The initial stresses widely exist in elastic materials.While achieving a continuum stress-free configuration through compatible unloading is desirable,mechanical unloading alone frequently proves insufficient,posing c...The initial stresses widely exist in elastic materials.While achieving a continuum stress-free configuration through compatible unloading is desirable,mechanical unloading alone frequently proves insufficient,posing challenges in avoiding virtual stress-free configurations.In this paper,we introduce a novel concept of equivalent temperature variation to counteract the incompatible initial strain.Our focus is on initially stressed cylindrical and spherical elastomers,where we first derive the Saint-Venant,Beltrami-Michell,and Volterra integral conditions in orthogonal curvilinear coordinates using the exterior differential form theory.It is shown that for any given axially or spherically distributed initial stress,an equivalent temperature variation always exists.Furthermore,we propose two innovative initial stress forms based on the steady-state heat conduction.By introducing an equivalent temperature variation,the initial stress can be released through a compatible thermo-mechanical unloading process,offering valuable insights into the constitutive theory of initially stressed elastic materials.展开更多
Aim To study the Lie symmetries and the consered quantities of the holonomic systems with remainder coordinates. Methods Using the invariance of the ordinary differential equations under the infinitesimal transformati...Aim To study the Lie symmetries and the consered quantities of the holonomic systems with remainder coordinates. Methods Using the invariance of the ordinary differential equations under the infinitesimal transformations to establish the determining equations and the restriction equations of the Lie symmetries of the systems. Results and Conclusion the structure equation and the form of conserved quantities were obtained. An example was given to illustrate the application of the result.展开更多
The concise and informative representation of hyperspectral imagery is achieved via the introduced diffusion geometric coordinates derived from nonlinear dimension reduction maps - diffusion maps. The huge-volume high...The concise and informative representation of hyperspectral imagery is achieved via the introduced diffusion geometric coordinates derived from nonlinear dimension reduction maps - diffusion maps. The huge-volume high- dimensional spectral measurements are organized by the affinity graph where each node in this graph only connects to its local neighbors and each edge in this graph represents local similarity information. By normalizing the affinity graph appropriately, the diffusion operator of the underlying hyperspectral imagery is well-defined, which means that the Markov random walk can be simulated on the hyperspectral imagery. Therefore, the diffusion geometric coordinates, derived from the eigenfunctions and the associated eigenvalues of the diffusion operator, can capture the intrinsic geometric information of the hyperspectral imagery well, which gives more enhanced representation results than traditional linear methods, such as principal component analysis based methods. For large-scale full scene hyperspectral imagery, by exploiting the backbone approach, the computation complexity and the memory requirements are acceptable. Experiments also show that selecting suitable symmetrization normalization techniques while forming the diffusion operator is important to hyperspectral imagery representation.展开更多
Single-atom catalysts(SACs)have garnered significant attention in lithium-sulfur(Li-S)batteries for their potential to mitigate the severe polysulfide shuttle effect and sluggish redox kinetics.However,the development...Single-atom catalysts(SACs)have garnered significant attention in lithium-sulfur(Li-S)batteries for their potential to mitigate the severe polysulfide shuttle effect and sluggish redox kinetics.However,the development of highly efficient SACs and a comprehensive understanding of their structure-activity relationships remain enormously challenging.Herein,a novel kind of Fe-based SAC featuring an asymmetric FeN_(5)-TeN_(4) coordination structure was precisely designed by introducing Te atom adjacent to the Fe active center to enhance the catalytic activity.Theoretical calculations reveal that the neighboring Te atom modulates the local coordination environment of the central Fe site,elevating the d-band center closer to the Fermi level and strengthening the d-p orbital hybridization between the catalyst and sulfur species,thereby immobilizing polysulfides and improving the bidirectional catalysis of Li-S redox.Consequently,the Fe-Te atom pair catalyst endows Li-S batteries with exceptional rate performance,achieving a high specific capacity of 735 mAh g^(−1) at 5 C,and remarkable cycling stability with a low decay rate of 0.038%per cycle over 1000 cycles at 1 C.This work provides fundamental insights into the electronic structure modulation of SACs and establishes a clear correlation between precisely engineered atomic configurations and their enhanced catalytic performance in Li-S electrochemistry.展开更多
