期刊文献+
共找到1,622篇文章
< 1 2 82 >
每页显示 20 50 100
Experiments on image data augmentation techniques for geological rock type classification with convolutional neural networks 被引量:2
1
作者 Afshin Tatar Manouchehr Haghighi Abbas Zeinijahromi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期106-125,共20页
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist... The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications. 展开更多
关键词 Deep learning(DL) Image analysis Image data augmentation convolutional neural networks(CNNs) Geological image analysis Rock classification Rock thin section(RTS)images
在线阅读 下载PDF
Anatomic Boundary-Aware Explanation for Convolutional Neural Networks in Diagnostic Radiology
2
作者 Han Yuan 《iRADIOLOGY》 2025年第1期47-60,共14页
Background:Convolutional neural networks(CNN)have achieved remarkable success in medical image analysis.However,unlike some general-domain tasks where model accuracy is paramount,medical applications demand both accur... Background:Convolutional neural networks(CNN)have achieved remarkable success in medical image analysis.However,unlike some general-domain tasks where model accuracy is paramount,medical applications demand both accuracy and explainability due to the high stakes affecting patients'lives.Based on model explanations,clinicians can evaluate the diagnostic decisions suggested by CNN.Nevertheless,prior explainable artificial intelligence methods treat medical image tasks akin to general vision tasks,following end-to-end paradigms to generate explanations and frequently overlooking crucial clinical domain knowledge.Methods:We propose a plug-and-play module that explicitly integrates anatomic boundary information into the explanation process for CNN-based thoracopathy classifiers.To generate the anatomic boundary of the lung parenchyma,we utilize a lung segmentation model developed on external public datasets and deploy it on the unseen target dataset to constrain model ex-planations within the lung parenchyma for the clinical task of thoracopathy classification.Results:Assessed by the intersection over union and dice similarity coefficient between model-extracted explanations and expert-annotated lesion areas,our method consistently outperformed the baseline devoid of clinical domain knowledge in 71 out of 72 scenarios,encompassing 3 CNN architectures(VGG-11,ResNet-18,and AlexNet),2 classification settings(binary and multi-label),3 explanation methods(Saliency Map,Grad-CAM,and Integrated Gradients),and 4 co-occurred thoracic diseases(Atelectasis,Fracture,Mass,and Pneumothorax).Conclusions:We underscore the effectiveness of leveraging radiology knowledge in improving model explanations for CNN and envisage that it could inspire future efforts to integrate clinical domain knowledge into medical image analysis. 展开更多
关键词 ATELECTASIS convolutional neural networks diagnostic radiology explainable artificial intelligence FRACTURE grad-cam integrated gradients mass PNEUMOTHORAX saliency map
在线阅读 下载PDF
An Advanced Medical Diagnosis of Breast Cancer Histopathology Using Convolutional Neural Networks
3
作者 Ahmed Ben Atitallah Jannet Kamoun +3 位作者 Meshari D.Alanazi Turki M.Alanazi Mohammed Albekairi Khaled Kaaniche 《Computers, Materials & Continua》 2025年第6期5761-5779,共19页
Breast Cancer(BC)remains a leadingmalignancy among women,resulting in highmortality rates.Early and accurate detection is crucial for improving patient outcomes.Traditional diagnostic tools,while effective,have limita... Breast Cancer(BC)remains a leadingmalignancy among women,resulting in highmortality rates.Early and accurate detection is crucial for improving patient outcomes.Traditional diagnostic tools,while effective,have limitations that reduce their accessibility and accuracy.This study investigates the use ofConvolutionalNeuralNetworks(CNNs)to enhance the diagnostic process of BC histopathology.Utilizing the BreakHis dataset,which contains thousands of histopathological images,we developed a CNN model designed to improve the speed and accuracy of image analysis.Our CNN architecture was designed with multiple convolutional layers,max-pooling layers,and a fully connected network optimized for feature extraction and classification.Hyperparameter tuning was conducted to identify the optimal learning rate,batch size,and number of epochs,ensuring robust model performance.The dataset was divided into training(80%),validation(10%),and testing(10%)subsets,with performance evaluated using accuracy,precision,recall,and F1-score metrics.Our CNN model achieved a magnification-independent accuracy of 97.72%,with specific accuracies of 97.50%at 40×,97.61%at 100×,99.06%at 200×,and 97.25%at 400×magnification levels.These results demonstrate the model’s superior performance relative to existing methods.The integration of CNNs in diagnostic workflows can potentially reduce pathologist workload,minimize interpretation errors,and increase the availability of diagnostic testing,thereby improving BC management and patient survival rates.This study highlights the effectiveness of deep learning in automating BC histopathological classification and underscores the potential for AI-driven diagnostic solutions to improve patient care. 展开更多
