This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only b...This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.展开更多
The formation of hybrid underwater gliders has advantages in sustained ocean observation with high resolution and more adaptation for complicated ocean tasks. However, the current work mostly focused on the traditiona...The formation of hybrid underwater gliders has advantages in sustained ocean observation with high resolution and more adaptation for complicated ocean tasks. However, the current work mostly focused on the traditional gliders and AUVs.The research on control strategy and energy consumption minimization for the hybrid gliders is necessary both in methodology and experiment. A multi-layer coordinate control strategy is developed for the fleet of hybrid underwater gliders to control the gliders’ motion and formation geometry with optimized energy consumption. The inner layer integrated in the onboard controller and the outer layer integrated in the ground control center or the deck controller are designed. A coordinate control model is proposed based on multibody theory through adoption of artificial potential fields. Considering the existence of ocean flow, a hybrid motion energy consumption model is constructed and an optimization method is designed to obtain the heading angle, net buoyancy, gliding angle and the rotate speed of screw propeller to minimize the motion energy with consideration of the ocean flow. The feasibility of the coordinate control system and motion optimization method has been verified both by simulation and sea trials. Simulation results show the regularity of energy consumption with the control variables. The fleet of three Petrel-Ⅱ gliders developed by Tianjin University is deployed in the South China Sea. The trajectory error of each glider is less than 2.5 km, the formation shape error between each glider is less than 2 km, and the difference between actual energy consumption and the simulated energy consumption is less than 24% actual energy. The results of simulation and the sea trial prove the feasibility of the proposed coordinate control strategy and energy optimization method. In conclusion, a coordinate control system and a motion optimization method is studied, which can be used for reference in theoretical research and practical fleet operation for both the traditional gliders and hybrid gliders.展开更多
In the three-wire welding system, a welding process consists of the operations of four devices, namely three welding machines and one bogie. The operations need to be synchronized by a numerical coordinate controller ...In the three-wire welding system, a welding process consists of the operations of four devices, namely three welding machines and one bogie. The operations need to be synchronized by a numerical coordinate controller ( NCC ). In this paper, we will discuss a tnsk-job-procedure cubic program structure. Under this structure, the devices are synchronized and isolated at the same time. This cubic program structure can also be used as a reference for other multi-device or multi-unit manufacturing processes.展开更多
A novel initiative mating device, which has four 2-degree manipulators around the mating skirt, is proposed to mate between a skirt of AUV (autonomons underwater vehicle) and a disabled submarine. The primary functi...A novel initiative mating device, which has four 2-degree manipulators around the mating skirt, is proposed to mate between a skirt of AUV (autonomons underwater vehicle) and a disabled submarine. The primary function of the device is to keep exact mating between skirt and disabled submarine in a badly sub sea environment. According to the characteristic of rescue, an automaton model is brought forward to describe the mating proceed between AUV and manipulators. The coordinated control is implemented by the TDES (time discrete event system). After taking into account the time problem, it is a useful method to control mating by sinmlation testing. The result shows that it reduces about 70 seconds after using intelligent co-ordinate control based on TDES through the whole mating procedure.展开更多
This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter...This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter-satellite distance of space-based laser interferometers are first modeled.Subject to the delayed communication behaviors,a new delay-dependent attitude-orbit coordinated controller is designed.Moreover,by reconstructing the less conservative Lyapunov-Krasovskii functional and free-weight matrices,sufficient criteria are derived to ensure the exponential stability of the closed-loop relative translation and attitude error system.Finally,a simulation example is employed to illustrate the numerical validity of the proposed controller for in-orbit detection missions.展开更多
In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of un...In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of unknown external disturbances.Firstly,VTs are constructed for each QUAV,and the QUAV is restricted into the corresponding VT by the artificial potential field,which is distributed around the boundary of the VT.Thus,the collisions between QUAVs are avoided.Besides,the boundaries of the VTs are flexible by the modification signals,which are generated by the self-regulating auxiliary systems,to make the repulsive force smaller and give more buffer space for QUAVs without collision.Then,a novel ET mechanism is designed by introducing the concept of prediction to the traditional fixed threshold ET mechanism.Furthermore,a disturbance observer is proposed to deal with the adverse effects of the unknown external disturbance.On this basis,a distributed ET collision avoidance coordinated controller is proposed.Then,the proposed controller is quantized by the hysteresis uniform quantizer and then sent to the actuator only at the ET instants.The boundedness of the closed-loop signals is verified by the Lyapunov method.Finally,simulation and experimental results are performed to demonstrate the superiority of the proposed control method.展开更多