The neuromuscular junction and its proregenerative niche:The mammalian peripheral nervous system,unlike the central nervous system,has preserved throughout evolution the ability to regenerate and fully restore functio...The neuromuscular junction and its proregenerative niche:The mammalian peripheral nervous system,unlike the central nervous system,has preserved throughout evolution the ability to regenerate and fully restore function.Key factors for effective nerve regeneration include a supportive neuronal environment and a coordinated tissue response(Brosius Lutz and Barres,2014).展开更多
Traffic at urban intersections frequently encounters unexpected obstructions,resulting in congestion due to uncooperative and priority-based driving behavior.This paper presents an optimal right-turn coordination syst...Traffic at urban intersections frequently encounters unexpected obstructions,resulting in congestion due to uncooperative and priority-based driving behavior.This paper presents an optimal right-turn coordination system for Connected and Automated Vehicles(CAVs)at single-lane intersections,particularly in the context of left-hand side driving on roads.The goal is to facilitate smooth right turns for certain vehicles without creating bottlenecks.We consider that all approaching vehicles share relevant information through vehicular communications.The Intersection Coordination Unit(ICU)processes this information and communicates the optimal crossing or turning times to the vehicles.The primary objective of this coordination is to minimize overall traffic delays,which also helps improve the fuel consumption of vehicles.By considering information from upcoming vehicles at the intersection,the coordination system solves an optimization problem to determine the best timing for executing right turns,ultimately minimizing the total delay for all vehicles.The proposed coordination system is evaluated at a typical urban intersection,and its performance is compared to traditional traffic systems.Numerical simulation results indicate that the proposed coordination system significantly enhances the average traffic speed and fuel consumption compared to the traditional traffic system in various scenarios.展开更多
This paper presents a mathematical algorithm that determines the fluid flow velocity vector (direction, intensity and orientation), based on measured voltages on multi-channel hot-wire anemometer. As the voltage on ...This paper presents a mathematical algorithm that determines the fluid flow velocity vector (direction, intensity and orientation), based on measured voltages on multi-channel hot-wire anemometer. As the voltage on Constant Temperature hot-wire Anemometer (CTA) is non-linear function of velocity and angle of the fluid, inverse function is also non-linear and has several mathematically correct solutions. In the Laboratory of Non-linear Mechanics at the Faculty of Mechanical Engineering in Ljubljana, the authors have decided to try developing multi-charmel hot-wire anemometer with constant temperature at which it is possible to select physically correct solutions from several mathematically correct solutions. The mathematical algorithm works correctly if the range of instrument operation is limited for the value of spherical angles |φ|≤ 60°and |ψ|'1 ≤ 58°.展开更多
This article shows that in spherical polar coordinates, some noncentral separable potentials have super-symmetry and shape invariance in the r and θ dimensions, we choose Hartmann potential and ring-shaped oscillator...This article shows that in spherical polar coordinates, some noncentral separable potentials have super-symmetry and shape invariance in the r and θ dimensions, we choose Hartmann potential and ring-shaped oscillator astwo important examples, thus in principle the energy eigenvalues and energy eigenfunctions of such the potentials in ther and θ dimensions can be obtained by the method of supersymmetric quantum mechanics. Here we use an alternativemethod to get the required results.展开更多
Based on FDTD difference expressions and eigenfunctions of Maxwell functions in cylindrical coordinates, mesh wave impedances (MWIs) in 2D and 3D cylindrical coordinates were introduced. Combined with the concept of p...Based on FDTD difference expressions and eigenfunctions of Maxwell functions in cylindrical coordinates, mesh wave impedances (MWIs) in 2D and 3D cylindrical coordinates were introduced. Combined with the concept of perfectly matched layer (PML), MWI PML absorbing boundary condition (ABC) algorithm was deduced in 2D cylindrical coordinates. Numerical experiments were done to investigate the validity of MWI and its application in cylindrical coordinates FDTD algorithm. The results showed that MWI in cylindrical coordinates can be used to accurately calculate the numerical reflection error caused by different mesh increments in non uniform FDTD. MWI can also provide theoretical criterion to define the permitted variable range of mesh dimension. MWI PML ABC is easy to be applied and reduces low numerical reflection, which only causes a little higher reflection error compared with Teixeira's PML.展开更多
