期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Handling class imbalance of radio frequency interference in deep learning-based fast radio burst search pipelines using a deep convolutional generative adversarial network
1
作者 Wenlong Du Yanling Liu Maozheng Chen 《Astronomical Techniques and Instruments》 2025年第1期10-15,共6页
This paper addresses the performance degradation issue in a fast radio burst search pipeline based on deep learning.This issue is caused by the class imbalance of the radio frequency interference samples in the traini... This paper addresses the performance degradation issue in a fast radio burst search pipeline based on deep learning.This issue is caused by the class imbalance of the radio frequency interference samples in the training dataset,and one solution is applied to improve the distribution of the training data by augmenting minority class samples using a deep convolutional generative adversarial network.Experi.mental results demonstrate that retraining the deep learning model with the newly generated dataset leads to a new fast radio burst classifier,which effectively reduces false positives caused by periodic wide-band impulsive radio frequency interference,thereby enhancing the performance of the search pipeline. 展开更多
关键词 Fast radio burst Deep convolutional generative adversarial network Class imbalance Radio frequency interference Deep learning
在线阅读 下载PDF
Rolling Bearing Fault Detection Based on Self-Adaptive Wasserstein Dual Generative Adversarial Networks and Feature Fusion under Small Sample Conditions
2
作者 Qiang Ma Zhuopei Wei +2 位作者 Kai Yang Long Tian Zepeng Li 《Structural Durability & Health Monitoring》 2025年第4期1011-1035,共25页
An intelligent diagnosis method based on self-adaptiveWasserstein dual generative adversarial networks and feature fusion is proposed due to problems such as insufficient sample size and incomplete fault feature extra... An intelligent diagnosis method based on self-adaptiveWasserstein dual generative adversarial networks and feature fusion is proposed due to problems such as insufficient sample size and incomplete fault feature extraction,which are commonly faced by rolling bearings and lead to low diagnostic accuracy.Initially,dual models of the Wasserstein deep convolutional generative adversarial network incorporating gradient penalty(1D-2DWDCGAN)are constructed to augment the original dataset.A self-adaptive loss threshold control training strategy is introduced,and establishing a self-adaptive balancing mechanism for stable model training.Subsequently,a diagnostic model based on multidimensional feature fusion is designed,wherein complex features from various dimensions are extracted,merging the original signal waveform features,structured features,and time-frequency features into a deep composite feature representation that encompasses multiple dimensions and scales;thus,efficient and accurate small sample fault diagnosis is facilitated.Finally,an experiment between the bearing fault dataset of CaseWestern ReserveUniversity and the fault simulation experimental platformdataset of this research group shows that this method effectively supplements the dataset and remarkably improves the diagnostic accuracy.The diagnostic accuracy after data augmentation reached 99.94%and 99.87%in two different experimental environments,respectively.In addition,robustness analysis is conducted on the diagnostic accuracy of the proposed method under different noise backgrounds,verifying its good generalization performance. 展开更多
关键词 Deep learning Wasserstein deep convolutional generative adversarial network small sample learning feature fusion multidimensional data enhancement small sample fault diagnosis
在线阅读 下载PDF
Conveyor-Belt Detection of Conditional Deep Convolutional Generative Adversarial Network 被引量:2
3
作者 Xiaoli Hao Xiaojuan Meng +2 位作者 Yueqin Zhang JinDong Xue Jinyue Xia 《Computers, Materials & Continua》 SCIE EI 2021年第11期2671-2685,共15页
In underground mining,the belt is a critical component,as its state directly affects the safe and stable operation of the conveyor.Most of the existing non-contact detection methods based on machine vision can only de... In underground mining,the belt is a critical component,as its state directly affects the safe and stable operation of the conveyor.Most of the existing non-contact detection methods based on machine vision can only detect a single type of damage and they require pre-processing operations.This tends to cause a large amount of calculation and low detection precision.To solve these problems,in the work described in this paper a belt tear detection method based on a multi-class conditional deep convolutional generative adversarial network(CDCGAN)was designed.In the traditional DCGAN,the image generated by the generator has a certain degree of randomness.Here,a small number of labeled belt images are taken as conditions and added them to the generator and discriminator,so the generator can generate images with the characteristics of belt damage under the aforementioned conditions.Moreover,because the discriminator cannot identify multiple types of damage,the multi-class softmax function is used as the output function of the discriminator to output a vector of class probabilities,and it can accurately classify cracks,scratches,and tears.To avoid the features learned incompletely,skiplayer connection is adopted in the generator and discriminator.This not only can minimize the loss of features,but also improves the convergence speed.Compared with other algorithms,experimental results show that the loss value of the generator and discriminator is the least.Moreover,its convergence speed is faster,and the mean average precision of the proposed algorithm is up to 96.2%,which is at least 6%higher than that of other algorithms. 展开更多