The coordinated control of PM_(2.5)and ozone has become the strategic goal of national air pollution control.Considering the gradual decline in PM_(2.5)concentration and the aggravation of ozone pollution,a better und...The coordinated control of PM_(2.5)and ozone has become the strategic goal of national air pollution control.Considering the gradual decline in PM_(2.5)concentration and the aggravation of ozone pollution,a better understanding of the coordinated control of PM_(2.5)and ozone is urgently needed.Here,we collected and sorted air pollutant data for 337 cities from 2015 to 2020 to explore the characteristics of PM_(2.5)and ozone pollution based on China’s five major air pollution regions.The results show that it is necessary to continue to strengthen the emission reduction in PM_(2.5)and ozone precursors,and control NO_(x) and VOCs while promoting a dramatic emission reduction in PM_(2.5).The primary method of curbing ozone pollution is to strengthen the emission control of VOCs,with a long-term strategy of achieving substantial emission reductions in NO_(x),because VOCs and NO_(x) are also precursors to PM_(2.5);hence,their reductions also contribute to the reduction in PM_(2.5).Therefore,the implementation of a multipollutant emission reduction control strategy aimed at the prevention and control of PM_(2.5)and ozone pollution is the only means to realize the coordinated control of PM_(2.5)and ozone.展开更多
The operation efficiency of the manipulator is placed in the primary position in automatic production. This paper proposes a coordinated control strategy for joint servo and visual servo to enable timely transfer and ...The operation efficiency of the manipulator is placed in the primary position in automatic production. This paper proposes a coordinated control strategy for joint servo and visual servo to enable timely transfer and accurate gripping in the working area. Aiming at the issues of chattering and slow convergence of traditional sliding mode controller, a fast variable power reaching rate on the basis of the non-singular fast terminal sliding mode controller is proposed, which can effectively reduce the convergence time and chattering. For the purpose of addressing the problem that the traditional visual servo control method is sensitive to the environment, a visual servo controller based on integral sliding mode is proposed, to ensure the favorable positioning accuracy of the manipulator. Based on the two proposed controllers mentioned above, a coordinated control strategy is used to implement the control of the manipulator. Finally, the upper computer software is developed using the C# programming language to monitor the workstation. The feasibility of the above-mentioned method is verified through multiple simulations and experiments.展开更多
Multi-point array flexible tooling based on multilateration is widely used in the processing and manufacturing of complex curved surface parts. However, during the positioning of workpieces, the force exerted on each ...Multi-point array flexible tooling based on multilateration is widely used in the processing and manufacturing of complex curved surface parts. However, during the positioning of workpieces, the force exerted on each flexible support point is not uniform, and there exists force coupling between the support units. In response to the force coupling problem in the multi-point array positioning support process, a coordinated control method for the support force of multi-point array positioning combining correlation coefficient and regression analysis was proposed in this paper. The Spearman correlation coefficient was adopted in this method to study the force coupling correlation between positioning points, and a mathematical model of force coupling was established between positioning units through regression analysis, which can quickly and accurately perform coordinated control of the multilateration support system, and effectively improve the force interference of the multi-point array positioning support scene.展开更多
To investigate the control of morphing wings by means of interacting effectors,this article proposes a distributed coordinated control scheme with sampled communication on the basis of a simple morphing wing model,est...To investigate the control of morphing wings by means of interacting effectors,this article proposes a distributed coordinated control scheme with sampled communication on the basis of a simple morphing wing model,established with arrayed agents. The control scheme can change the shape of airfoil into an expected one and keep it smooth during morphing. As the interconnection of communication network and the agents would make the behavior of the morphing wing system complicated,a diagrammatic stability analysis method is put forward to ensure the system stability. Two simulations are carried out on the morphing wing system by using MATLAB. The results stand witness to the feasibility of the distributed coordinated control scheme and the effectiveness of the diagrammatic stability analysis method.展开更多
In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on obje...In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on object position and internal force are derived. Then a hybrid position/force coordinated learning control scheme is presented and its convergence is proved. The scheme can improve the system performance by modifying the control input of the system after each iterative learning. Simulation results of two planar robot manipulators holding an object show the effectiveness of this control scheme.展开更多