The mild-slope equation is familiar to coastal engineers as it can effectively describe wave propagation in nearshore regions. However, its computational method in Cartesian coordinates often renders the model inaccur...The mild-slope equation is familiar to coastal engineers as it can effectively describe wave propagation in nearshore regions. However, its computational method in Cartesian coordinates often renders the model inaccurate in areas with irregular shorelines, such as estuaries and harbors. Based on the hyperbolic mild-slope equation in Cartesian coordinates, the numerical model in orthogonal curvilinear coordinates is developed. The transformed model is discretized by the finite difference method and solved by the ADI method with space-staggered grids. The numerical predictions in curvilinear co- ordinates show good agreemenl with the data obtained in three typical physical expedments, which demonstrates that the present model can be used to simulate wave propagation, for normal incidence and oblique incidence, in domains with complicated topography and boundary conditions.展开更多
The principle and accuracy of 3-D coordinates acquisition using one single camera and the Aided Measuring Probe(AMP) are discussed in this paper. Using one single camera and one AMP which has several embedded targets ...The principle and accuracy of 3-D coordinates acquisition using one single camera and the Aided Measuring Probe(AMP) are discussed in this paper. Using one single camera and one AMP which has several embedded targets and one tip with known coordinates, the single camera′s orientation and location can be calculated. After orientation, the global coordinate system is obtained. During measurement, the camera is fixed firstly, then the AMP is held and the feature point is touched.The camera is triggered lastly. The position and orientation of the AMP are therefore calculated from the size and position of its image on the sensor. Since the tip point of AMP has known relation with the embedded targets, the feature point can be measured. Tests show that the accuracy of length measurement is 0.2 mm and accuracy for flatness measurement in XSY-plane is 0.1 mm.展开更多
The classical natural coordinate modeling method which removes the Euler angles and Euler parameters from the governing equations is particularly suitable for the sensitivity analysis and optimization of multibody sys...The classical natural coordinate modeling method which removes the Euler angles and Euler parameters from the governing equations is particularly suitable for the sensitivity analysis and optimization of multibody systems. However, the formulation has so many principles in choosing the generalized coordinates that it hinders the implementation of modeling automation, A first order direct sensitivity analysis approach to multibody systems formulated with novel natural coordinates is presented. Firstly, a new selection method for natural coordinate is developed. The method introduces 12 coordinates to describe the position and orientation of a spatial object. On the basis of the proposed natural coordinates, rigid constraint conditions, the basic constraint elements as well as the initial conditions for the governing equations are derived. Considering the characteristics of the governing equations, the newly proposed generalized-ct integration method is used and the corresponding algorithm flowchart is discussed. The objective function, the detailed analysis process of first order direct sensitivity analysis and related solving strategy are provided based on the previous modeling system Finally, in order to verify the validity and accuracy of the method presented, the sensitivity analysis of a planar spinner-slider mechanism and a spatial crank-slider mechanism are conducted. The test results agree well with that of the finite difference method, and the maximum absolute deviation of the results is less than 3%. The proposed approach is not only convenient for automatic modeling, but also helpful for the reduction of the complexity of sensitivity analysis, which provides a practical and effective way to obtain sensitivity for the optimization problems of multibody systems.展开更多