关键词 HISTOPATHOLOGY breast cancer convolutional neural networks BreakHis dataset medical imaging healthcare technology
暂未订购
Optimization of convolutional neural networks for predicting water pollutants using spectral data in the middle and lower reaches of the Yangtze River Basin,China
4
作者 ZHANG Guohao LI Song +3 位作者 WANG Cailing WANG Hongwei YU Tao DAI Xiaoxu 《Journal of Mountain Science》 2025年第8期2851-2869,共19页
Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising t... Developing an accurate and efficient comprehensive water quality prediction model and its assessment method is crucial for the prevention and control of water pollution.Deep learning(DL),as one of the most promising technologies today,plays a crucial role in the effective assessment of water body health,which is essential for water resource management.This study models using both the original dataset and a dataset augmented with Generative Adversarial Networks(GAN).It integrates optimization algorithms(OA)with Convolutional Neural Networks(CNN)to propose a comprehensive water quality model evaluation method aiming at identifying the optimal models for different pollutants.Specifically,after preprocessing the spectral dataset,data augmentation was conducted to obtain two datasets.Then,six new models were developed on these datasets using particle swarm optimization(PSO),genetic algorithm(GA),and simulated annealing(SA)combined with CNN to simulate and forecast the concentrations of three water pollutants:Chemical Oxygen Demand(COD),Total Nitrogen(TN),and Total Phosphorus(TP).Finally,seven model evaluation methods,including uncertainty analysis,were used to evaluate the constructed models and select the optimal models for the three pollutants.The evaluation results indicate that the GPSCNN model performed best in predicting COD and TP concentrations,while the GGACNN model excelled in TN concentration prediction.Compared to existing technologies,the proposed models and evaluation methods provide a more comprehensive and rapid approach to water body prediction and assessment,offering new insights and methods for water pollution prevention and control. 展开更多
关键词 Water pollutants convolutional neural networks Data augmentation Optimization algorithms Model evaluation methods Deep Learning
原文传递
Implementing Convolutional Neural Networks to Detect Dangerous Objects in Video Surveillance Systems
5
作者 Carlos Rojas Cristian Bravo +1 位作者 Carlos Enrique Montenegro-Marín Rubén González-Crespo 《Computers, Materials & Continua》 2025年第12期5489-5507,共19页
The increasing prevalence of violent incidents in public spaces has created an urgent need for intelligent surveillance systems capable of detecting dangerous objects in real time.While traditional video surveillance ... The increasing prevalence of violent incidents in public spaces has created an urgent need for intelligent surveillance systems capable of detecting dangerous objects in real time.While traditional video surveillance relies on human monitoring,this approach suffers from limitations such as fatigue and delayed response times.This study addresses these challenges by developing an automated detection system using advanced deep learning techniques to enhance public safety.Our approach leverages state-of-the-art convolutional neural networks(CNNs),specifically You Only Look Once version 4(YOLOv4)and EfficientDet,for real-time object detection.The system was trained on a comprehensive dataset of over 50,000 images,enhanced through data augmentation techniques to improve robustness across varying lighting conditions and viewing angles.Cloud-based deployment on Amazon Web Services(AWS)ensured scalability and efficient processing.Experimental evaluations demonstrated high performance,with YOLOv4 achieving 92%accuracy and processing images in 0.45 s,while EfficientDet reached 93%accuracy with a slightly longer processing time of 0.55 s per image.Field tests in high-traffic environments such as train stations and shopping malls confirmed the system’s reliability,with a false alarm rate of only 4.5%.The integration of automatic alerts enabled rapid security responses to potential threats.The proposed CNN-based system provides an effective solution for real-time detection of dangerous objects in video surveillance,significantly improving response times and public safety.While YOLOv4 proved more suitable for speed-critical applications,EfficientDet offered marginally better accuracy.Future work will focus on optimizing the system for low-light conditions and further reducing false positives.This research contributes to the advancement of AI-driven surveillance technologies,offering a scalable framework adaptable to various security scenarios. 展开更多
关键词 Automatic detection of objects convolutional neural networks deep learning real-time image processing video surveillance systems automatic alerts
在线阅读 下载PDF
Application of deep learning-based convolutional neural networks in gastrointestinal disease endoscopic examination