An X-by-wire chassis can improve the kinematic characteristics of human-vehicle closed-loop system and thus active safety especially under emergency scenarios via enabling chassis coordinated control.This paper aims t...An X-by-wire chassis can improve the kinematic characteristics of human-vehicle closed-loop system and thus active safety especially under emergency scenarios via enabling chassis coordinated control.This paper aims to provide a complete and systematic survey on chassis coordinated control methods for full X-by-wire vehicles,with the primary goal of summarizing recent reserch advancements and stimulating innovative thoughts.Driving condition identification including driver’s operation intention,critical vehicle states and road adhesion condition and integrated control of X-by-wire chassis subsystems constitute the main framework of a chassis coordinated control scheme.Under steering and braking maneuvers,different driving condition identification methods are described in this paper.These are the trigger conditions and the basis for the implementation of chassis coordinated control.For the vehicles equipped with steering-by-wire,braking-by-wire and/or wire-controlled-suspension systems,state-of-the-art chassis coordinated control methods are reviewed including the coordination of any two or three chassis subsystems.Finally,the development trends are discussed.展开更多
Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utili...Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utilizing the reactive power capability of PV inverters to mitigate voltage deviations is being promoted.In recent years,droop control of inverter-based distributed energy resources has emerged as an essential tool for use in this study.The participation of PV systems in voltage regulation and its coordination with existing controllers,such as on-load tap changers,is paramount for controlling the voltage within specified limits.In this work,control strategies are presented that can be coordinated with the existing controls in a distributed manner.The effectiveness of the proposed method was demonstrated through simulation results on a distribution system.展开更多
Walking is the most basic and essential part of the activities of daily living. To enable the elderly and non-ambulatory gait-impaired patients, the repetitive practice of this task, a novel gait training robot(GTR) w...Walking is the most basic and essential part of the activities of daily living. To enable the elderly and non-ambulatory gait-impaired patients, the repetitive practice of this task, a novel gait training robot(GTR) was designed followed the end-effector principle, and an active partial body weight support(PBWS) system was introduced to facilitate successful gait training. For successful establishment of a walking gait on the GTR with PBWS, the motion laws of the GTR were planned to enable the phase distribution relationships of the cycle step, and the center of gravity(COG) trajectory of the human body during gait training on the GTR was measured. A coordinated control strategy was proposed based on the impedance control principle. A robotic prototype was developed as a platform for evaluating the design concepts and control strategies. Preliminary gait training with a healthy subject was implemented by the robotic-assisted gait training system and the experimental results are encouraging.展开更多
Hydraulic excavator is one type of the most widely applied construction equipment for various applications mainly because of its versatility and mobility. Among the tasks performed by a hydraulic excavator, repeatable...Hydraulic excavator is one type of the most widely applied construction equipment for various applications mainly because of its versatility and mobility. Among the tasks performed by a hydraulic excavator, repeatable level digging or flat surface finishing may take a large percentage. Using automated functions to perform such repeatable and tedious jobs will not only greatly increase the overall productivity but more importantly also improve the operation safety. For the purpose of investigating the technology without loss of generality, this research is conducted to create a coordinate control method for the boom, arm and bucket cylinders on a hydraulic excavator to perform accurate and effective works. On the basis of the kinematic analysis of the excavator linkage system, the tip trajectory of the end-effector can be determined in terms of three hydraulic cylinders coordinated motion with a visualized method. The coordination of those hydraulic cylinders is realized by controlling three electro-hydraulic proportional valves coordinately. Therefore, the complex control algorithm of a hydraulic excavator can be simplified into coordinated motion control of three individual systems. This coordinate control algorithm was validated on a wheeled hydraulic excavator, and the validation results indicated that this developed control method could satisfactorily accomplish the auto-digging function for level digging or flat surface finishing.展开更多