A new oceanic general circulation model in pressure coordinates is formulated. Since the bottom pressure changes with time, the vertical coordinate is actually a pressure-sigma coordinate. The numerical solution of th...A new oceanic general circulation model in pressure coordinates is formulated. Since the bottom pressure changes with time, the vertical coordinate is actually a pressure-sigma coordinate. The numerical solution of the model is based on an energy-conservation scheme of finite difference. The most important new feature of the model is that it is a truly compressible ocean model and it is free of the Boussinesq approximations. Thus, the new model is quite different from many existing models in the following ways: 1) the exact form of mass conservation, 2) the in-situ instantaneous pressure and the UNESCO equation of state to calculate density, 3) the in-situ density in the momentum. equations, 4) finite difference schemes that conserve the total energy. Initial tests showed that the model code runs smoothly, and it is quite stable. The quasi-steady circulation patterns generated by the new model compare well with existing models, but the time evolution of the new model seems different from some existing models. Thus, the non-Boussinesq models may provide more accurate information for climate study and satellite observations.展开更多
Researches on breaking-induced currents by waves are summarized firstly in this paper. Then, a combined numerical model in orthogonal curvilinear coordinates is presented to simulate wave-induced current in areas with...Researches on breaking-induced currents by waves are summarized firstly in this paper. Then, a combined numerical model in orthogonal curvilinear coordinates is presented to simulate wave-induced current in areas with curved boundary or irregular coastline. The proposed wave-induced current model includes a nearshore current module established through orthogonal curvilinear transformation form of shallow water equations and a wave module based on the curvilinear parabolic approximation wave equation. The wave module actually serves as the driving force to provide the current module with required radiation stresses. The Crank-Nicolson finite difference scheme and the alternating directions implicit method are used to solve the wave and current module, respectively. The established surf zone currents model is validated by two numerical experiments about longshore currents and rip currents in basins with rip channel and breakwater. The numerical results are compared with the measured data and published numerical results.展开更多
This investigation is intended to develop a computer procedure for the integration of NURBS geometry and the rational absolute nodal coordinate formulation (RANCF) finite element analysis. A linear transformation is...This investigation is intended to develop a computer procedure for the integration of NURBS geometry and the rational absolute nodal coordinate formulation (RANCF) finite element analysis. A linear transformation is given that can be used to convert the NURBS curve to RANCF cable element mesh retaining the same geometry and the same degree of continuity, including the discussion of continuity control and mesh refinement. The green strain tensor is used to establish the nonlinear dynamic equations with numerical examples to demonstrate the use of the procedure in the dynamic analysis of flexible bodies.展开更多
An FDTD system associated with uniaxial perfectly matched layer(UPML) for an electromagnetic scattering problem in two-dimensional space in polar coordinates is considered.Particularly the FDTD system of an initial-...An FDTD system associated with uniaxial perfectly matched layer(UPML) for an electromagnetic scattering problem in two-dimensional space in polar coordinates is considered.Particularly the FDTD system of an initial-boundary value problems of the transverse magnetic(TM) mode to Maxwell's equations is obtained by Yee's algorithm,and the open domain of the scattering problem is truncated by a circle with a UPML.Besides,an artificial boundary condition is imposed on the outer boundary of the UPML.Afterwards,stability of the FDTD system on the truncated domain is established through energy estimates by the Gronwall inequality.Numerical experiments are designed to approve the theoretical analysis.展开更多
The velocity field in meandering compound channels with overhank flow is highly three dimensional. To date, its features have been investigated experimentally and little research has been undertaken to investigate the...The velocity field in meandering compound channels with overhank flow is highly three dimensional. To date, its features have been investigated experimentally and little research has been undertaken to investigate the feasibility of reproducing these velocity fields with computer models. If computer modeling were to prove successful in this context, it could become a useful prediction technique and research tool to enhance our understanding of natural river dynamics. A 3-D k-E turbulence hydrodynamic model in curvilinear coordinates is established to simulate the overhank flow. The bodyfitted coordinate is adopted in the horizontal plane, the part grid is adopted in the vertical direction, and the wall-function method is employed to simulate the bed resistance. The model is applied to the simulation of the meandering channel with straight flood plain banks, and the main velocities and secondary velocities for both the longitudinal and cross sections are presented. Comparison and analysis show that the results of simulation are fit to reflect the results of experiment. These results show the application value of the model to 3D overhank flow.展开更多