6
作者 Yang-Yang Wang Bin Liu Ji-Han Wang 《World Journal of Gastroenterology》 2025年第36期50-69,共20页
Gastrointestinal(GI)diseases,including gastric and colorectal cancers,signi-ficantly impact global health,necessitating accurate and efficient diagnostic me-thods.Endoscopic examination is the primary diagnostic tool;... Gastrointestinal(GI)diseases,including gastric and colorectal cancers,signi-ficantly impact global health,necessitating accurate and efficient diagnostic me-thods.Endoscopic examination is the primary diagnostic tool;however,its accu-racy is limited by operator dependency and interobserver variability.Advance-ments in deep learning,particularly convolutional neural networks(CNNs),show great potential for enhancing GI disease detection and classification.This review explores the application of CNNs in endoscopic imaging,focusing on polyp and tumor detection,disease classification,endoscopic ultrasound,and capsule endo-scopy analysis.We discuss the performance of CNN models with traditional dia-gnostic methods,highlighting their advantages in accuracy and real-time decision support.Despite promising results,challenges remain,including data availability,model interpretability,and clinical integration.Future directions include impro-ving model generalization,enhancing explainability,and conducting large-scale clinical trials.With continued advancements,CNN-powered artificial intelligence systems could revolutionize GI endoscopy by enhancing early disease detection,reducing diagnostic errors,and improving patient outcomes. 展开更多
关键词 Gastrointestinal diseases Endoscopic examination Deep learning convolutional neural networks Computer-aided diagnosis
在线阅读 下载PDF
Detection of geohazards caused by human disturbance activities based on convolutional neural networks
7
作者 ZHANG Heng ZHANG Diandian +1 位作者 YUAN Da LIU Tao 《水利水电技术(中英文)》 北大核心 2025年第S1期731-738,共8页
Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the envir... Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed. 展开更多
关键词 convolutional neural network DETECTION environment damage CLIFF LANDSLIDE
在线阅读 下载PDF
Atmospheric neutron single event effects for multiple convolutional neural networks based on 28-nm and 16-nm SoC
8
作者 Xu Zhao Xuecheng Du +3 位作者 Chao Ma Zhiliang Hu Weitao Yang Bo Zheng 《Chinese Physics B》 2025年第1期477-484,共8页
The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spect... The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spectrometer(ANIS)at the China Spallation Neutron Source(CSNS).The Yolov3 and MNIST models were implemented on the XILINX28-nm system-on-chip(So C).Meanwhile,the Yolov3 and ResNet50 models were deployed on the XILINX 16-nm Fin FET Ultra Scale+MPSoC.The atmospheric neutron SEEs on the tested CNN systems were comprehensively evaluated from six aspects,including chip type,network architecture,deployment methods,inference time,datasets,and the position of the anchor boxes.The various types of SEE soft errors,SEE cross-sections,and their distribution were analyzed to explore the radiation sensitivities and rules of 28-nm and 16-nm SoC.The current research can provide the technology support of radiation-resistant design of CNN system for developing and applying high-reliability,long-lifespan domestic artificial intelligence chips. 展开更多
关键词 single event effects atmospheric neutron system on chip convolutional neural network
原文传递
Faster-than- Nyquist rate communication via convolutional neural networks- based demodulators 被引量:2
9
作者 欧阳星辰 吴乐南 《Journal of Southeast University(English Edition)》 EI CAS 2016年第1期6-10,共5页
A demodulator based on convolutional neural networks( CNNs) is proposed to demodulate bipolar extended binary phase shifting keying( EBPSK) signals transmitted at a faster-thanNyquist( FTN) rate, solving the pro... A demodulator based on convolutional neural networks( CNNs) is proposed to demodulate bipolar extended binary phase shifting keying( EBPSK) signals transmitted at a faster-thanNyquist( FTN) rate, solving the problem of severe inter symbol interference( ISI) caused by FTN rate signals. With the characteristics of local connectivity, pooling and weight sharing,a six-layer CNNs structure is used to demodulate and eliminate ISI. The results showthat with the symbol rate of 1. 07 k Bd, the bandwidth of the band-pass filter( BPF) in a transmitter of 1 k Hz and the changing number of carrier cycles in a symbol K = 5,10,15,28, the overall bit error ratio( BER) performance of CNNs with single-symbol decision is superior to that with a doublesymbol united-decision. In addition, the BER performance of single-symbol decision is approximately 0. 5 d B better than that of the coherent demodulator while K equals the total number of carrier circles in a symbol, i. e., K = N = 28. With the symbol rate of 1. 07 k Bd, the bandwidth of BPF in a transmitter of 500 Hz and K = 5,10,15,28, the overall BER performance of CNNs with double-symbol united-decision is superior to those with single-symbol decision. Moreover, the double-symbol uniteddecision method is approximately 0. 5 to 1. 5 d B better than that of the coherent demodulator while K = N = 28. The demodulators based on CNNs successfully solve the serious ISI problems generated during the transmission of FTN rate bipolar EBPSK signals, which is beneficial for the improvement of spectrum efficiency. 展开更多
