Hygroscopic hydrogel is a promising evaporativecooling material for high-power passive daytime cooling with water self-regeneration.However,undesired solar and environmental heating makes it a challenge to maintain su...Hygroscopic hydrogel is a promising evaporativecooling material for high-power passive daytime cooling with water self-regeneration.However,undesired solar and environmental heating makes it a challenge to maintain sub-ambient daytime cooling.While different strategies have been developed to mitigate heat gains,they inevitably sacrifice the evaporation and water regeneration due to highly coupled thermal and vapor transport.Here,an anisotropic synergistically performed insulation-radiation-evaporation(ASPIRE)cooler is developed by leveraging a dual-alignment structure both internal and external to the hydrogel for coordinated thermal and water transport.The ASPIRE cooler achieves an impressive average sub-ambient cooling temperature of~8.2℃ and a remarkable peak cooling power of 311 W m^(-2)under direct sunlight.Further examining the cooling mechanism reveals that the ASPIRE cooler reduces the solar and environmental heat gains without comprising the evaporation.Moreover,self-sustained multi-day cooling is possible with water self-regeneration at night under both clear and cloudy days.The synergistic design provides new insights toward high-power,sustainable,and all-weather passive cooling applications.展开更多
1|Introduction Conventional cooling systems exhibit substantial electricity consumption and environmental detriments through contin-uous greenhouse gas emissions.Thermal management accounts for approximately 50%of glo...1|Introduction Conventional cooling systems exhibit substantial electricity consumption and environmental detriments through contin-uous greenhouse gas emissions.Thermal management accounts for approximately 50%of global energy expenditure[1,2],necessitating urgent development of sustainable cooling alter-natives.Radiative cooling emerges as a passive thermal regu-lation strategy,operating without external energy input via direct infrared emission from materials to the environment[3].展开更多
Radiative cooling is an environmentally friendly,passive cooling technology that operates without energy consumption.Current research primarily focuses on optimizing the optical properties of radiative cooling films t...Radiative cooling is an environmentally friendly,passive cooling technology that operates without energy consumption.Current research primarily focuses on optimizing the optical properties of radiative cooling films to enhance their cooling performance.In practical applications,thermal contact between the radiative cooling film and the object significantly influences the ultimate cooling performance.However,achieving optimal thermal contact has received limited attention.In this study,we propose and experimentally demonstrate a high-power,flexible,and magnetically attachable and detachable radiative cooling film.This film consists of polymer metasurface structures on a flexible magnetic layer.The monolithic design allows for convenient attachment to and detachment from steel or iron surfaces,ensuring optimal thermal contact with minimal thermal resistance and uniform temperature distribution.Our magnetic radiative cooling film exhibits superior cooling performance compared to non-magnetic alternatives.It can reduce the temperature of stainless-steel plates under sunlight by 15.2℃,which is 3.6℃ more than that achieved by non-magnetic radiative cooling films.The radiative cooling power can reach 259W·m^(-2) at a working temperature of 70℃.Unlike other commonly used attachment methods,such as thermal grease or one-off tape,our approach allows for detachment and reusability of the cooling film according to practical needs.This method offers great simplicity,flexibility,and cost-effectiveness,making it promising for broad applications,particularly on non-horizontal irregular surfaces previously considered challenging.展开更多
Passive daytime radiative cooling has great potential for energy conservation and sustainable development.Polymer-based radiative cooling materials have received much attention due to their excellent cooling performan...Passive daytime radiative cooling has great potential for energy conservation and sustainable development.Polymer-based radiative cooling materials have received much attention due to their excellent cooling performance and scalable potential.However,the use of large amounts of organic solvents,the long cycle time,and the complexity of the preparation process have limited their development.Herein,we report a two-step cold-press sintering method for the preparation of a polymer radiative cooler,which is free of organic solvents.For demonstration,a polyvinylidene fluoride-hexafluoropropylene copolymer(PVDF-HFP)coating with a solar reflectance of 97.4%and an emissivity of 0.969 within the atmospheric window is prepared,which can achieve a sub-ambient cooling phenomenon with a temperature reduction of 4.8℃.Besides,the maximal radiative cooling power of 50.2 W/m^(2)is also obtained under sunlight.After the implementation of the proposed sintered PVDF-HFP coating in buildings,more than 10%of annual energy consumption can be saved in China.This work proposes a simple,environmentally friendly,and scalable processing method for the preparation of radiative cooling materials,facilitating the large-scale application of radiative cooling technology.展开更多
Double-wall effusion cooling coupled with thermal barrier coating(TBC)is an important way of thermal protection for gas turbine vanes and blades of next-generation aero-engine,and formation of discrete crater holes by...Double-wall effusion cooling coupled with thermal barrier coating(TBC)is an important way of thermal protection for gas turbine vanes and blades of next-generation aero-engine,and formation of discrete crater holes by TBC spraying is an approved design.To protect both metal and TBC synchronously,a recommended geometry of crater is obtained through a fully automatic multi-objective optimization combined with conjugate heat transfer simulation in this work.The length and width of crater(i.e.,L/D and W/D)were applied as design variables,and the area-averaged overall effectiveness of the metal and TBC surfaces(i.e.,Φ_(av) and τ_(av))were selected as objective functions.The optimization procedure consists of automated geometry and mesh generation,conjugate heat transfer simulation validated by experimental data and Kriging surrogated model.The results showed that the Φ_(av) and τ_(av) are successfully increased respectively by 9.1%and 6.0%through optimization.Appropriate enlargement of the width and length of the crater can significantly improve the film coverage effect,since that the beneficial anti-CRVP is enhanced and the harmful CRVP is weakened.展开更多
This paper presents a high-fidelity lumpedparameter(LP)thermal model(HF-LPTM)for permanent magnet synchronous machines(PMSMs)in electric vehicle(EV)applications,where various cooling techniques are considered,includin...This paper presents a high-fidelity lumpedparameter(LP)thermal model(HF-LPTM)for permanent magnet synchronous machines(PMSMs)in electric vehicle(EV)applications,where various cooling techniques are considered,including frame forced air/liquid cooling,oil jet cooling for endwinding,and rotor shaft cooling.To address the temperature misestimation in the LP thermal modelling due to assumptions of concentrated loss input and uniform heat flows,the developed HF-LPTM introduces two compensation thermal resistances for the winding and PM components,which are analytically derived from the multi-dimensional heat transfer equations and are robust against different load/thermal conditions.As validated by the finite element analysis method and experiments,the conventional LPTMs exhibit significant winding temperature deviations,while the proposed HF-LPTM can accurately predict both the midpoint and average temperatures.The developed HFLPTM is further used to assess the effectiveness of various cooling techniques under different scenarios,i.e.,steady-state thermal states under the rated load condition,and transient temperature profiles under city,freeway,and hybrid(city+freeway)driving cycles.Results indicate that no single cooling technique can maintain both winding and PM temperatures within safety limits.The combination of frame liquid cooling and oil jet cooling for end winding can sufficiently mitigate PMSM thermal stress in EV applications.展开更多
Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency...Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency of FRAM,which depends only on friction to generate heat,is low,and the thermal-accumulation effect of the deposition process must be addressed.An FRAM heat-balance-control method that combines plasma-arc preheating and instant water cooling(PC-FRAM)is devised in this study,and a temperature field featuring rapidly increasing and decreasing temperature is constructed around the tool head.Additionally,2195-T87 Al-Li alloy is used as the feed material,and the effects of heating and cooling rates on the microstructure and mechanical properties are investigated.The results show that water cooling significantly improves heat accumulation during the deposition process.The cooling rate increases by 11.7 times,and the high-temperature residence time decreases by more than 50%.The grain size of the PC-FRAM sample is the smallest,i.e.,3.77±1.03μm,its dislocation density is the highest,and the number density of precipitates is the highest,the size of precipitates is the smallest,which shows the best precipitation-strengthening effect.The hardness test results are consistent with the precipitation distribution.The ultimate tensile strength,yield strength and elongation of the PC-FRAM samples are the highest(351±15.6 MPa,251.3±15.8 MPa and 16.25%±1.25%,respectively)among the samples investigated.The preheating and water-cooling-assisted deposition simultaneously increases the tensile strength and elongation of the deposited samples.The combination of preheating and instant cooling improves the deposition efficiency of FRAM and weakens the thermal-softening effect.展开更多
Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass rat...Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass ratio,has not been systematically carried out.In this paper,the heat transfer and flow characteristics of related high temperature fuels are studied by using typical engine parallel channel structure.Through numeri⁃cal simulation and systematic experimental verification,the flow and heat transfer characteristics of parallel chan⁃nels under typical working conditions are obtained,and the effectiveness of high-precision calculation method is preliminarily established.It is known that the stable time required for hot start of regenerative cooling engine is about 50 s,and the flow resistance of parallel channel structure first increases and then decreases with the in⁃crease of equivalence ratio(The following equivalence ratio is expressed byΦ),and there is a flow resistance peak in the range ofΦ=0.5~0.8.This is mainly caused by the coupling effect of high temperature physical proper⁃ties,flow rate and pressure of fuel in parallel channels.At the same time,the cooling and heat transfer character⁃istics of parallel channels under some conditions of high heat-mass ratio are obtained,and the main factors affect⁃ing the heat transfer of parallel channels such as improving surface roughness and strengthening heat transfer are mastered.In the experiment,whenΦis less than 0.9,the phenomenon of local heat transfer enhancement and deterioration can be obviously observed,and the temperature rise of local structures exceeds 200℃,which is the risk of structural damage.Therefore,the reliability of long-term parallel channel structure under the condition of high heat-mass ratio should be fully considered in structural design.展开更多
This study focuses on the thermal management of 4680-type cylindrical lithium-ion battery packs utilizing NCM811 chemistry.It establishes coupled multi-physics models for both immersion and serpentine cold plate cooli...This study focuses on the thermal management of 4680-type cylindrical lithium-ion battery packs utilizing NCM811 chemistry.It establishes coupled multi-physics models for both immersion and serpentine cold plate cooling systems.Through a combination of numerical simulation and experimental validation,the technical advantages and mechanisms of immersion cooling are systematically explored.Simulation results indicate that under a 3C fast-charging condition(inlet temperature 20℃,flow rate 36 L/min),the immersion cooling structure 3demonstrates a triple enhancement in thermal performance compared to the cold plate structure 1:a 13.06%reduction in peak temperature,a 31.67%decrease in overall maximum temperature difference,and a 47.62%decrease in single-cell temperature deviation,while also reducing flow resistance by 33.61%.Furthermore,based on the immersion cooling model,a small battery module comprising seven cylindrical cells was designed for thermal runaway testing via nail penetration.The results show that the peak temperature of the triggered cell was limited to 437.6℃,with a controllable temperature rise gradient of only 3.35℃/s and a rapid cooling rate of 0.6℃/s.The maximum temperature rise of adjacent cells was just 64.8℃,effectively inhibiting thermal propagation.Post-test disassembly revealed that the non-triggered cells retained>99.2%of their original voltage and>99%structural integrity,confirming the module’s ability to achieve“localized failure with global stability.”展开更多
The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the rel...The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters.展开更多
Micro-alloying is an effective approach for improving the corrosion resistance of cast AZ91.However,the effect of micro-alloyed elements on corrosion resistance can be varied depending on the solidification rate influ...Micro-alloying is an effective approach for improving the corrosion resistance of cast AZ91.However,the effect of micro-alloyed elements on corrosion resistance can be varied depending on the solidification rate influencing the diffusion and precipitation behavior of micro-alloying elements.This study investigated the effects of the cooling rate on the microstructure and corrosion behavior of micro-Ca and-Y alloyed cast AZ91 alloy(i.e.,AZXW9100).To achieve various cooling rates,the alloys were prepared using three methods:steel mold casting(SMC),copper step mold casting(CSMC),and high-pressure die casting(HPDC).The corrosion behavior was analyzed through weight loss measurements,electrochemical impedance spectroscopy,and corrosion morphology observations.The results showed that the key microstructural factors influencing corrosion resistance differed between short-and long-term corrosion.As the cooling rate increased,the short-term corrosion rate was lowered from 0.91 mm/y(SMC)to 0.38 mm/y(HPDC),which was attributed to the decrease in the total area fractions of the eutecticαandβphases acting as galvanic corrosion sources.The long-term corrosion rate was reduced from 17.20 mm/y(SMC)to 0.71 mm/y(HPDC),which was revealed to be due to the enhanced connectivity of theβphase acting as corrosion barriers.Meanwhile,the increase in the cooling rate led to a modification of the Zn molar ratio in theβphase,reducing the Volta potential of theβphase from 101.8 m V to 66.9 m V.This reduction in the Volta potential of the main galvanic source also contributed to improved corrosion resistance.The HPDC AZXW9100 alloy produced in this study exhibited the lowest corrosion rate compared to other alloys.These findings suggest that controlling the cooling rate is a promising strategy for enhancing the corrosion resistance of AZXW9100 alloys.展开更多