关键词 Multi-class detection conditional deep convolution generative adversarial network conveyor belt tear skip-layer connection
在线阅读 下载PDF
Optimized Generative Adversarial Networks for Adversarial Sample Generation
4
作者 Daniyal M.Alghazzawi Syed Hamid Hasan Surbhi Bhatia 《Computers, Materials & Continua》 SCIE EI 2022年第8期3877-3897,共21页
Detecting the anomalous entity in real-time network traffic is a popular area of research in recent times.Very few researches have focused on creating malware that fools the intrusion detection system and this paper f... Detecting the anomalous entity in real-time network traffic is a popular area of research in recent times.Very few researches have focused on creating malware that fools the intrusion detection system and this paper focuses on this topic.We are using Deep Convolutional Generative Adversarial Networks(DCGAN)to trick the malware classifier to believe it is a normal entity.In this work,a new dataset is created to fool the Artificial Intelligence(AI)based malware detectors,and it consists of different types of attacks such as Denial of Service(DoS),scan 11,scan 44,botnet,spam,User Datagram Portal(UDP)scan,and ssh scan.The discriminator used in the DCGAN discriminates two different attack classes(anomaly and synthetic)and one normal class.The model collapse,instability,and vanishing gradient issues associated with the DCGAN are overcome using the proposed hybrid Aquila optimizer-based Mine blast harmony search algorithm(AO-MBHS).This algorithm helps the generator to create realistic malware samples to be undetected by the discriminator.The performance of the proposed methodology is evaluated using different performance metrics such as training time,detection rate,F-Score,loss function,Accuracy,False alarm rate,etc.The superiority of the hybrid AO-MBHS based DCGAN model is noticed when the detection rate is changed to 0 after the retraining method to make the defensive technique hard to be noticed by the malware detection system.The support vector machines(SVM)is used as the malicious traffic detection application and its True positive rate(TPR)goes from 80%to 0%after retraining the proposed model which shows the efficiency of the proposed model in hiding the samples. 展开更多
关键词 Aquila optimizer convolutional generative adversarial networks mine blast harmony search algorithm network traffic dataset adversarial artificial intelligence techniques
在线阅读 下载PDF
Exploration of the Relation between Input Noise and Generated Image in Generative Adversarial Networks
5
作者 Hao-He Liu Si-Qi Yao +1 位作者 Cheng-Ying Yang Yu-Lin Wang 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第1期70-80,共11页
In this paper,we propose a hybrid model aiming to map the input noise vector to the label of the generated image by the generative adversarial network(GAN).This model mainly consists of a pre-trained deep convolution ... In this paper,we propose a hybrid model aiming to map the input noise vector to the label of the generated image by the generative adversarial network(GAN).This model mainly consists of a pre-trained deep convolution generative adversarial network(DCGAN)and a classifier.By using the model,we visualize the distribution of two-dimensional input noise,leading to a specific type of the generated image after each training epoch of GAN.The visualization reveals the distribution feature of the input noise vector and the performance of the generator.With this feature,we try to build a guided generator(GG)with the ability to produce a fake image we need.Two methods are proposed to build GG.One is the most significant noise(MSN)method,and the other utilizes labeled noise.The MSN method can generate images precisely but with less variations.In contrast,the labeled noise method has more variations but is slightly less stable.Finally,we propose a criterion to measure the performance of the generator,which can be used as a loss function to effectively train the network. 展开更多
关键词 Deep convolution generative adversarial network(DCGAN) deep learning guided generative adversarial network(GAN) visualization
在线阅读 下载PDF
Deep convolutional adversarial graph autoencoder using positive pointwise mutual information for graph embedding
6
作者 MA Xiuhui WANG Rong +3 位作者 CHEN Shudong DU Rong ZHU Danyang ZHAO Hua 《High Technology Letters》 EI CAS 2022年第1期98-106,共9页
Graph embedding aims to map the high-dimensional nodes to a low-dimensional space and learns the graph relationship from its latent representations.Most existing graph embedding methods focus on the topological struct... Graph embedding aims to map the high-dimensional nodes to a low-dimensional space and learns the graph relationship from its latent representations.Most existing graph embedding methods focus on the topological structure of graph data,but ignore the semantic information of graph data,which results in the unsatisfied performance in practical applications.To overcome the problem,this paper proposes a novel deep convolutional adversarial graph autoencoder(GAE)model.To embed the semantic information between nodes in the graph data,the random walk strategy is first used to construct the positive pointwise mutual information(PPMI)matrix,then,graph convolutional net-work(GCN)is employed to encode the PPMI matrix and node content into the latent representation.Finally,the learned latent representation is used to reconstruct the topological structure of the graph data by decoder.Furthermore,the deep convolutional adversarial training algorithm is introduced to make the learned latent representation conform to the prior distribution better.The state-of-the-art experimental results on the graph data validate the effectiveness of the proposed model in the link prediction,node clustering and graph visualization tasks for three standard datasets,Cora,Citeseer and Pubmed. 展开更多