A reconstructed edge-based smoothed triangular element, which is incorporated with the discrete shear gap (DSG) method, is formulated based on the global coordinate for analysis of Reissner-Mindlin plates. A symbolic ...A reconstructed edge-based smoothed triangular element, which is incorporated with the discrete shear gap (DSG) method, is formulated based on the global coordinate for analysis of Reissner-Mindlin plates. A symbolic integration combined with the smoothing technique is implemented to calculate the smoothed finite element matrices, which is integrated along the boundaries of each smoothing cell. Numerical results show that the proposed element is free from shear locking, and its results are in good agreement with the exact solutions, even for very thin plates with extremely distorted elements. The proposed element gives more accurate results than the original DSG element without smoothing, and it can be taken as an alternative element for analysis of Reissner-Mindlin plates. The prominent feature of the present element is that the integration scheme is unified in the smoothed form for all of the finite element matrices.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12241205 and 12032019)the National Key Research and Development Program of China(No.2022YFA1203200)the Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDB0620101 and XDB0620103)。
文摘The initial stresses widely exist in elastic materials.While achieving a continuum stress-free configuration through compatible unloading is desirable,mechanical unloading alone frequently proves insufficient,posing challenges in avoiding virtual stress-free configurations.In this paper,we introduce a novel concept of equivalent temperature variation to counteract the incompatible initial strain.Our focus is on initially stressed cylindrical and spherical elastomers,where we first derive the Saint-Venant,Beltrami-Michell,and Volterra integral conditions in orthogonal curvilinear coordinates using the exterior differential form theory.It is shown that for any given axially or spherically distributed initial stress,an equivalent temperature variation always exists.Furthermore,we propose two innovative initial stress forms based on the steady-state heat conduction.By introducing an equivalent temperature variation,the initial stress can be released through a compatible thermo-mechanical unloading process,offering valuable insights into the constitutive theory of initially stressed elastic materials.
文摘Aim To study the Lie symmetries and the consered quantities of the holonomic systems with remainder coordinates. Methods Using the invariance of the ordinary differential equations under the infinitesimal transformations to establish the determining equations and the restriction equations of the Lie symmetries of the systems. Results and Conclusion the structure equation and the form of conserved quantities were obtained. An example was given to illustrate the application of the result.
基金The National Key Technologies R & D Program during the 11th Five-Year Plan Period (No.2006BAB15B01)
文摘The concise and informative representation of hyperspectral imagery is achieved via the introduced diffusion geometric coordinates derived from nonlinear dimension reduction maps - diffusion maps. The huge-volume high- dimensional spectral measurements are organized by the affinity graph where each node in this graph only connects to its local neighbors and each edge in this graph represents local similarity information. By normalizing the affinity graph appropriately, the diffusion operator of the underlying hyperspectral imagery is well-defined, which means that the Markov random walk can be simulated on the hyperspectral imagery. Therefore, the diffusion geometric coordinates, derived from the eigenfunctions and the associated eigenvalues of the diffusion operator, can capture the intrinsic geometric information of the hyperspectral imagery well, which gives more enhanced representation results than traditional linear methods, such as principal component analysis based methods. For large-scale full scene hyperspectral imagery, by exploiting the backbone approach, the computation complexity and the memory requirements are acceptable. Experiments also show that selecting suitable symmetrization normalization techniques while forming the diffusion operator is important to hyperspectral imagery representation.
基金supported by the National Natural Science Foundation(52302284,22002086,22204096)Shanghai Sailing Program(23YF1412200)the Fundamental Research Funds for the Central Universities(22120240314).