The Ediacaran-Cambrian Petermann Orogen is a dextral transpressional orogen exposed in central Australia,which facilitated the exhumation of a high-pressure core and the deformation of the Neoproterozoic-Palaeozoic Am...The Ediacaran-Cambrian Petermann Orogen is a dextral transpressional orogen exposed in central Australia,which facilitated the exhumation of a high-pressure core and the deformation of the Neoproterozoic-Palaeozoic Amadeus Basin.Several studies have investigated the metamorphic and deformational evolution of the Petermann Orogen;however,the spatiotemporal variation of the deformation and cooling history is yet to be fully understood.In situ muscovite and biotite Rb-Sr geochronology,in combination with Ti-in-quartz thermometry is applied to map the spatiotemporal deformation and cooling patterns of the northern part of the Petermann Orogen.Interpreted muscovite Rb-Sr growth ages obtained from samples in the Petermann Nappe Complex(PNC),range between c.598 Ma and 565 Ma,which correlate with the timing of deformation during the 600-520 Ma Petermann Orogeny.Interpreted muscovite and biotite cooling ages are younger in the east of the PNC(c.556-541 Ma)and broadly correlate with the regional pattern of crustal heat production,suggesting that the geothermal gradient had a significant control on the timing and duration of cooling.Biotite Rb-Sr cooling ages between c.555 Ma and 497 Ma for the orogenic core show no correlation with high heat production areas,however,differences in exhumed crustal levels across the Petermann Orogen are observed:high-P granulite facies rocks in the orogenic core vs middle-upper crustal rocks in the PNC,indicating that at least part of the spatiotemporal variation of cooling ages can be attributed to differential exhumation during the Petermann Orogeny.Hence,crustal heat production and differential exhumation were likely the main controlling factors on the duration and variation of cooling rates in the Petermann Orogen.展开更多
The Song Chay Dome in southeastern Yunnan Province,China,is intruded by the Late Cretaceous Laojunshan granites.New apatite and zircon fission-track data for the Laojunshan granites allow us to reconstruct the exhumat...The Song Chay Dome in southeastern Yunnan Province,China,is intruded by the Late Cretaceous Laojunshan granites.New apatite and zircon fission-track data for the Laojunshan granites allow us to reconstruct the exhumation history of the Song Chay Dome.The fission-track dating indicates that the Laojunshan granites experienced four main stages of rapid cooling and exhumation at 75–63,53–43,31–20,and 12–4 Ma.The first stage was related to the thermal equilibration with surrounding rocks after magma emplacement.The rapid cooling and exhumation at 53–43 Ma were caused by normal faulting in the Late Mesozoic–Early Cenozoic extensional setting of southwestern South China,which resulted in the Laojunshan granites and Song Chay Dome being exhumed in the footwall of faults.The third stage(31–20 Ma) was the result of southeastward extrusion of the Tibetan Plateau and sinistral strike-slip movement on the NW-SE-trending Nanwenhe and Maguan-Dulong faults.The 31 Ma representing the beginning of the interaction between the Tethyan Himalayan tectonic domain and the South China Block.The final stage was mainly due to activity on the Nanwenhe Fault to the north of the Laojunshan granites,caused by lateral extrusion of the southeastern Tibetan Plateau since ca.15 Ma.These cooling and exhumation events since the Late Cretaceous indicate that the Song Chay Dome and southwestern South China Block have been affected by the Himalayan Orogeny since the Oligocene.展开更多
Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for...Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for mitigating the energy crisis.A comprehensive review connecting the advancements in engineered radiative cooling systems(ERCSs),encompassing material and structural design as well as thermal and energy-related applications,is currently absent.Herein,this review begins with a concise summary of the essential concepts of ERCSs,followed by an introduction to engineered materials and structures,containing nature-inspired designs,chromatic materials,meta-structural configurations,and multilayered constructions.It subsequently encapsulates the primary applications,including thermal-regulating textiles and energy-saving devices.Next,it highlights the challenges of ERCSs,including maximized thermoregulatory effects,environmental adaptability,scalability and sustainability,and interdisciplinary integration.It seeks to offer direction for forthcoming fundamental research and industrial advancement of radiative cooling systems in real-world applications.展开更多
Annealing treatment is an effective strategy to enhance the comprehensive properties of Mg-8Li-3Al-2Zn(LAZ832)alloy,where the cooling rate plays a decisive role in tailoring microstructure and performance.This study s...Annealing treatment is an effective strategy to enhance the comprehensive properties of Mg-8Li-3Al-2Zn(LAZ832)alloy,where the cooling rate plays a decisive role in tailoring microstructure and performance.This study systematically investigates the effects of cooling rates,controlled via water quenching(WC),air cooling(AC),and furnace cooling(FC),on the phase evolution,mechanical properties,and corrosion resistance of LAZ832.The annealed microstructure consists ofα-Mg,β-Li,AlLi,and MgLi_(2)Al phases,and the volume fraction of Al-Li phases(AlLi and MgLi_(2)Al)increases as the cooling rate decreases.Strengthening mechanisms are dominated by solid solution strengthening,driven by the dissolution of Al and Zn atoms into the matrix,which significantly enhances tensile strength.However,excessive solute content leads to a marked decline in ductility.Scanning probe microscope(SPM)reveals an elevated work function due to the dissolution of Al and Zn atoms into the matrix phase,correlating with improved corrosion resistance.Comprehensive analysis demonstrates that air cooling achieves an optimal balance between tensile strength,ductility,and corrosion resistance,outperforming furnace-cooled samples and offering a pragmatic compromise compared to water-quenched specimens with higher strength but brittle failure.These findings establish a robust framework for designing LAZ832 alloys with tailored microstructures and multi-property optimization,advancing their application in lightweight engineering fields.展开更多
The stress-strain behavior of confined concrete under heating and residual conditions has been preliminarily addressed in previous research;however,its behavior at subsequent cooling temperatures after being heated to...The stress-strain behavior of confined concrete under heating and residual conditions has been preliminarily addressed in previous research;however,its behavior at subsequent cooling temperatures after being heated to peak temperature has yet to be thoroughly investigated.It is crucial for determining confined concrete structures’post-fire performance and burnout resistance.The paper presents the fundamental behavior of the confined concrete constitutive parameters and stress-strain curve at subsequent cooling temperatures after being heated to peak temperature.The study includes the stress-stress relationship of a 200 mm diameter cylinder with two distinct confinement spacings of 60 mm and 120 mm.The constitutive parameters for confined concrete were initially determined for a peak heating temperature of 750℃ and then modified to establish the stress-strain relationship for successive cooling temperatures of 500℃,250℃,and ambient temperature.The study results show that confinement has a considerable impact on compressive strength,stiffness,and ductility at ambient and fire conditions.After being heated to peak temperature,the confined concrete compressive strength recovers during successive cooling temperatures,with the recovery dependent on confinement spacing.The established stress-strain relationship can assist in better comprehending structural performance and capacity degradation for different tie spacings,and is useful for the analysis and design of confined RC(reinforced concrete)elements during and after a fire.展开更多