One-way roads have potential for improving vehicle speed and reducing traffic delay.Suffering from dense road network,most of adjacent intersections’distance on one-way roads becomes relatively close,which makes isol...One-way roads have potential for improving vehicle speed and reducing traffic delay.Suffering from dense road network,most of adjacent intersections’distance on one-way roads becomes relatively close,which makes isolated control of intersections inefficient in this scene.Thus,it is significant to develop coordinated control of multiple intersection signals on the one-way roads.This paper proposes a signal coordination control method that is suitable for one-way arterial roads.This method uses the cooperation technology of the vehicle infrastructure to collect intersection traffic information and share information among the intersections.Adaptive signal control system is adopted for each intersection in the coordination system,and the green light time is adjusted in real time based on the number of vehicles in queue.The offset and clearance time can be calculated according to the real-time traffic volume.The proposed method was verified with simulation results by VISSIM traffic simulation software.The results compared with other methods show that the coordinated control method proposed in this paper can effectively reduce the average delay of vehicles on the arterial roads and improve the traffic efficiency.展开更多
This paper addresses a coordinated control problem for Spacecraft Formation Flying(SFF). The distributed followers are required to track and synchronize with the leader spacecraft.By using the feature points in the tw...This paper addresses a coordinated control problem for Spacecraft Formation Flying(SFF). The distributed followers are required to track and synchronize with the leader spacecraft.By using the feature points in the two-dimensional image space, an integrated 6-degree-of-freedom dynamic model is formulated for spacecraft relative motion. Without sophisticated threedimensional reconstruction, image features are directly utilized for the controller design. The proposed image-based controller can drive the follower spacecraft in the desired configuration with respect to the leader when the real-time captured images match their reference counterparts. To improve the precision of the formation configuration, the proposed controller employs a coordinated term to reduce the relative distance errors between followers. The uncertainties in the system dynamics are handled by integrating the adaptive technique into the controller, which increases the robustness of the SFF system. The closed-loop system stability is analyzed using the Lyapunov method and algebraic graph theory. A numerical simulation for a given SFF scenario is performed to evaluate the performance of the controller.展开更多
In this paper, the control problem of auxiliary power unit (APU) for hybrid electric vehicles is investigated. An adaptive controller is provided to achieve the coordinated control between the engine speed and the b...In this paper, the control problem of auxiliary power unit (APU) for hybrid electric vehicles is investigated. An adaptive controller is provided to achieve the coordinated control between the engine speed and the battery charging voltage. The proposed adaptive coordinated control laws for the throttle angle of the engine and the voltage of the power-converter can guarantee not only the asymptotic tracking performance of the engine speed and the regulation of the battery charging voltage, but also the robust stability of the closed loop system under external load changes. Simulation results are given to verify the performance of the proposed adaptive controller.展开更多
In order to improve the frequency response and anti-interference characteristics of the smart electromechanical actuator(EMA)system,and aiming at the force fighting problem when multiple actuators work synchronously,a...In order to improve the frequency response and anti-interference characteristics of the smart electromechanical actuator(EMA)system,and aiming at the force fighting problem when multiple actuators work synchronously,a multi input multi output(MIMO)position difference cross coupling control coordinated strategy based on double‑closed-loop load feedforward control is proposed and designed.In this strategy,the singular value method of return difference matrix is used to design the parameter range that meets the requirements of system stability margin,and the sensitivity function and the H_(∞)norm theory are used to design and determine the optimal solution in the obtained parameter stability region,so that the multi actuator system has excellent synchronization,stability and anti-interference.At the same time,the mathematical model of the integrated smart EMA system is established.According to the requirements of point-to-point control,the controller of double-loop control and load feedforward compensation is determined and designed to improve the frequency response and anti-interference ability of single actuator.Finally,the 270 V high-voltage smart EMA system experimental platform is built,and the frequency response,load feedforward compensation and coordinated control experiments are carried out to verify the correctness of the position difference cross coupling control strategy and the rationality of the parameter design,so that the system can reach the servo control indexes of bandwidth 6 Hz,the maximum output force 20000 N and the synchronization error≤0.1 mm,which effectively solves the problem of force fighting.展开更多
In this paper,we investigate a leader-following tracking problem for multi-agent systems with boundedinputs.We propose a distributed bounded protocol for each follower to track a leader whose states may not be complet...In this paper,we investigate a leader-following tracking problem for multi-agent systems with boundedinputs.We propose a distributed bounded protocol for each follower to track a leader whose states may not be completelymeasured.We theoretically prove that each agent can follow the leader with estimable track errors.Finally,somenumerical simulations are presented to illustrate our theoretical results.展开更多
文摘This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.