关键词 graph autoencoder(GAE) positive pointwise mutual information(PPMI) deep convolutional generative adversarial network(DCGAN) graph convolutional network(GCN) se-mantic information
在线阅读 下载PDF
西安电子科技大学学者在生物医学信号处理领域取得突破性进展
7
作者 苏妮(整理) 《陕西教育(高教版)》 2025年第9期9-9,共1页
据西安电子科技大学网站消息,西安电子科技大学信息力学与感知工程学院张伟涛教授课题组日前在生物医学信号处理领域取得突破性进展,最新研究成果“Temporal Convolutional Generative Adversarial Networks for Single-Channel Fetal E... 据西安电子科技大学网站消息,西安电子科技大学信息力学与感知工程学院张伟涛教授课题组日前在生物医学信号处理领域取得突破性进展,最新研究成果“Temporal Convolutional Generative Adversarial Networks for Single-Channel Fetal ECG Extraction”被国际顶级期刊IEEE Journal of Biomedical and Health Informatics全文收录。 展开更多
关键词 生物医学信号处理 突破性进展 Temporal convolutional Generative adversarial networks
在线阅读 下载PDF
Computational ghost imaging with deep compressed sensing 被引量:1
8
作者 Hao Zhang Yunjie Xia Deyang Duan 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第12期455-458,共4页
Computational ghost imaging(CGI)provides an elegant framework for indirect imaging,but its application has been restricted by low imaging performance.Herein,we propose a novel approach that significantly improves the ... Computational ghost imaging(CGI)provides an elegant framework for indirect imaging,but its application has been restricted by low imaging performance.Herein,we propose a novel approach that significantly improves the imaging performance of CGI.In this scheme,we optimize the conventional CGI data processing algorithm by using a novel compressed sensing(CS)algorithm based on a deep convolution generative adversarial network(DCGAN).CS is used to process the data output by a conventional CGI device.The processed data are trained by a DCGAN to reconstruct the image.Qualitative and quantitative results show that this method significantly improves the quality of reconstructed images by jointly training a generator and the optimization process for reconstruction via meta-learning.Moreover,the background noise can be eliminated well by this method. 展开更多
关键词 computational ghost imaging compressed sensing deep convolution generative adversarial network
原文传递
Zero-day Malware Defence with Limited Samples
9
作者 Yuanxiang Gong Chiya Zhang Yiyi Liu 《Journal of Communications and Information Networks》 CSCD 2024年第4期340-347,共8页
Zero-day malware refers to a previously unknown or newly discovered type of malware.While most existing studies rely on large malware sample sets,their performance is unknown when dealing with a limited number of samp... Zero-day malware refers to a previously unknown or newly discovered type of malware.While most existing studies rely on large malware sample sets,their performance is unknown when dealing with a limited number of samples.This paper addresses this challenge by proposing a novel approach for effective zero-day malware detection,even with a scarcity of known samples.The proposed method begins by visualizing the malware binary and converting it into an entropy image.Subsequently,a deep convolutional generative adversarial network(DCGAN)is employed to learn from the available samples and generate new,highly similar synthetic samples.By combining these generated samples with the real ones,a comprehensive training set is constructed for a convolutional neural network(CNN)classification model.The randomness introduced by DCGAN facilitates the generation of new features,even in the presence of a small sample size.This enables the classifier to learn the characteristics of unknown zero-day malware and enhance its detection capabilities.Extensive experiments validate the effectiveness of the proposed approach,demonstrating that leveraging entropy images as features and applying DCGAN for data augmentation leads to a robust zero-day malware detection system,capable of achieving promising results even with a limited number of samples. 展开更多
关键词 malware classification deep convolution generative adversarial network
原文传递
Desensitization of Private Text Dataset Based on Gradient Strategy Trans-WTGAN
10
作者 Zhen Guo Ying Zhou +1 位作者 Jun Ye Yongxu Hou 《Tsinghua Science and Technology》 2025年第5期2081-2096,共16页
Privacy-sensitive data encounter immense security and usability challenges in processing,analyzing,and sharing.Meanwhile,traditional privacy data desensitization methods suffer from issues such as poor quality and low... Privacy-sensitive data encounter immense security and usability challenges in processing,analyzing,and sharing.Meanwhile,traditional privacy data desensitization methods suffer from issues such as poor quality and low usability after desensitization.Therefore,a text data desensitization model that combines Transformer and Wasserstein Text convolutional Generative Adversarial Network(Trans-WTGAN)is proposed.Transformer as the generator and its self-attention mechanism can handle long-range dependencies,enabling the generated of higher-quality text;Text Convolutional Neural Network(TextCNN)integrates the idea of Wasserstein as the discriminator to enhance the stability of model training;and the strategy gradient scheme of reinforcement learning is employed.Reinforcement learning utilizes the policy gradient scheme as the updating method of generator parameters,ensuring the generated data retains the original key features and maintains a certain level of usability.The experimental results indicate that the proposed model scheme holds a greater advantage over existing methods in terms of text quality and structural consistency,can guarantee the desensitization effect,and ensures the usability of the privacy-sensitive data to a certain extent after desensitization,facilitates the simulation of the development environment for the use of real data and the analysis and sharing of data. 展开更多
关键词 desensitization gradient strategy Transformer and Wasserstein Text convolutional Generative adversarial network(Trans-WTGAN) usability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部