The crystallization behavior of polymers is significantly influenced by molecular chain length and the dispersion of varying chain lengths.The complexity of studying crystallization arises from the dispersity of polym...The crystallization behavior of polymers is significantly influenced by molecular chain length and the dispersion of varying chain lengths.The complexity of studying crystallization arises from the dispersity of polymer materials and the typically slow cooling rates.Recent advancements in fast cooling techniques have rendered the investigation of polymer crystallization at varying cooling rates an attractive area of research;however,a systematic quantitative framework for this process is still lacking.We employ a coarse-grained model for polyvinyl alcohol(CGPVA)in molecular dynamics simulations to study the crystallization of linear polymers with varying chain lengths under variable cooling rates.Monodisperse,bidisperse and polydisperse samples are simulated.We propose two formulae based on a two-phase assumption to fit the exothermal curves obtained during cooling.Based on these formulae,better estimations of crystallization temperatures are obtained and the effects of chain lengths and cooling rates are studied.It is found that the crystallization temperature increases with chain length,similar to the Gibbs-Thomson relation formelting temperature,indicating a strong relation between fast crystallization and glass formation in linear polymers.Extrapolation to the infinitely slow cooling rate provides an easy way in simulations to estimate the equilibrium crystallization temperature.The effective chain lengths of polydisperse and bidisperse samples are found to be the number-averaged chain lengths compared to the weight-averaged ones.The chain length-dependent crystallization exhibits crossover behavior near the entanglement length,indicating the effects of entanglements under fast cooling conditions.The effect of chain length dispersity on crystallization becomes more obvious under fast cooling conditions.展开更多
The cooling rate of the center and edge of vacuum induction melting(VIM)or vacuum arc remelting(VAR)ingots exhibit substantial difference,leading to markedly distinct dendritic structures and precipitates.The current ...The cooling rate of the center and edge of vacuum induction melting(VIM)or vacuum arc remelting(VAR)ingots exhibit substantial difference,leading to markedly distinct dendritic structures and precipitates.The current lack of precise predictions for dendritic segregation and the distribution of precipitates in ingot makes it difficult to determine the annealing and homogenization heat treatment process.Thus,clarifying the impact of cooling rate on the solidification behavior of alloy is significantly important.The dendritic structure and precipitation characteristics of as-cast C-HRA-3 Ni–Cr–Co–Mo-based heat-resistant alloy were investigated using Thermo-Calc thermodynamic calculations,scanning electron microscopy observations,and electron probe microanalyzer.Based on high temperature observation system,the effects of cooling rate on the dendritic structure,dendritic segregation,and precipitation in this alloy were explored.The results showed that the precipitates in the as-cast C-HRA-3 alloy primarily consist of blocky Ti(C,N)phases,large-sized Ti(C,N)–M_(6)C–M_(23)C_(6) symbiotic phases and M_(6)C–M_(23)C_(6) carbides,and small-sized dispersed M_(6)C and M_(23)C_(6) carbides surronding these symbiotic phases.The primary constituent elements of these precipitates are Mo,Cr,C,and Ti,which predominantly concentrate in the interdendritic regions of the as-cast alloy.There is a clear power-law relationship between the secondary dendrite arm spacing and the cooling rate.The dendritic segregation ratio of Mo,Cr,and Ti exhibits a piecewise functional relationship with the cooling rate,under equiaxed dendritic solidification condition.These predictive models and theoretical analyses were validated using numerical simulations and experimental results from the 200 kg grade VIM electrode.展开更多
This study presents an achievement of laser cooling of alkaline-earth atoms in the Chinese Space Station’s strontium(Sr)atomic space optical clock.The system’s core components,physical unit,optical unit,and electric...This study presents an achievement of laser cooling of alkaline-earth atoms in the Chinese Space Station’s strontium(Sr)atomic space optical clock.The system’s core components,physical unit,optical unit,and electrical unit,have a total volume of 306 L and a total mass of 163.8 kg.These compact and robust units can overcome mechanical vibrations and temperature fluctuations during space launch.The laser sources of the optical unit are composed of diode lasers,and the injection locking of slave lasers is automatically performed by a program.In the experiment,a blue magneto-optical trap of cold atoms was achieved,with the atom numbers estimated to be approximately(1.50±0.13)×10^(6) for 87Sr and(8.00±0.56)×10^(6) for 88Sr.This work establishes a foundation for atomic confinement and high-precision interrogation in space-based optical clocks and expands the frontiers of cold atom physics in microgravity.展开更多
Radiative cooling fabric creates a thermally comfortable environment without energy input,providing a sustainable approach to personal thermal management.However,most currently reported fabrics mainly focus on outdoor...Radiative cooling fabric creates a thermally comfortable environment without energy input,providing a sustainable approach to personal thermal management.However,most currently reported fabrics mainly focus on outdoor cooling,ignoring to achieve simultaneous cooling both indoors and outdoors,thereby weakening the overall cooling performance.Herein,a full-scale structure fabric with selective emission properties is constructed for simultaneous indoor and outdoor cooling.The fabric achieves 94%reflectance performance in the sunlight band(0.3–2.5μm)and 6%in the mid-infrared band(2.5–25μm),effectively minimizing heat absorption and radiation release obstruction.It also demonstrates 81%radiative emission performance in the atmospheric window band(8–13μm)and 25%radiative transmission performance in the mid-infrared band(2.5–25μm),providing 60 and 26 W m−2 net cooling power outdoors and indoors.In practical applications,the fabric achieves excellent indoor and outdoor human cooling,with temperatures 1.4–5.5℃ lower than typical polydimethylsiloxane film.This work proposes a novel design for the advanced radiative cooling fabric,offering significant potential to realize sustainable personal thermal management.展开更多
基金financially supported by the Young Scientists Fund of National Natural Science Foundation of China(Grant No.52303106)Research Grants Council of Hong Kong SAR(16200720)+3 种基金Environment and Conservation Fund of Hong Kong SAR(Project No.21/2022)Research Institute of Sports Science and Technology(Project No.P0043535)Research Institute of Advanced Manufacturing(Project No.P0046125)the start-up fund for new recruits of Poly U(Project No.P0038855 and P0038858)。
文摘Hygroscopic hydrogel is a promising evaporativecooling material for high-power passive daytime cooling with water self-regeneration.However,undesired solar and environmental heating makes it a challenge to maintain sub-ambient daytime cooling.While different strategies have been developed to mitigate heat gains,they inevitably sacrifice the evaporation and water regeneration due to highly coupled thermal and vapor transport.Here,an anisotropic synergistically performed insulation-radiation-evaporation(ASPIRE)cooler is developed by leveraging a dual-alignment structure both internal and external to the hydrogel for coordinated thermal and water transport.The ASPIRE cooler achieves an impressive average sub-ambient cooling temperature of~8.2℃ and a remarkable peak cooling power of 311 W m^(-2)under direct sunlight.Further examining the cooling mechanism reveals that the ASPIRE cooler reduces the solar and environmental heat gains without comprising the evaporation.Moreover,self-sustained multi-day cooling is possible with water self-regeneration at night under both clear and cloudy days.The synergistic design provides new insights toward high-power,sustainable,and all-weather passive cooling applications.