基金Supported by National Key R&D Plan of China(Grant No.2016YFC0301100)National Natural Science Foundation of China(Grant Nos.51475319,51575736,41527901)Aoshan Talents Program of Qingdao National Laboratory for Marine Science and Technology,China
文摘The formation of hybrid underwater gliders has advantages in sustained ocean observation with high resolution and more adaptation for complicated ocean tasks. However, the current work mostly focused on the traditional gliders and AUVs.The research on control strategy and energy consumption minimization for the hybrid gliders is necessary both in methodology and experiment. A multi-layer coordinate control strategy is developed for the fleet of hybrid underwater gliders to control the gliders’ motion and formation geometry with optimized energy consumption. The inner layer integrated in the onboard controller and the outer layer integrated in the ground control center or the deck controller are designed. A coordinate control model is proposed based on multibody theory through adoption of artificial potential fields. Considering the existence of ocean flow, a hybrid motion energy consumption model is constructed and an optimization method is designed to obtain the heading angle, net buoyancy, gliding angle and the rotate speed of screw propeller to minimize the motion energy with consideration of the ocean flow. The feasibility of the coordinate control system and motion optimization method has been verified both by simulation and sea trials. Simulation results show the regularity of energy consumption with the control variables. The fleet of three Petrel-Ⅱ gliders developed by Tianjin University is deployed in the South China Sea. The trajectory error of each glider is less than 2.5 km, the formation shape error between each glider is less than 2 km, and the difference between actual energy consumption and the simulated energy consumption is less than 24% actual energy. The results of simulation and the sea trial prove the feasibility of the proposed coordinate control strategy and energy optimization method. In conclusion, a coordinate control system and a motion optimization method is studied, which can be used for reference in theoretical research and practical fleet operation for both the traditional gliders and hybrid gliders.
基金This work was supported by the Natural Science Fund of China,grant number 50375054.
文摘In the three-wire welding system, a welding process consists of the operations of four devices, namely three welding machines and one bogie. The operations need to be synchronized by a numerical coordinate controller ( NCC ). In this paper, we will discuss a tnsk-job-procedure cubic program structure. Under this structure, the devices are synchronized and isolated at the same time. This cubic program structure can also be used as a reference for other multi-device or multi-unit manufacturing processes.
文摘A novel initiative mating device, which has four 2-degree manipulators around the mating skirt, is proposed to mate between a skirt of AUV (autonomons underwater vehicle) and a disabled submarine. The primary function of the device is to keep exact mating between skirt and disabled submarine in a badly sub sea environment. According to the characteristic of rescue, an automaton model is brought forward to describe the mating proceed between AUV and manipulators. The coordinated control is implemented by the TDES (time discrete event system). After taking into account the time problem, it is a useful method to control mating by sinmlation testing. The result shows that it reduces about 70 seconds after using intelligent co-ordinate control based on TDES through the whole mating procedure.
基金supported by the Na⁃tional Key R&D Program of China(No.2022YFC2204800)the Graduate Student Independent Exploration and Innovation Program of Central South University(No.2024ZZTS 0767).
文摘This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter-satellite distance of space-based laser interferometers are first modeled.Subject to the delayed communication behaviors,a new delay-dependent attitude-orbit coordinated controller is designed.Moreover,by reconstructing the less conservative Lyapunov-Krasovskii functional and free-weight matrices,sufficient criteria are derived to ensure the exponential stability of the closed-loop relative translation and attitude error system.Finally,a simulation example is employed to illustrate the numerical validity of the proposed controller for in-orbit detection missions.
基金supported in part by the National Key R&D Program of China(No.2023YFB4704400)in part by the National Natural Science Foundation of China(Nos.U23B2036,U2013201).
