to excite,resulting in less critical current density and a faster switching process. Besides its fundamental significance, our findings provide an additional route to incorporating magnetic vortex phenomena into data storage devices.展开更多
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant Nos.62171085,62272428,62001087,U20A20156,and 61871097the ZTE Industry-University-Institute Cooperation Funds under Grant No.HC-CN-20220722010。
文摘The proliferation of heterogeneous networks,such as the Internet of Things(IoT),unmanned aerial vehicle(UAV)networks,and edge networks,has increased the complexity of network operation and administration,driving the emergence of digital twin networks(DTNs)that create digital-physical network mappings.While DTNs enable performance analysis through emulation testbeds,current research focuses on network-level systems,neglecting equipment-level emulation of critical components like core switches and routers.To address this issue,we propose v Fabric(short for virtual switch),a digital twin emulator for high-capacity core switching equipment.This solution implements virtual switching and network processor(NP)chip models through specialized processes,deployable on single or distributed servers via socket communication.The v Fabric emulator can realize the accurate emulation for the core switching equipment with 720 ports and 100 Gbit/s per port on the largest scale.To our knowledge,this represents the first digital twin emulation framework specifically designed for large-capacity core switching equipment in communication networks.
基金supported by the China Postdoctoral Science Foundation(Grant No.2013M541286)the Science and Technology Planning Project of Jilin Province,China(Grant Nos.20140520109JH and 20150414003GH)the “Twelfth Five year” Scientific and Technological Research Project of Department of Education of Jilin Province,China
文摘We perform micromagnetic simulations on the switching of magnetic vortex core by using spin-polarized currents through a three-nanocontact geometry. Our simulation results show that the current combination with an appropriate current flow direction destroys the symmetry of the total effective energy of the system so that the vortex core can be easier to excite,resulting in less critical current density and a faster switching process. Besides its fundamental significance, our findings provide an additional route to incorporating magnetic vortex phenomena into data storage devices.