文摘Single-atom catalysts(SACs)have garnered significant attention in lithium-sulfur(Li-S)batteries for their potential to mitigate the severe polysulfide shuttle effect and sluggish redox kinetics.However,the development of highly efficient SACs and a comprehensive understanding of their structure-activity relationships remain enormously challenging.Herein,a novel kind of Fe-based SAC featuring an asymmetric FeN_(5)-TeN_(4) coordination structure was precisely designed by introducing Te atom adjacent to the Fe active center to enhance the catalytic activity.Theoretical calculations reveal that the neighboring Te atom modulates the local coordination environment of the central Fe site,elevating the d-band center closer to the Fermi level and strengthening the d-p orbital hybridization between the catalyst and sulfur species,thereby immobilizing polysulfides and improving the bidirectional catalysis of Li-S redox.Consequently,the Fe-Te atom pair catalyst endows Li-S batteries with exceptional rate performance,achieving a high specific capacity of 735 mAh g^(−1) at 5 C,and remarkable cycling stability with a low decay rate of 0.038%per cycle over 1000 cycles at 1 C.This work provides fundamental insights into the electronic structure modulation of SACs and establishes a clear correlation between precisely engineered atomic configurations and their enhanced catalytic performance in Li-S electrochemistry.
基金supported by the University of Padua(to MR)by the project“RIPANE”of the Italian Ministry of Defense(to CM)by Cariparo Foundation(to CM)。
文摘The neuromuscular junction and its proregenerative niche:The mammalian peripheral nervous system,unlike the central nervous system,has preserved throughout evolution the ability to regenerate and fully restore function.Key factors for effective nerve regeneration include a supportive neuronal environment and a coordinated tissue response(Brosius Lutz and Barres,2014).
基金supported by the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid for Scientific Research(C)23K03898.
文摘Traffic at urban intersections frequently encounters unexpected obstructions,resulting in congestion due to uncooperative and priority-based driving behavior.This paper presents an optimal right-turn coordination system for Connected and Automated Vehicles(CAVs)at single-lane intersections,particularly in the context of left-hand side driving on roads.The goal is to facilitate smooth right turns for certain vehicles without creating bottlenecks.We consider that all approaching vehicles share relevant information through vehicular communications.The Intersection Coordination Unit(ICU)processes this information and communicates the optimal crossing or turning times to the vehicles.The primary objective of this coordination is to minimize overall traffic delays,which also helps improve the fuel consumption of vehicles.By considering information from upcoming vehicles at the intersection,the coordination system solves an optimization problem to determine the best timing for executing right turns,ultimately minimizing the total delay for all vehicles.The proposed coordination system is evaluated at a typical urban intersection,and its performance is compared to traditional traffic systems.Numerical simulation results indicate that the proposed coordination system significantly enhances the average traffic speed and fuel consumption compared to the traditional traffic system in various scenarios.
文摘This paper presents a mathematical algorithm that determines the fluid flow velocity vector (direction, intensity and orientation), based on measured voltages on multi-channel hot-wire anemometer. As the voltage on Constant Temperature hot-wire Anemometer (CTA) is non-linear function of velocity and angle of the fluid, inverse function is also non-linear and has several mathematically correct solutions. In the Laboratory of Non-linear Mechanics at the Faculty of Mechanical Engineering in Ljubljana, the authors have decided to try developing multi-charmel hot-wire anemometer with constant temperature at which it is possible to select physically correct solutions from several mathematically correct solutions. The mathematical algorithm works correctly if the range of instrument operation is limited for the value of spherical angles |φ|≤ 60°and |ψ|'1 ≤ 58°.
文摘This article shows that in spherical polar coordinates, some noncentral separable potentials have super-symmetry and shape invariance in the r and θ dimensions, we choose Hartmann potential and ring-shaped oscillator astwo important examples, thus in principle the energy eigenvalues and energy eigenfunctions of such the potentials in ther and θ dimensions can be obtained by the method of supersymmetric quantum mechanics. Here we use an alternativemethod to get the required results.
文摘Based on FDTD difference expressions and eigenfunctions of Maxwell functions in cylindrical coordinates, mesh wave impedances (MWIs) in 2D and 3D cylindrical coordinates were introduced. Combined with the concept of perfectly matched layer (PML), MWI PML absorbing boundary condition (ABC) algorithm was deduced in 2D cylindrical coordinates. Numerical experiments were done to investigate the validity of MWI and its application in cylindrical coordinates FDTD algorithm. The results showed that MWI in cylindrical coordinates can be used to accurately calculate the numerical reflection error caused by different mesh increments in non uniform FDTD. MWI can also provide theoretical criterion to define the permitted variable range of mesh dimension. MWI PML ABC is easy to be applied and reduces low numerical reflection, which only causes a little higher reflection error compared with Teixeira's PML.