文摘In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of unknown external disturbances.Firstly,VTs are constructed for each QUAV,and the QUAV is restricted into the corresponding VT by the artificial potential field,which is distributed around the boundary of the VT.Thus,the collisions between QUAVs are avoided.Besides,the boundaries of the VTs are flexible by the modification signals,which are generated by the self-regulating auxiliary systems,to make the repulsive force smaller and give more buffer space for QUAVs without collision.Then,a novel ET mechanism is designed by introducing the concept of prediction to the traditional fixed threshold ET mechanism.Furthermore,a disturbance observer is proposed to deal with the adverse effects of the unknown external disturbance.On this basis,a distributed ET collision avoidance coordinated controller is proposed.Then,the proposed controller is quantized by the hysteresis uniform quantizer and then sent to the actuator only at the ET instants.The boundedness of the closed-loop signals is verified by the Lyapunov method.Finally,simulation and experimental results are performed to demonstrate the superiority of the proposed control method.
基金supported by the National Natural Science Foundation of China(No.91844301)by the Beijing Municipal Natural Science Fund(No.JQ21030)。
文摘The coordinated control of PM_(2.5)and ozone has become the strategic goal of national air pollution control.Considering the gradual decline in PM_(2.5)concentration and the aggravation of ozone pollution,a better understanding of the coordinated control of PM_(2.5)and ozone is urgently needed.Here,we collected and sorted air pollutant data for 337 cities from 2015 to 2020 to explore the characteristics of PM_(2.5)and ozone pollution based on China’s five major air pollution regions.The results show that it is necessary to continue to strengthen the emission reduction in PM_(2.5)and ozone precursors,and control NO_(x) and VOCs while promoting a dramatic emission reduction in PM_(2.5).The primary method of curbing ozone pollution is to strengthen the emission control of VOCs,with a long-term strategy of achieving substantial emission reductions in NO_(x),because VOCs and NO_(x) are also precursors to PM_(2.5);hence,their reductions also contribute to the reduction in PM_(2.5).Therefore,the implementation of a multipollutant emission reduction control strategy aimed at the prevention and control of PM_(2.5)and ozone pollution is the only means to realize the coordinated control of PM_(2.5)and ozone.
基金supported by the National Natural Science Foundation of China(No.62273189)the Natural Science Foundation of Shandong Province(No.ZR2021MF005).
文摘The operation efficiency of the manipulator is placed in the primary position in automatic production. This paper proposes a coordinated control strategy for joint servo and visual servo to enable timely transfer and accurate gripping in the working area. Aiming at the issues of chattering and slow convergence of traditional sliding mode controller, a fast variable power reaching rate on the basis of the non-singular fast terminal sliding mode controller is proposed, which can effectively reduce the convergence time and chattering. For the purpose of addressing the problem that the traditional visual servo control method is sensitive to the environment, a visual servo controller based on integral sliding mode is proposed, to ensure the favorable positioning accuracy of the manipulator. Based on the two proposed controllers mentioned above, a coordinated control strategy is used to implement the control of the manipulator. Finally, the upper computer software is developed using the C# programming language to monitor the workstation. The feasibility of the above-mentioned method is verified through multiple simulations and experiments.
基金Sponsored by the Program of Shanghai Academic/Technology Research Leader (Grant No. 21XD1431200)。
文摘Multi-point array flexible tooling based on multilateration is widely used in the processing and manufacturing of complex curved surface parts. However, during the positioning of workpieces, the force exerted on each flexible support point is not uniform, and there exists force coupling between the support units. In response to the force coupling problem in the multi-point array positioning support process, a coordinated control method for the support force of multi-point array positioning combining correlation coefficient and regression analysis was proposed in this paper. The Spearman correlation coefficient was adopted in this method to study the force coupling correlation between positioning points, and a mathematical model of force coupling was established between positioning units through regression analysis, which can quickly and accurately perform coordinated control of the multilateration support system, and effectively improve the force interference of the multi-point array positioning support scene.
基金National Natural Science Foundation of China (90605007)
文摘To investigate the control of morphing wings by means of interacting effectors,this article proposes a distributed coordinated control scheme with sampled communication on the basis of a simple morphing wing model,established with arrayed agents. The control scheme can change the shape of airfoil into an expected one and keep it smooth during morphing. As the interconnection of communication network and the agents would make the behavior of the morphing wing system complicated,a diagrammatic stability analysis method is put forward to ensure the system stability. Two simulations are carried out on the morphing wing system by using MATLAB. The results stand witness to the feasibility of the distributed coordinated control scheme and the effectiveness of the diagrammatic stability analysis method.