基金the financial support from the National Key R&D Program of China(No.2020YFA0711500)the National Natural Science Foundation of China(Nos.52473215 and 52273248).
文摘1|Introduction Conventional cooling systems exhibit substantial electricity consumption and environmental detriments through contin-uous greenhouse gas emissions.Thermal management accounts for approximately 50%of global energy expenditure[1,2],necessitating urgent development of sustainable cooling alter-natives.Radiative cooling emerges as a passive thermal regu-lation strategy,operating without external energy input via direct infrared emission from materials to the environment[3].
基金supported by the Australia Research Council through the Discovery Project scheme(DP190103186 and DP220100603)the Industrial Transformation Training Centres scheme(IC180100005)+5 种基金the Future Fellowship scheme(FT210100806)the Future Fellowship scheme(FT220100559)the Discovery Early Career Researcher Award scheme(DE230100383)the Shenzhen Science and Technology Program(GJHZ20240218113407015)the Natural Science Foundation of Shandong Province(ZR2021ME162)the Key Research and Development Program of Shandong Province,China(2022SFGC0501).
文摘Radiative cooling is an environmentally friendly,passive cooling technology that operates without energy consumption.Current research primarily focuses on optimizing the optical properties of radiative cooling films to enhance their cooling performance.In practical applications,thermal contact between the radiative cooling film and the object significantly influences the ultimate cooling performance.However,achieving optimal thermal contact has received limited attention.In this study,we propose and experimentally demonstrate a high-power,flexible,and magnetically attachable and detachable radiative cooling film.This film consists of polymer metasurface structures on a flexible magnetic layer.The monolithic design allows for convenient attachment to and detachment from steel or iron surfaces,ensuring optimal thermal contact with minimal thermal resistance and uniform temperature distribution.Our magnetic radiative cooling film exhibits superior cooling performance compared to non-magnetic alternatives.It can reduce the temperature of stainless-steel plates under sunlight by 15.2℃,which is 3.6℃ more than that achieved by non-magnetic radiative cooling films.The radiative cooling power can reach 259W·m^(-2) at a working temperature of 70℃.Unlike other commonly used attachment methods,such as thermal grease or one-off tape,our approach allows for detachment and reusability of the cooling film according to practical needs.This method offers great simplicity,flexibility,and cost-effectiveness,making it promising for broad applications,particularly on non-horizontal irregular surfaces previously considered challenging.
基金supported by the National Natural Science Foundation of China(NSFC 52130601 and 52106276)the Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)+1 种基金the University of Science and Technology of China-Southwest University of Science and Technology Counterpart Cooperation and Development Joint Fund(24LHJJ09)the USTC Center for Micro and Nanoscale Research and Fabrication。
文摘Passive daytime radiative cooling has great potential for energy conservation and sustainable development.Polymer-based radiative cooling materials have received much attention due to their excellent cooling performance and scalable potential.However,the use of large amounts of organic solvents,the long cycle time,and the complexity of the preparation process have limited their development.Herein,we report a two-step cold-press sintering method for the preparation of a polymer radiative cooler,which is free of organic solvents.For demonstration,a polyvinylidene fluoride-hexafluoropropylene copolymer(PVDF-HFP)coating with a solar reflectance of 97.4%and an emissivity of 0.969 within the atmospheric window is prepared,which can achieve a sub-ambient cooling phenomenon with a temperature reduction of 4.8℃.Besides,the maximal radiative cooling power of 50.2 W/m^(2)is also obtained under sunlight.After the implementation of the proposed sintered PVDF-HFP coating in buildings,more than 10%of annual energy consumption can be saved in China.This work proposes a simple,environmentally friendly,and scalable processing method for the preparation of radiative cooling materials,facilitating the large-scale application of radiative cooling technology.
基金Anhui Provincial Natural Science Foundation of China(2108085ME176)the Natural Science Foundation of China(52276043)。
文摘Double-wall effusion cooling coupled with thermal barrier coating(TBC)is an important way of thermal protection for gas turbine vanes and blades of next-generation aero-engine,and formation of discrete crater holes by TBC spraying is an approved design.To protect both metal and TBC synchronously,a recommended geometry of crater is obtained through a fully automatic multi-objective optimization combined with conjugate heat transfer simulation in this work.The length and width of crater(i.e.,L/D and W/D)were applied as design variables,and the area-averaged overall effectiveness of the metal and TBC surfaces(i.e.,Φ_(av) and τ_(av))were selected as objective functions.The optimization procedure consists of automated geometry and mesh generation,conjugate heat transfer simulation validated by experimental data and Kriging surrogated model.The results showed that the Φ_(av) and τ_(av) are successfully increased respectively by 9.1%and 6.0%through optimization.Appropriate enlargement of the width and length of the crater can significantly improve the film coverage effect,since that the beneficial anti-CRVP is enhanced and the harmful CRVP is weakened.