关键词 bipolar extended binary phase shifting keying(EBPSK) convolutional neural networks(CNNs) faster-thanNyquist(FTN) rate double-symbol united-decision
在线阅读 下载PDF
All-optical computing based on convolutional neural networks 被引量:10
10
作者 Kun Liao Ye Chen +7 位作者 Zhongcheng Yu Xiaoyong Hu Xingyuan Wang Cuicui Lu Hongtao Lin Qingyang Du Juejun Hu Qihuang Gong 《Opto-Electronic Advances》 SCIE 2021年第11期46-54,共9页
The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,whi... The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,which use elec-trons as information carriers and possess von Neumann architecture featured by physical separation of storage and pro-cessing.The scaling of computing speed is limited not only by data transfer between memory and processing units,but also by RC delay associated with integrated circuits.Moreover,excessive heating due to Ohmic losses is becoming a severe bottleneck for both speed and power consumption scaling.Using photons as information carriers is a promising alternative.Owing to the weak third-order optical nonlinearity of conventional materials,building integrated photonic com-puting chips under traditional von Neumann architecture has been a challenge.Here,we report a new all-optical comput-ing framework to realize ultrafast and ultralow-energy-consumption all-optical computing based on convolutional neural networks.The device is constructed from cascaded silicon Y-shaped waveguides with side-coupled silicon waveguide segments which we termed“weight modulators”to enable complete phase and amplitude control in each waveguide branch.The generic device concept can be used for equation solving,multifunctional logic operations as well as many other mathematical operations.Multiple computing functions including transcendental equation solvers,multifarious logic gate operators,and half-adders were experimentally demonstrated to validate the all-optical computing performances.The time-of-flight of light through the network structure corresponds to an ultrafast computing time of the order of several picoseconds with an ultralow energy consumption of dozens of femtojoules per bit.Our approach can be further expan-ded to fulfill other complex computing tasks based on non-von Neumann architectures and thus paves a new way for on-chip all-optical computing. 展开更多
关键词 convolutional neural networks all-optical computing mathematical operations cascaded silicon waveguides
在线阅读 下载PDF
3D brain glioma segmentation in MRI through integrating multiple densely connected 2D convolutional neural networks 被引量:5
11
作者 Xiaobing ZHANG Yin HU +2 位作者 Wen CHEN Gang HUANG Shengdong NIE 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2021年第6期462-475,共14页
To overcome the computational burden of processing three-dimensional(3 D)medical scans and the lack of spatial information in two-dimensional(2 D)medical scans,a novel segmentation method was proposed that integrates ... To overcome the computational burden of processing three-dimensional(3 D)medical scans and the lack of spatial information in two-dimensional(2 D)medical scans,a novel segmentation method was proposed that integrates the segmentation results of three densely connected 2 D convolutional neural networks(2 D-CNNs).In order to combine the lowlevel features and high-level features,we added densely connected blocks in the network structure design so that the low-level features will not be missed as the network layer increases during the learning process.Further,in order to resolve the problems of the blurred boundary of the glioma edema area,we superimposed and fused the T2-weighted fluid-attenuated inversion recovery(FLAIR)modal image and the T2-weighted(T2)modal image to enhance the edema section.For the loss function of network training,we improved the cross-entropy loss function to effectively avoid network over-fitting.On the Multimodal Brain Tumor Image Segmentation Challenge(BraTS)datasets,our method achieves dice similarity coefficient values of 0.84,0.82,and 0.83 on the BraTS2018 training;0.82,0.85,and 0.83 on the BraTS2018 validation;and 0.81,0.78,and 0.83 on the BraTS2013 testing in terms of whole tumors,tumor cores,and enhancing cores,respectively.Experimental results showed that the proposed method achieved promising accuracy and fast processing,demonstrating good potential for clinical medicine. 展开更多
关键词 GLIOMA Magnetic resonance imaging(MRI) SEGMENTATION Dense block 2D convolutional neural networks(2D-CNNs)
原文传递
Optical diagnosis of colorectal polyps using convolutional neural networks 被引量:4
12
作者 Rawen Kader Andreas V Hadjinicolaou +2 位作者 Fanourios Georgiades Danail Stoyanov Laurence B Lovat 《World Journal of Gastroenterology》 SCIE CAS 2021年第35期5908-5918,共11页
Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-malignant and neoplastic polyps.Although technologies for image-enhanced e... Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-malignant and neoplastic polyps.Although technologies for image-enhanced endoscopy are widely available,optical diagnosis has not been incorporated into routine clinical practice,mainly due to significant inter-operator variability.In recent years,there has been a growing number of studies demonstrating the potential of convolutional neural networks(CNN)to enhance optical diagnosis of polyps.Data suggest that the use of CNNs might mitigate the inter-operator variability amongst endoscopists,potentially enabling a“resect and discard”or“leave in”strategy to be adopted in real-time.This would have significant financial benefits for healthcare systems,avoid unnecessary polypectomies of non-neoplastic polyps and improve the efficiency of colonoscopy.Here,we review advances in CNN for the optical diagnosis of colorectal polyps,current limitations and future directions. 展开更多
关键词 Artificial intelligence Deep learning convolutional neural networks Computer aided diagnosis Optical diagnosis Colorectal polyps
在线阅读 下载PDF
Connected Components-based Colour Image Representations of Vibrations for a Two-stage Fault Diagnosis of Roller Bearings Using Convolutional Neural Networks 被引量:4
13
作者 Hosameldin O.A.Ahmed Asoke K Nandi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期73-93,共21页
Roller bearing failure is one of the most common faults in rotating machines.Various techniques for bearing fault diagnosis based on faults feature extraction have been proposed.But feature extraction from fault signa... Roller bearing failure is one of the most common faults in rotating machines.Various techniques for bearing fault diagnosis based on faults feature extraction have been proposed.But feature extraction from fault signals requires expert prior information and human labour.Recently,deep learning algorithms have been applied extensively in the condition monitoring of rotating machines to learn features automatically from the input data.Given its robust performance in image recognition,the convolutional neural network(CNN)architecture has been widely used to learn automatically discriminative features from vibration images and classify health conditions.This paper proposes and evaluates a two-stage method RGBVI-CNN for roller bearings fault diagnosis.The first stage in the proposed method is to generate the RGB vibration images(RGBVIs)from the input vibration signals.To begin this process,first,the 1-D vibration signals were converted to 2-D grayscale vibration Images.Once the conversion was completed,the regions of interest(ROI)were found in the converted 2-D grayscale vibration images.Finally,to produce vibration images with more discriminative characteristics,an algorithm was applied to the 2-D grayscale vibration images to produce connected components-based RGB vibration images(RGBVIs)with sets of colours and texture features.In the second stage,with these RGBVIs a CNN-based architecture was employed to learn automatically features from the RGBVIs and to classify bearing health conditions.Two cases of fault classification of rolling element bearings are used to validate the proposed method.Experimental results of this investigation demonstrate that RGBVI-CNN can generate advantageous health condition features from bearing vibration signals and classify the health conditions under different working loads with high accuracy.Moreover,several classification models trained using RGBVI-CNN offered high performance in the testing results of the overall classification accuracy,precision,recall,and F-score. 展开更多
关键词 Bearing fault diagnosis Image representation of vibrations Deep learning convolutional neural networks
在线阅读 下载PDF
Automatic segmentation of stem and leaf components and individual maize plants in field terrestrial LiDAR data using convolutional neural networks 被引量:4
14
作者 Zurui Ao Fangfang Wu +4 位作者 Saihan Hu Ying Sun Yanjun Su Qinghua Guo Qinchuan Xin 《The Crop Journal》 SCIE CSCD 2022年第5期1239-1250,共12页
High-throughput maize phenotyping at both organ and plant levels plays a key role in molecular breeding for increasing crop yields. Although the rapid development of light detection and ranging(Li DAR) provides a new ... High-throughput maize phenotyping at both organ and plant levels plays a key role in molecular breeding for increasing crop yields. Although the rapid development of light detection and ranging(Li DAR) provides a new way to characterize three-dimensional(3 D) plant structure, there is a need to develop robust algorithms for extracting 3 D phenotypic traits from Li DAR data to assist in gene identification and selection. Accurate 3 D phenotyping in field environments remains challenging, owing to difficulties in segmentation of organs and individual plants in field terrestrial Li DAR data. We describe a two-stage method that combines both convolutional neural networks(CNNs) and morphological characteristics to segment stems and leaves of individual