基金supported by the National Basic Research Program of China ( Grant No.2006CB403302)the National Natural Science Foundation of China (Grant Nos .50839001 and 50709004)the Scientific Research Foundation of the Higher Education Institutions of Liaoning Province (Grant No.2006T018)
文摘The mild-slope equation is familiar to coastal engineers as it can effectively describe wave propagation in nearshore regions. However, its computational method in Cartesian coordinates often renders the model inaccurate in areas with irregular shorelines, such as estuaries and harbors. Based on the hyperbolic mild-slope equation in Cartesian coordinates, the numerical model in orthogonal curvilinear coordinates is developed. The transformed model is discretized by the finite difference method and solved by the ADI method with space-staggered grids. The numerical predictions in curvilinear co- ordinates show good agreemenl with the data obtained in three typical physical expedments, which demonstrates that the present model can be used to simulate wave propagation, for normal incidence and oblique incidence, in domains with complicated topography and boundary conditions.
文摘The principle and accuracy of 3-D coordinates acquisition using one single camera and the Aided Measuring Probe(AMP) are discussed in this paper. Using one single camera and one AMP which has several embedded targets and one tip with known coordinates, the single camera′s orientation and location can be calculated. After orientation, the global coordinate system is obtained. During measurement, the camera is fixed firstly, then the AMP is held and the feature point is touched.The camera is triggered lastly. The position and orientation of the AMP are therefore calculated from the size and position of its image on the sensor. Since the tip point of AMP has known relation with the embedded targets, the feature point can be measured. Tests show that the accuracy of length measurement is 0.2 mm and accuracy for flatness measurement in XSY-plane is 0.1 mm.
基金supported by National Defense Pre-research Foundation of China during the 12th Five-Year Plan Period(Grant No.51036050107)
文摘The classical natural coordinate modeling method which removes the Euler angles and Euler parameters from the governing equations is particularly suitable for the sensitivity analysis and optimization of multibody systems. However, the formulation has so many principles in choosing the generalized coordinates that it hinders the implementation of modeling automation, A first order direct sensitivity analysis approach to multibody systems formulated with novel natural coordinates is presented. Firstly, a new selection method for natural coordinate is developed. The method introduces 12 coordinates to describe the position and orientation of a spatial object. On the basis of the proposed natural coordinates, rigid constraint conditions, the basic constraint elements as well as the initial conditions for the governing equations are derived. Considering the characteristics of the governing equations, the newly proposed generalized-ct integration method is used and the corresponding algorithm flowchart is discussed. The objective function, the detailed analysis process of first order direct sensitivity analysis and related solving strategy are provided based on the previous modeling system Finally, in order to verify the validity and accuracy of the method presented, the sensitivity analysis of a planar spinner-slider mechanism and a spatial crank-slider mechanism are conducted. The test results agree well with that of the finite difference method, and the maximum absolute deviation of the results is less than 3%. The proposed approach is not only convenient for automatic modeling, but also helpful for the reduction of the complexity of sensitivity analysis, which provides a practical and effective way to obtain sensitivity for the optimization problems of multibody systems.