文摘In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on object position and internal force are derived. Then a hybrid position/force coordinated learning control scheme is presented and its convergence is proved. The scheme can improve the system performance by modifying the control input of the system after each iterative learning. Simulation results of two planar robot manipulators holding an object show the effectiveness of this control scheme.
基金Supported in part by Ministry of Science and Technology of the People’s Republic of China(Grant No.2017YFB0103600)Beijing Municipal Science and Technology Commission via the Beijing Nova Program(Grant No.Z201100006820007).
文摘An X-by-wire chassis can improve the kinematic characteristics of human-vehicle closed-loop system and thus active safety especially under emergency scenarios via enabling chassis coordinated control.This paper aims to provide a complete and systematic survey on chassis coordinated control methods for full X-by-wire vehicles,with the primary goal of summarizing recent reserch advancements and stimulating innovative thoughts.Driving condition identification including driver’s operation intention,critical vehicle states and road adhesion condition and integrated control of X-by-wire chassis subsystems constitute the main framework of a chassis coordinated control scheme.Under steering and braking maneuvers,different driving condition identification methods are described in this paper.These are the trigger conditions and the basis for the implementation of chassis coordinated control.For the vehicles equipped with steering-by-wire,braking-by-wire and/or wire-controlled-suspension systems,state-of-the-art chassis coordinated control methods are reviewed including the coordination of any two or three chassis subsystems.Finally,the development trends are discussed.
基金by a project under the scheme entitled“Developing Policies&Adaptation Strategies to Climate Change in the Baltic Sea Region”(ASTRA),Project No.ASTRA6-4(2014-2020.4.01.16-0032).
文摘Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic(PV)power generation in distribution networks.As the PV systems penetration is likely to increase in the future,utilizing the reactive power capability of PV inverters to mitigate voltage deviations is being promoted.In recent years,droop control of inverter-based distributed energy resources has emerged as an essential tool for use in this study.The participation of PV systems in voltage regulation and its coordination with existing controllers,such as on-load tap changers,is paramount for controlling the voltage within specified limits.In this work,control strategies are presented that can be coordinated with the existing controls in a distributed manner.The effectiveness of the proposed method was demonstrated through simulation results on a distribution system.
基金Project(61175128) supported by the National Natural Science Foundation of ChinaProject(2008AA040203) supported by the National High Technology Research and Development Program of China
文摘Walking is the most basic and essential part of the activities of daily living. To enable the elderly and non-ambulatory gait-impaired patients, the repetitive practice of this task, a novel gait training robot(GTR) was designed followed the end-effector principle, and an active partial body weight support(PBWS) system was introduced to facilitate successful gait training. For successful establishment of a walking gait on the GTR with PBWS, the motion laws of the GTR were planned to enable the phase distribution relationships of the cycle step, and the center of gravity(COG) trajectory of the human body during gait training on the GTR was measured. A coordinated control strategy was proposed based on the impedance control principle. A robotic prototype was developed as a platform for evaluating the design concepts and control strategies. Preliminary gait training with a healthy subject was implemented by the robotic-assisted gait training system and the experimental results are encouraging.
基金supported by National Natural Science Foundation of China (Grant No. 50875228)
文摘Hydraulic excavator is one type of the most widely applied construction equipment for various applications mainly because of its versatility and mobility. Among the tasks performed by a hydraulic excavator, repeatable level digging or flat surface finishing may take a large percentage. Using automated functions to perform such repeatable and tedious jobs will not only greatly increase the overall productivity but more importantly also improve the operation safety. For the purpose of investigating the technology without loss of generality, this research is conducted to create a coordinate control method for the boom, arm and bucket cylinders on a hydraulic excavator to perform accurate and effective works. On the basis of the kinematic analysis of the excavator linkage system, the tip trajectory of the end-effector can be determined in terms of three hydraulic cylinders coordinated motion with a visualized method. The coordination of those hydraulic cylinders is realized by controlling three electro-hydraulic proportional valves coordinately. Therefore, the complex control algorithm of a hydraulic excavator can be simplified into coordinated motion control of three individual systems. This coordinate control algorithm was validated on a wheeled hydraulic excavator, and the validation results indicated that this developed control method could satisfactorily accomplish the auto-digging function for level digging or flat surface finishing.
