期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Hard-rock tunnel lithology identification using multiscale dilated convolutional attention network based on tunnel face images 被引量:1
1
作者 Wenjun ZHANG Wuqi ZHANG +5 位作者 Gaole ZHANG Jun HUANG Minggeng LI Xiaohui WANG Fei YE Xiaoming GUAN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第12期1796-1812,共17页
For real-time classification of rock-masses in hard-rock tunnels,quick determination of the rock lithology on the tunnel face during construction is essential.Motivated by current breakthroughs in artificial intellige... For real-time classification of rock-masses in hard-rock tunnels,quick determination of the rock lithology on the tunnel face during construction is essential.Motivated by current breakthroughs in artificial intelligence technology in machine vision,a new automatic detection approach for classifying tunnel lithology based on tunnel face images was developed.The method benefits from residual learning for training a deep convolutional neural network(DCNN),and a multi-scale dilated convolutional attention block is proposed.The block with different dilation rates can provide various receptive fields,and thus it can extract multi-scale features.Moreover,the attention mechanism is utilized to select the salient features adaptively and further improve the performance of the model.In this study,an initial image data set made up of photographs of tunnel faces consisting of basalt,granite,siltstone,and tuff was first collected.After classifying and enhancing the training,validation,and testing data sets,a new image data set was generated.A comparison of the experimental findings demonstrated that the suggested approach outperforms previous classifiers in terms of various indicators,including accuracy,precision,recall,F1-score,and computing time.Finally,a visualization analysis was performed to explain the process of the network in the classification of tunnel lithology through feature extraction.Overall,this study demonstrates the potential of using artificial intelligence methods for in situ rock lithology classification utilizing geological images of the tunnel face. 展开更多
关键词 hard-rock tunnel face intelligent lithology identification multi-scale dilated convolutional attention network image classification deep learning
原文传递
Completed attention convolutional neural network for MRI image segmentation
2
作者 ZHANG Zhong LV Shijie +1 位作者 LIU Shuang XIAO Baihua 《High Technology Letters》 EI CAS 2022年第3期247-251,共5页
Attention mechanism combined with convolutional neural network(CNN) achieves promising performance for magnetic resonance imaging(MRI) image segmentation,however these methods only learn attention weights from single ... Attention mechanism combined with convolutional neural network(CNN) achieves promising performance for magnetic resonance imaging(MRI) image segmentation,however these methods only learn attention weights from single scale,resulting in incomplete attention learning.A novel method named completed attention convolutional neural network(CACNN) is proposed for MRI image segmentation.Specifically,the channel-wise attention block(CWAB) and the pixel-wise attention block(PWAB) are designed to learn attention weights from the aspects of channel and pixel levels.As a result,completed attention weights are obtained,which is beneficial to discriminative feature learning.The method is verified on two widely used datasets(HVSMR and MRBrainS),and the experimental results demonstrate that the proposed method achieves better results than the state-of-theart methods. 展开更多
关键词 magnetic resonance imaging(MRI)image segmentation completed attention convolutional neural network(CACNN)
在线阅读 下载PDF
Facial Expression Recognition Using Enhanced Convolution Neural Network with Attention Mechanism 被引量:5
3
作者 K.Prabhu S.SathishKumar +2 位作者 M.Sivachitra S.Dineshkumar P.Sathiyabama 《Computer Systems Science & Engineering》 SCIE EI 2022年第4期415-426,共12页
Facial Expression Recognition(FER)has been an interesting area of research in places where there is human-computer interaction.Human psychol-ogy,emotions and behaviors can be analyzed in FER.Classifiers used in FER hav... Facial Expression Recognition(FER)has been an interesting area of research in places where there is human-computer interaction.Human psychol-ogy,emotions and behaviors can be analyzed in FER.Classifiers used in FER have been perfect on normal faces but have been found to be constrained in occluded faces.Recently,Deep Learning Techniques(DLT)have gained popular-ity in applications of real-world problems including recognition of human emo-tions.The human face reflects emotional states and human intentions.An expression is the most natural and powerful way of communicating non-verbally.Systems which form communications between the two are termed Human Machine Interaction(HMI)systems.FER can improve HMI systems as human expressions convey useful information to an observer.This paper proposes a FER scheme called EECNN(Enhanced Convolution Neural Network with Atten-tion mechanism)to recognize seven types of human emotions with satisfying results in its experiments.Proposed EECNN achieved 89.8%accuracy in classi-fying the images. 展开更多
关键词 Facial expression recognition linear discriminant analysis animal migration optimization regions of interest enhanced convolution neural network with attention mechanism
在线阅读 下载PDF
Deep Learning-Based Health Assessment Method for Benzene-to-Ethylene Ratio Control Systems under Incomplete Data
4
作者 Huichao Cao Honghe Du +3 位作者 Dongnian Jiang Wei Li Lei Du Jianfeng Yang 《Structural Durability & Health Monitoring》 2025年第5期1305-1325,共21页