文摘A new oceanic general circulation model in pressure coordinates is formulated. Since the bottom pressure changes with time, the vertical coordinate is actually a pressure-sigma coordinate. The numerical solution of the model is based on an energy-conservation scheme of finite difference. The most important new feature of the model is that it is a truly compressible ocean model and it is free of the Boussinesq approximations. Thus, the new model is quite different from many existing models in the following ways: 1) the exact form of mass conservation, 2) the in-situ instantaneous pressure and the UNESCO equation of state to calculate density, 3) the in-situ density in the momentum. equations, 4) finite difference schemes that conserve the total energy. Initial tests showed that the model code runs smoothly, and it is quite stable. The quasi-steady circulation patterns generated by the new model compare well with existing models, but the time evolution of the new model seems different from some existing models. Thus, the non-Boussinesq models may provide more accurate information for climate study and satellite observations.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50839001 and 50979036)
文摘Researches on breaking-induced currents by waves are summarized firstly in this paper. Then, a combined numerical model in orthogonal curvilinear coordinates is presented to simulate wave-induced current in areas with curved boundary or irregular coastline. The proposed wave-induced current model includes a nearshore current module established through orthogonal curvilinear transformation form of shallow water equations and a wave module based on the curvilinear parabolic approximation wave equation. The wave module actually serves as the driving force to provide the current module with required radiation stresses. The Crank-Nicolson finite difference scheme and the alternating directions implicit method are used to solve the wave and current module, respectively. The established surf zone currents model is validated by two numerical experiments about longshore currents and rip currents in basins with rip channel and breakwater. The numerical results are compared with the measured data and published numerical results.
基金supported by the National Natural Science Foundation of China(No.11172076)the Science and Technology Innovation Talent Foundation of Harbin(No.2012RFLXG020)
文摘This investigation is intended to develop a computer procedure for the integration of NURBS geometry and the rational absolute nodal coordinate formulation (RANCF) finite element analysis. A linear transformation is given that can be used to convert the NURBS curve to RANCF cable element mesh retaining the same geometry and the same degree of continuity, including the discussion of continuity control and mesh refinement. The green strain tensor is used to establish the nonlinear dynamic equations with numerical examples to demonstrate the use of the procedure in the dynamic analysis of flexible bodies.
文摘An FDTD system associated with uniaxial perfectly matched layer(UPML) for an electromagnetic scattering problem in two-dimensional space in polar coordinates is considered.Particularly the FDTD system of an initial-boundary value problems of the transverse magnetic(TM) mode to Maxwell's equations is obtained by Yee's algorithm,and the open domain of the scattering problem is truncated by a circle with a UPML.Besides,an artificial boundary condition is imposed on the outer boundary of the UPML.Afterwards,stability of the FDTD system on the truncated domain is established through energy estimates by the Gronwall inequality.Numerical experiments are designed to approve the theoretical analysis.
文摘The velocity field in meandering compound channels with overhank flow is highly three dimensional. To date, its features have been investigated experimentally and little research has been undertaken to investigate the feasibility of reproducing these velocity fields with computer models. If computer modeling were to prove successful in this context, it could become a useful prediction technique and research tool to enhance our understanding of natural river dynamics. A 3-D k-E turbulence hydrodynamic model in curvilinear coordinates is established to simulate the overhank flow. The bodyfitted coordinate is adopted in the horizontal plane, the part grid is adopted in the vertical direction, and the wall-function method is employed to simulate the bed resistance. The model is applied to the simulation of the meandering channel with straight flood plain banks, and the main velocities and secondary velocities for both the longitudinal and cross sections are presented. Comparison and analysis show that the results of simulation are fit to reflect the results of experiment. These results show the application value of the model to 3D overhank flow.
基金supported by the National Natural Science Foundation of China (Grants 11272118, 11372106)Fundamental Research Fund of the Central Universities (Grant 227201401203)
文摘A reconstructed edge-based smoothed triangular element, which is incorporated with the discrete shear gap (DSG) method, is formulated based on the global coordinate for analysis of Reissner-Mindlin plates. A symbolic integration combined with the smoothing technique is implemented to calculate the smoothed finite element matrices, which is integrated along the boundaries of each smoothing cell. Numerical results show that the proposed element is free from shear locking, and its results are in good agreement with the exact solutions, even for very thin plates with extremely distorted elements. The proposed element gives more accurate results than the original DSG element without smoothing, and it can be taken as an alternative element for analysis of Reissner-Mindlin plates. The prominent feature of the present element is that the integration scheme is unified in the smoothed form for all of the finite element matrices.