Electroformed copper layer with nanostructure is obtained using a subsequent mechanical treatment under the conditions of ultrasonic vibration according to the demand of high performance material in aeronautics. The m...Electroformed copper layer with nanostructure is obtained using a subsequent mechanical treatment under the conditions of ultrasonic vibration according to the demand of high performance material in aeronautics. The microstructure of the electroformed copper layer is observed by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The tensile strength is evaluated with a tensile tester. It is found that bulk crystal of electroformed copper's surface layer is changed to nanocrystals (about 10 nm in size) after the ultrasonic-assisted mechanical treatment (UMT) but the whole monocrystalline structure still remains. The tensile strength exhibited by the new copper layer is two times better than the regular electroformed copper layer, while the fracture strain remains constant. In addition, the strengthening mechanism of UMT process is proved to be dislocation strengthening mechanism.展开更多
Inaugurated in June 2012, the Carapace at Castelbuono Estate Winery in Italy is a highly interesting example of biomorphic architecture. The structure, an artistic creation of world-renowned sculptor Arnatdo Pomodoro,...Inaugurated in June 2012, the Carapace at Castelbuono Estate Winery in Italy is a highly interesting example of biomorphic architecture. The structure, an artistic creation of world-renowned sculptor Arnatdo Pomodoro, is reminiscent of a tortoise shell that conveys a sense of protection: the Carapace structure guards wine barriques in the same way that the tortoise carapace protects the animal. Zoomorphic aspects are further exhibited by symbots on the roof, which remind observers of cuttlefish bone, a recurring element in the artistic production of Maestro Pomodoro. The roof was constructed by assembly of single copper plates with a rough surface in accordance with the design of the artist. Therefore, determining the appropriate production process was crucial. Etectroforming was selected as the method to achieve a challenging architectural goal.展开更多
基金National Natural Science Foundation of China (50771010)
文摘Electroformed copper layer with nanostructure is obtained using a subsequent mechanical treatment under the conditions of ultrasonic vibration according to the demand of high performance material in aeronautics. The microstructure of the electroformed copper layer is observed by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The tensile strength is evaluated with a tensile tester. It is found that bulk crystal of electroformed copper's surface layer is changed to nanocrystals (about 10 nm in size) after the ultrasonic-assisted mechanical treatment (UMT) but the whole monocrystalline structure still remains. The tensile strength exhibited by the new copper layer is two times better than the regular electroformed copper layer, while the fracture strain remains constant. In addition, the strengthening mechanism of UMT process is proved to be dislocation strengthening mechanism.
文摘Inaugurated in June 2012, the Carapace at Castelbuono Estate Winery in Italy is a highly interesting example of biomorphic architecture. The structure, an artistic creation of world-renowned sculptor Arnatdo Pomodoro, is reminiscent of a tortoise shell that conveys a sense of protection: the Carapace structure guards wine barriques in the same way that the tortoise carapace protects the animal. Zoomorphic aspects are further exhibited by symbots on the roof, which remind observers of cuttlefish bone, a recurring element in the artistic production of Maestro Pomodoro. The roof was constructed by assembly of single copper plates with a rough surface in accordance with the design of the artist. Therefore, determining the appropriate production process was crucial. Etectroforming was selected as the method to achieve a challenging architectural goal.