文摘This paper presents a high-fidelity lumpedparameter(LP)thermal model(HF-LPTM)for permanent magnet synchronous machines(PMSMs)in electric vehicle(EV)applications,where various cooling techniques are considered,including frame forced air/liquid cooling,oil jet cooling for endwinding,and rotor shaft cooling.To address the temperature misestimation in the LP thermal modelling due to assumptions of concentrated loss input and uniform heat flows,the developed HF-LPTM introduces two compensation thermal resistances for the winding and PM components,which are analytically derived from the multi-dimensional heat transfer equations and are robust against different load/thermal conditions.As validated by the finite element analysis method and experiments,the conventional LPTMs exhibit significant winding temperature deviations,while the proposed HF-LPTM can accurately predict both the midpoint and average temperatures.The developed HFLPTM is further used to assess the effectiveness of various cooling techniques under different scenarios,i.e.,steady-state thermal states under the rated load condition,and transient temperature profiles under city,freeway,and hybrid(city+freeway)driving cycles.Results indicate that no single cooling technique can maintain both winding and PM temperatures within safety limits.The combination of frame liquid cooling and oil jet cooling for end winding can sufficiently mitigate PMSM thermal stress in EV applications.
基金supported by the National Natural Science Foundation of China(Nos.52275299,52105313)R&D Program of Beijing Municipal Education Commission(No.KM202210005036)+1 种基金Natural Science Foundation of Chongqing,China(No.CSTB2023NSCQ-MSX0701)National Defense Basic Research Projects of China(No.JCKY2022405C002).
文摘Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency of FRAM,which depends only on friction to generate heat,is low,and the thermal-accumulation effect of the deposition process must be addressed.An FRAM heat-balance-control method that combines plasma-arc preheating and instant water cooling(PC-FRAM)is devised in this study,and a temperature field featuring rapidly increasing and decreasing temperature is constructed around the tool head.Additionally,2195-T87 Al-Li alloy is used as the feed material,and the effects of heating and cooling rates on the microstructure and mechanical properties are investigated.The results show that water cooling significantly improves heat accumulation during the deposition process.The cooling rate increases by 11.7 times,and the high-temperature residence time decreases by more than 50%.The grain size of the PC-FRAM sample is the smallest,i.e.,3.77±1.03μm,its dislocation density is the highest,and the number density of precipitates is the highest,the size of precipitates is the smallest,which shows the best precipitation-strengthening effect.The hardness test results are consistent with the precipitation distribution.The ultimate tensile strength,yield strength and elongation of the PC-FRAM samples are the highest(351±15.6 MPa,251.3±15.8 MPa and 16.25%±1.25%,respectively)among the samples investigated.The preheating and water-cooling-assisted deposition simultaneously increases the tensile strength and elongation of the deposited samples.The combination of preheating and instant cooling improves the deposition efficiency of FRAM and weakens the thermal-softening effect.
文摘Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass ratio,has not been systematically carried out.In this paper,the heat transfer and flow characteristics of related high temperature fuels are studied by using typical engine parallel channel structure.Through numeri⁃cal simulation and systematic experimental verification,the flow and heat transfer characteristics of parallel chan⁃nels under typical working conditions are obtained,and the effectiveness of high-precision calculation method is preliminarily established.It is known that the stable time required for hot start of regenerative cooling engine is about 50 s,and the flow resistance of parallel channel structure first increases and then decreases with the in⁃crease of equivalence ratio(The following equivalence ratio is expressed byΦ),and there is a flow resistance peak in the range ofΦ=0.5~0.8.This is mainly caused by the coupling effect of high temperature physical proper⁃ties,flow rate and pressure of fuel in parallel channels.At the same time,the cooling and heat transfer character⁃istics of parallel channels under some conditions of high heat-mass ratio are obtained,and the main factors affect⁃ing the heat transfer of parallel channels such as improving surface roughness and strengthening heat transfer are mastered.In the experiment,whenΦis less than 0.9,the phenomenon of local heat transfer enhancement and deterioration can be obviously observed,and the temperature rise of local structures exceeds 200℃,which is the risk of structural damage.Therefore,the reliability of long-term parallel channel structure under the condition of high heat-mass ratio should be fully considered in structural design.
文摘This study focuses on the thermal management of 4680-type cylindrical lithium-ion battery packs utilizing NCM811 chemistry.It establishes coupled multi-physics models for both immersion and serpentine cold plate cooling systems.Through a combination of numerical simulation and experimental validation,the technical advantages and mechanisms of immersion cooling are systematically explored.Simulation results indicate that under a 3C fast-charging condition(inlet temperature 20℃,flow rate 36 L/min),the immersion cooling structure 3demonstrates a triple enhancement in thermal performance compared to the cold plate structure 1:a 13.06%reduction in peak temperature,a 31.67%decrease in overall maximum temperature difference,and a 47.62%decrease in single-cell temperature deviation,while also reducing flow resistance by 33.61%.Furthermore,based on the immersion cooling model,a small battery module comprising seven cylindrical cells was designed for thermal runaway testing via nail penetration.The results show that the peak temperature of the triggered cell was limited to 437.6℃,with a controllable temperature rise gradient of only 3.35℃/s and a rapid cooling rate of 0.6℃/s.The maximum temperature rise of adjacent cells was just 64.8℃,effectively inhibiting thermal propagation.Post-test disassembly revealed that the non-triggered cells retained>99.2%of their original voltage and>99%structural integrity,confirming the module’s ability to achieve“localized failure with global stability.”
基金supported by the Education and Teaching Research Project of Universities in Fujian Province(FBJY20230167).
文摘The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters.
基金supported by the Materials and Components Technology Development Program of the Ministry of Trade,Industry,and Energy(MOTIE,South Korea)(No.20024843)。
文摘Micro-alloying is an effective approach for improving the corrosion resistance of cast AZ91.However,the effect of micro-alloyed elements on corrosion resistance can be varied depending on the solidification rate influencing the diffusion and precipitation behavior of micro-alloying elements.This study investigated the effects of the cooling rate on the microstructure and corrosion behavior of micro-Ca and-Y alloyed cast AZ91 alloy(i.e.,AZXW9100).To achieve various cooling rates,the alloys were prepared using three methods:steel mold casting(SMC),copper step mold casting(CSMC),and high-pressure die casting(HPDC).The corrosion behavior was analyzed through weight loss measurements,electrochemical impedance spectroscopy,and corrosion morphology observations.The results showed that the key microstructural factors influencing corrosion resistance differed between short-and long-term corrosion.As the cooling rate increased,the short-term corrosion rate was lowered from 0.91 mm/y(SMC)to 0.38 mm/y(HPDC),which was attributed to the decrease in the total area fractions of the eutecticαandβphases acting as galvanic corrosion sources.The long-term corrosion rate was reduced from 17.20 mm/y(SMC)to 0.71 mm/y(HPDC),which was revealed to be due to the enhanced connectivity of theβphase acting as corrosion barriers.Meanwhile,the increase in the cooling rate led to a modification of the Zn molar ratio in theβphase,reducing the Volta potential of theβphase from 101.8 m V to 66.9 m V.This reduction in the Volta potential of the main galvanic source also contributed to improved corrosion resistance.The HPDC AZXW9100 alloy produced in this study exhibited the lowest corrosion rate compared to other alloys.These findings suggest that controlling the cooling rate is a promising strategy for enhancing the corrosion resistance of AZXW9100 alloys.
