期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Topology and topological sequence entropy
1
作者 L'ubomír Snoha Xiangdong Ye Ruifeng Zhang 《Science China Mathematics》 SCIE CSCD 2020年第2期205-296,共92页
Let X be a compact metric space and T:X-→X be continuous.Let h*(T)be the supremum of topological sequence entropies of T over all the subsequences of Z+and S(X)be the set of the values h*(T)for all the continuous map... Let X be a compact metric space and T:X-→X be continuous.Let h*(T)be the supremum of topological sequence entropies of T over all the subsequences of Z+and S(X)be the set of the values h*(T)for all the continuous maps T on X.It is known that{0}■S(X)■{0,log 2,log 3,...}∪{∞}.Only three possibilities for S(X)have been observed so far,namely S(X)={0},S(X)={0,log 2,∞}and S(X)={0,log 2,log 3,...}∪{∞}.In this paper we completely solve the problem of finding all possibilities for S(X)by showing that in fact for every set{0}?A?{0,log 2,log 3,...}∪{∞}there exists a one-dimensional continuum XAwith S(XA)=A.In the construction of XAwe use Cook continua.This is apparently the first application of these very rigid continua in dynamics.We further show that the same result is true if one considers only homeomorphisms rather than continuous maps.The problem for group actions is also addressed.For some class of group actions(by homeomorphisms)we provide an analogous result,but in full generality this problem remains open. 展开更多
关键词 topological sequence entropy rigid continuum cook continuum
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部