基金Project(61503048)supported by the National Natural Science Foundation of ChinaProjects(16C0050,16C0062)supported by Scientific Research Project of Hunan Provincial Department of Education,China
文摘One-way roads have potential for improving vehicle speed and reducing traffic delay.Suffering from dense road network,most of adjacent intersections’distance on one-way roads becomes relatively close,which makes isolated control of intersections inefficient in this scene.Thus,it is significant to develop coordinated control of multiple intersection signals on the one-way roads.This paper proposes a signal coordination control method that is suitable for one-way arterial roads.This method uses the cooperation technology of the vehicle infrastructure to collect intersection traffic information and share information among the intersections.Adaptive signal control system is adopted for each intersection in the coordination system,and the green light time is adjusted in real time based on the number of vehicles in queue.The offset and clearance time can be calculated according to the real-time traffic volume.The proposed method was verified with simulation results by VISSIM traffic simulation software.The results compared with other methods show that the coordinated control method proposed in this paper can effectively reduce the average delay of vehicles on the arterial roads and improve the traffic efficiency.
文摘This paper addresses a coordinated control problem for Spacecraft Formation Flying(SFF). The distributed followers are required to track and synchronize with the leader spacecraft.By using the feature points in the two-dimensional image space, an integrated 6-degree-of-freedom dynamic model is formulated for spacecraft relative motion. Without sophisticated threedimensional reconstruction, image features are directly utilized for the controller design. The proposed image-based controller can drive the follower spacecraft in the desired configuration with respect to the leader when the real-time captured images match their reference counterparts. To improve the precision of the formation configuration, the proposed controller employs a coordinated term to reduce the relative distance errors between followers. The uncertainties in the system dynamics are handled by integrating the adaptive technique into the controller, which increases the robustness of the SFF system. The closed-loop system stability is analyzed using the Lyapunov method and algebraic graph theory. A numerical simulation for a given SFF scenario is performed to evaluate the performance of the controller.
文摘In this paper, the control problem of auxiliary power unit (APU) for hybrid electric vehicles is investigated. An adaptive controller is provided to achieve the coordinated control between the engine speed and the battery charging voltage. The proposed adaptive coordinated control laws for the throttle angle of the engine and the voltage of the power-converter can guarantee not only the asymptotic tracking performance of the engine speed and the regulation of the battery charging voltage, but also the robust stability of the closed loop system under external load changes. Simulation results are given to verify the performance of the proposed adaptive controller.
基金supported by the National Natural Science Foundation of China(No.52077100)the Aviation Science Foundation(No.201958052001)
文摘In order to improve the frequency response and anti-interference characteristics of the smart electromechanical actuator(EMA)system,and aiming at the force fighting problem when multiple actuators work synchronously,a multi input multi output(MIMO)position difference cross coupling control coordinated strategy based on double‑closed-loop load feedforward control is proposed and designed.In this strategy,the singular value method of return difference matrix is used to design the parameter range that meets the requirements of system stability margin,and the sensitivity function and the H_(∞)norm theory are used to design and determine the optimal solution in the obtained parameter stability region,so that the multi actuator system has excellent synchronization,stability and anti-interference.At the same time,the mathematical model of the integrated smart EMA system is established.According to the requirements of point-to-point control,the controller of double-loop control and load feedforward compensation is determined and designed to improve the frequency response and anti-interference ability of single actuator.Finally,the 270 V high-voltage smart EMA system experimental platform is built,and the frequency response,load feedforward compensation and coordinated control experiments are carried out to verify the correctness of the position difference cross coupling control strategy and the rationality of the parameter design,so that the system can reach the servo control indexes of bandwidth 6 Hz,the maximum output force 20000 N and the synchronization error≤0.1 mm,which effectively solves the problem of force fighting.
基金Supported by the National Science Foundation of China under Grant Nos.10702023,10832006,and 60704041the Research Fund for the Doctoral Program of Higher Education under Grant No.20070487090
文摘In this paper,we investigate a leader-following tracking problem for multi-agent systems with boundedinputs.We propose a distributed bounded protocol for each follower to track a leader whose states may not be completelymeasured.We theoretically prove that each agent can follow the leader with estimable track errors.Finally,somenumerical simulations are presented to illustrate our theoretical results.