基金supported by the Mineral Exploration Cooperative Research Centre whose activities are funded by the Australian Government’s Cooperative Research Centre Program.This is MinEx CRC Document 2025/06.
文摘The Ediacaran-Cambrian Petermann Orogen is a dextral transpressional orogen exposed in central Australia,which facilitated the exhumation of a high-pressure core and the deformation of the Neoproterozoic-Palaeozoic Amadeus Basin.Several studies have investigated the metamorphic and deformational evolution of the Petermann Orogen;however,the spatiotemporal variation of the deformation and cooling history is yet to be fully understood.In situ muscovite and biotite Rb-Sr geochronology,in combination with Ti-in-quartz thermometry is applied to map the spatiotemporal deformation and cooling patterns of the northern part of the Petermann Orogen.Interpreted muscovite Rb-Sr growth ages obtained from samples in the Petermann Nappe Complex(PNC),range between c.598 Ma and 565 Ma,which correlate with the timing of deformation during the 600-520 Ma Petermann Orogeny.Interpreted muscovite and biotite cooling ages are younger in the east of the PNC(c.556-541 Ma)and broadly correlate with the regional pattern of crustal heat production,suggesting that the geothermal gradient had a significant control on the timing and duration of cooling.Biotite Rb-Sr cooling ages between c.555 Ma and 497 Ma for the orogenic core show no correlation with high heat production areas,however,differences in exhumed crustal levels across the Petermann Orogen are observed:high-P granulite facies rocks in the orogenic core vs middle-upper crustal rocks in the PNC,indicating that at least part of the spatiotemporal variation of cooling ages can be attributed to differential exhumation during the Petermann Orogeny.Hence,crustal heat production and differential exhumation were likely the main controlling factors on the duration and variation of cooling rates in the Petermann Orogen.
基金financially supported by the National Science and Technology Major Project on Deep Earth(No.2024ZD1001705)the National Key Research and Development Program of China(No.2016YFC0600509)。
文摘The Song Chay Dome in southeastern Yunnan Province,China,is intruded by the Late Cretaceous Laojunshan granites.New apatite and zircon fission-track data for the Laojunshan granites allow us to reconstruct the exhumation history of the Song Chay Dome.The fission-track dating indicates that the Laojunshan granites experienced four main stages of rapid cooling and exhumation at 75–63,53–43,31–20,and 12–4 Ma.The first stage was related to the thermal equilibration with surrounding rocks after magma emplacement.The rapid cooling and exhumation at 53–43 Ma were caused by normal faulting in the Late Mesozoic–Early Cenozoic extensional setting of southwestern South China,which resulted in the Laojunshan granites and Song Chay Dome being exhumed in the footwall of faults.The third stage(31–20 Ma) was the result of southeastward extrusion of the Tibetan Plateau and sinistral strike-slip movement on the NW-SE-trending Nanwenhe and Maguan-Dulong faults.The 31 Ma representing the beginning of the interaction between the Tethyan Himalayan tectonic domain and the South China Block.The final stage was mainly due to activity on the Nanwenhe Fault to the north of the Laojunshan granites,caused by lateral extrusion of the southeastern Tibetan Plateau since ca.15 Ma.These cooling and exhumation events since the Late Cretaceous indicate that the Song Chay Dome and southwestern South China Block have been affected by the Himalayan Orogeny since the Oligocene.
基金support from the Contract Research(“Development of Breathable Fabrics with Nano-Electrospun Membrane”,CityU ref.:9231419“Research and application of antibacterial and healing-promoting smart nanofiber dressing for children’s burn wounds”,CityU ref:PJ9240111)+1 种基金the National Natural Science Foundation of China(“Study of Multi-Responsive Shape Memory Polyurethane Nanocomposites Inspired by Natural Fibers”,Grant No.51673162)Startup Grant of CityU(“Laboratory of Wearable Materials for Healthcare”,Grant No.9380116).
文摘Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for mitigating the energy crisis.A comprehensive review connecting the advancements in engineered radiative cooling systems(ERCSs),encompassing material and structural design as well as thermal and energy-related applications,is currently absent.Herein,this review begins with a concise summary of the essential concepts of ERCSs,followed by an introduction to engineered materials and structures,containing nature-inspired designs,chromatic materials,meta-structural configurations,and multilayered constructions.It subsequently encapsulates the primary applications,including thermal-regulating textiles and energy-saving devices.Next,it highlights the challenges of ERCSs,including maximized thermoregulatory effects,environmental adaptability,scalability and sustainability,and interdisciplinary integration.It seeks to offer direction for forthcoming fundamental research and industrial advancement of radiative cooling systems in real-world applications.
基金the financial support of the Scientific Research Starting Foundation of Anhui Polytechnic University of China(Grant No.2200YQQ049)the Excellent Scientific Research and Innovation Teams of Anhui Province,China(Grant No.2022AH010059).
文摘Annealing treatment is an effective strategy to enhance the comprehensive properties of Mg-8Li-3Al-2Zn(LAZ832)alloy,where the cooling rate plays a decisive role in tailoring microstructure and performance.This study systematically investigates the effects of cooling rates,controlled via water quenching(WC),air cooling(AC),and furnace cooling(FC),on the phase evolution,mechanical properties,and corrosion resistance of LAZ832.The annealed microstructure consists ofα-Mg,β-Li,AlLi,and MgLi_(2)Al phases,and the volume fraction of Al-Li phases(AlLi and MgLi_(2)Al)increases as the cooling rate decreases.Strengthening mechanisms are dominated by solid solution strengthening,driven by the dissolution of Al and Zn atoms into the matrix,which significantly enhances tensile strength.However,excessive solute content leads to a marked decline in ductility.Scanning probe microscope(SPM)reveals an elevated work function due to the dissolution of Al and Zn atoms into the matrix phase,correlating with improved corrosion resistance.Comprehensive analysis demonstrates that air cooling achieves an optimal balance between tensile strength,ductility,and corrosion resistance,outperforming furnace-cooled samples and offering a pragmatic compromise compared to water-quenched specimens with higher strength but brittle failure.These findings establish a robust framework for designing LAZ832 alloys with tailored microstructures and multi-property optimization,advancing their application in lightweight engineering fields.