In the production processes of modern industry,accurate assessment of the system’s health state and traceability non-optimal factors are key to ensuring“safe,stable,long-term,full load and optimal”operation of the ... In the production processes of modern industry,accurate assessment of the system’s health state and traceability non-optimal factors are key to ensuring“safe,stable,long-term,full load and optimal”operation of the production process.The benzene-to-ethylene ratio control system is a complex system based on anMPC-PID doublelayer architecture.Taking into consideration the interaction between levels,coupling between loops and conditions of incomplete operation data,this paper proposes a health assessment method for the dual-layer control system by comprehensively utilizing deep learning technology.Firstly,according to the results of the pre-assessment of the system layers and loops bymultivariate statisticalmethods,seven characteristic parameters that have a significant impact on the health state of the system are identified.Next,aiming at the problem of incomplete assessment data set due to the uneven distribution of actual system operating health state,the original unbalanced dataset is augmented using aWasserstein generative adversarial network with gradient penalty term,and a complete dataset is obtained to characterise all the health states of the system.On this basis,a new deep learning-based health assessment framework for the benzeneto-ethylene ratio control system is constructed based on traditionalmultivariate statistical assessment.This framework can overcome the shortcomings of the linear weighted fusion related to the coupling and nonlinearity of the subsystem health state at different layers,and reduce the dependence of the prior knowledge.Furthermore,by introducing a dynamic attention mechanism(AM)into the convolutional neural network(CNN),the assessment model integrating both assessment and traceability is constructed,which can achieve the health assessment and trace the non-optimal factors of the complex control systems with the double-layer architecture.Finally,the effectiveness and superiority of the proposed method have been verified by the benzene-ethylene ratio control system of the alkylation process unit in a styrene plant. 展开更多
关键词 The benzene-to-ethylene ratio control system health assessment data augmentation Wasserstein generative adversarial network with gradient penalty term dynamic attention mechanism into the convolutional neural network
在线阅读 下载PDF
Graph attention convolutional neural network model for chemical poisoning of honey bees’ prediction 被引量:13
5
作者 Fan Wang Jing-Fang Yang +4 位作者 Meng-Yao Wang Chen-Yang Jia Xing-Xing Shi Ge-Fei Hao Guang-Fu Yang 《Science Bulletin》 SCIE EI CAS CSCD 2020年第14期1184-1191,M0004,共9页
The impact of pesticides on insect pollinators has caused worldwide concern. Both global bee decline and stopping the use of pesticides may have serious consequences for food security. Automated and accurate predictio... The impact of pesticides on insect pollinators has caused worldwide concern. Both global bee decline and stopping the use of pesticides may have serious consequences for food security. Automated and accurate prediction of chemical poisoning of honey bees is a challenging task owing to a lack of understanding of chemical toxicity and introspection. Deep learning(DL) shows potential utility for general and highly variable tasks across fields. Here, we developed a new DL model of deep graph attention convolutional neural networks(GACNN) with the combination of undirected graph(UG) and attention convolutional neural networks(ACNN) to accurately classify chemical poisoning of honey bees. We used a training dataset of 720 pesticides and an external validation dataset of 90 pesticides, which is one order of magnitude larger than the previous datasets. We tested its performance in two ways: poisonous versus nonpoisonous and GACNN versus other frequently-used machine learning models. The first case represents the accuracy in identifying bee poisonous chemicals. The second represents performance advantages. The GACNN achieved ~6% higher performance for predicting toxic samples and more stable with ~7%Matthews Correlation Coefficient(MCC) higher compared to all tested models, demonstrating GACNN is capable of accurately classifying chemicals and has considerable potential in practical applications.In addition, we also summarized and evaluated the mechanisms underlying the response of honey bees to chemical exposure based on the mapping of molecular similarity. Moreover, our cloud platform(http://beetox.cn) of this model provides low-cost universal access to information, which could vitally enhance environmental risk assessment. 展开更多
关键词 Deep learning Graph attention convolutional neural networks Honey bees toxicity PESTICIDE Molecular design
原文传递
Fault prediction model in wind turbines using deep learning structure with enhanced optimisation algorithm
6
作者 Mahendra Bhatu Gawali Swapnali Sunil Gawali Megharani Patil 《Journal of Control and Decision》 2025年第3期471-488,共18页
Digital Twin(DT)is used for lifetime monitoring of the drive train and can be a costly option.This proposal adopts the predictive modelling of wind turbines by digital twins by deep learning strategies.Initially,the d... Digital Twin(DT)is used for lifetime monitoring of the drive train and can be a costly option.This proposal adopts the predictive modelling of wind turbines by digital twins by deep learning strategies.Initially,the data is acquired from publicly available wind turbine datasets.Next,the deep features and statistical features are extracted,and the autoencoder is adapted to get the deep features.Then,the Enhanced Marine Predators Algorithm(EMPA)is to select the optimal weighted fused features,where the EMPA would tune the weights used for fusion and the features selection.Finally,the predictive modelling is done via a newly recommended Adaptive Deep Temporal Convolution Network with an Attention Mechanism(ADTCN-AM).It is tuned for precise outcomes with the help of EMPA for forecasting the wind speed and predicting the generated power.The comparative performance analysis of the recently used wind prediction system model shows better efficient results. 展开更多
关键词 Twin predictive model in wind turbines feature extraction enhanced marine predators algorithm adaptive deep temporal convolution network with attention mechanism optimal weighted fused features
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部