文摘The stress-strain behavior of confined concrete under heating and residual conditions has been preliminarily addressed in previous research;however,its behavior at subsequent cooling temperatures after being heated to peak temperature has yet to be thoroughly investigated.It is crucial for determining confined concrete structures’post-fire performance and burnout resistance.The paper presents the fundamental behavior of the confined concrete constitutive parameters and stress-strain curve at subsequent cooling temperatures after being heated to peak temperature.The study includes the stress-stress relationship of a 200 mm diameter cylinder with two distinct confinement spacings of 60 mm and 120 mm.The constitutive parameters for confined concrete were initially determined for a peak heating temperature of 750℃ and then modified to establish the stress-strain relationship for successive cooling temperatures of 500℃,250℃,and ambient temperature.The study results show that confinement has a considerable impact on compressive strength,stiffness,and ductility at ambient and fire conditions.After being heated to peak temperature,the confined concrete compressive strength recovers during successive cooling temperatures,with the recovery dependent on confinement spacing.The established stress-strain relationship can assist in better comprehending structural performance and capacity degradation for different tie spacings,and is useful for the analysis and design of confined RC(reinforced concrete)elements during and after a fire.
基金National Natural Science Foundation of China No.22341302.
文摘The crystallization behavior of polymers is significantly influenced by molecular chain length and the dispersion of varying chain lengths.The complexity of studying crystallization arises from the dispersity of polymer materials and the typically slow cooling rates.Recent advancements in fast cooling techniques have rendered the investigation of polymer crystallization at varying cooling rates an attractive area of research;however,a systematic quantitative framework for this process is still lacking.We employ a coarse-grained model for polyvinyl alcohol(CGPVA)in molecular dynamics simulations to study the crystallization of linear polymers with varying chain lengths under variable cooling rates.Monodisperse,bidisperse and polydisperse samples are simulated.We propose two formulae based on a two-phase assumption to fit the exothermal curves obtained during cooling.Based on these formulae,better estimations of crystallization temperatures are obtained and the effects of chain lengths and cooling rates are studied.It is found that the crystallization temperature increases with chain length,similar to the Gibbs-Thomson relation formelting temperature,indicating a strong relation between fast crystallization and glass formation in linear polymers.Extrapolation to the infinitely slow cooling rate provides an easy way in simulations to estimate the equilibrium crystallization temperature.The effective chain lengths of polydisperse and bidisperse samples are found to be the number-averaged chain lengths compared to the weight-averaged ones.The chain length-dependent crystallization exhibits crossover behavior near the entanglement length,indicating the effects of entanglements under fast cooling conditions.The effect of chain length dispersity on crystallization becomes more obvious under fast cooling conditions.
基金funded by the National Key R&D Program Funded Projects(No.2021YFB3704102).
文摘The cooling rate of the center and edge of vacuum induction melting(VIM)or vacuum arc remelting(VAR)ingots exhibit substantial difference,leading to markedly distinct dendritic structures and precipitates.The current lack of precise predictions for dendritic segregation and the distribution of precipitates in ingot makes it difficult to determine the annealing and homogenization heat treatment process.Thus,clarifying the impact of cooling rate on the solidification behavior of alloy is significantly important.The dendritic structure and precipitation characteristics of as-cast C-HRA-3 Ni–Cr–Co–Mo-based heat-resistant alloy were investigated using Thermo-Calc thermodynamic calculations,scanning electron microscopy observations,and electron probe microanalyzer.Based on high temperature observation system,the effects of cooling rate on the dendritic structure,dendritic segregation,and precipitation in this alloy were explored.The results showed that the precipitates in the as-cast C-HRA-3 alloy primarily consist of blocky Ti(C,N)phases,large-sized Ti(C,N)–M_(6)C–M_(23)C_(6) symbiotic phases and M_(6)C–M_(23)C_(6) carbides,and small-sized dispersed M_(6)C and M_(23)C_(6) carbides surronding these symbiotic phases.The primary constituent elements of these precipitates are Mo,Cr,C,and Ti,which predominantly concentrate in the interdendritic regions of the as-cast alloy.There is a clear power-law relationship between the secondary dendrite arm spacing and the cooling rate.The dendritic segregation ratio of Mo,Cr,and Ti exhibits a piecewise functional relationship with the cooling rate,under equiaxed dendritic solidification condition.These predictive models and theoretical analyses were validated using numerical simulations and experimental results from the 200 kg grade VIM electrode.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB35010202)the National Natural Science Foundation of China(Grants No.62275268)。
文摘This study presents an achievement of laser cooling of alkaline-earth atoms in the Chinese Space Station’s strontium(Sr)atomic space optical clock.The system’s core components,physical unit,optical unit,and electrical unit,have a total volume of 306 L and a total mass of 163.8 kg.These compact and robust units can overcome mechanical vibrations and temperature fluctuations during space launch.The laser sources of the optical unit are composed of diode lasers,and the injection locking of slave lasers is automatically performed by a program.In the experiment,a blue magneto-optical trap of cold atoms was achieved,with the atom numbers estimated to be approximately(1.50±0.13)×10^(6) for 87Sr and(8.00±0.56)×10^(6) for 88Sr.This work establishes a foundation for atomic confinement and high-precision interrogation in space-based optical clocks and expands the frontiers of cold atom physics in microgravity.
基金financially supported by Heilongjiang Postdoctoral Fund(Grant No.LBH-Z24057)Outstanding Master’s and Doctoral Thesis of Longjiang in the New Era(Grant No.LJYXL2023-076).
文摘Radiative cooling fabric creates a thermally comfortable environment without energy input,providing a sustainable approach to personal thermal management.However,most currently reported fabrics mainly focus on outdoor cooling,ignoring to achieve simultaneous cooling both indoors and outdoors,thereby weakening the overall cooling performance.Herein,a full-scale structure fabric with selective emission properties is constructed for simultaneous indoor and outdoor cooling.The fabric achieves 94%reflectance performance in the sunlight band(0.3–2.5μm)and 6%in the mid-infrared band(2.5–25μm),effectively minimizing heat absorption and radiation release obstruction.It also demonstrates 81%radiative emission performance in the atmospheric window band(8–13μm)and 25%radiative transmission performance in the mid-infrared band(2.5–25μm),providing 60 and 26 W m−2 net cooling power outdoors and indoors.In practical applications,the fabric achieves excellent indoor and outdoor human cooling,with temperatures 1.4–5.5℃ lower than typical polydimethylsiloxane film.This work proposes a novel design for the advanced radiative cooling fabric,offering significant potential to realize sustainable personal thermal management.