maize plants in field environments. It initially extracts stem points using the Point CNN model and obtains stem instances by fitting 3 D cylinders to the points. It then segments the field Li DAR point cloud into individual plants using local point densities and 3 D morphological structures of maize plants. The method was tested using 40 samples from field observations and showed high accuracy in the segmentation of both organs(F-score =0.8207) and plants(Fscore =0.9909). The effectiveness of terrestrial Li DAR for phenotyping at organ(including leaf area and stem position) and individual plant(including individual height and crown width) levels in field environments was evaluated. The accuracies of derived stem position(position error =0.0141 m), plant height(R^(2)>0.99), crown width(R^(2)>0.90), and leaf area(R^(2)>0.85) allow investigating plant structural and functional phenotypes in a high-throughput way. This CNN-based solution overcomes the major challenges in organ-level phenotypic trait extraction associated with the organ segmentation, and potentially contributes to studies of plant phenomics and precision agriculture. 展开更多
关键词 Terrestrial LiDAR PHENOTYPE Organ segmentation convolutional neural networks
在线阅读 下载PDF
Deep Imitation Learning for Autonomous Vehicles Based on Convolutional Neural Networks 被引量:11
15
作者 Parham M.Kebria Abbas Khosravi +1 位作者 Syed Moshfeq Salaken Saeid Nahavandi 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第1期82-95,共14页
Providing autonomous systems with an effective quantity and quality of information from a desired task is challenging. In particular, autonomous vehicles, must have a reliable vision of their workspace to robustly acc... Providing autonomous systems with an effective quantity and quality of information from a desired task is challenging. In particular, autonomous vehicles, must have a reliable vision of their workspace to robustly accomplish driving functions. Speaking of machine vision, deep learning techniques, and specifically convolutional neural networks, have been proven to be the state of the art technology in the field. As these networks typically involve millions of parameters and elements, designing an optimal architecture for deep learning structures is a difficult task which is globally under investigation by researchers. This study experimentally evaluates the impact of three major architectural properties of convolutional networks, including the number of layers, filters, and filter size on their performance. In this study, several models with different properties are developed,equally trained, and then applied to an autonomous car in a realistic simulation environment. A new ensemble approach is also proposed to calculate and update weights for the models regarding their mean squared error values. Based on design properties,performance results are reported and compared for further investigations. Surprisingly, the number of filters itself does not largely affect the performance efficiency. As a result, proper allocation of filters with different kernel sizes through the layers introduces a considerable improvement in the performance.Achievements of this study will provide the researchers with a clear clue and direction in designing optimal network architectures for deep learning purposes. 展开更多
关键词 Autonomous vehicles convolutional neural networks deep learning imitation learning
在线阅读 下载PDF
A Pooling Method Developed for Use in Convolutional Neural Networks 被引量:3
16
作者 Ìsmail Akgül 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期751-770,共20页
In convolutional neural networks,pooling methods are used to reduce both the size of the data and the number of parameters after the convolution of the models.These methods reduce the computational amount of convoluti... In convolutional neural networks,pooling methods are used to reduce both the size of the data and the number of parameters after the convolution of the models.These methods reduce the computational amount of convolutional neural networks,making the neural network more efficient.Maximum pooling,average pooling,and minimum pooling methods are generally used in convolutional neural networks.However,these pooling methods are not suitable for all datasets used in neural network applications.In this study,a new pooling approach to the literature is proposed to increase the efficiency and success rates of convolutional neural networks.This method,which we call MAM(Maximum Average Minimum)pooling,is more interactive than other traditional maximum pooling,average pooling,and minimum pooling methods and reduces data loss by calculating the more appropriate pixel value.The proposed MAM pooling method increases the performance of the neural network by calculating the optimal value during the training of convolutional neural networks.To determine the success accuracy of the proposed MAM pooling method and compare it with other traditional pooling methods,training was carried out on the LeNet-5 model using CIFAR-10,CIFAR-100,and MNIST datasets.According to the results obtained,the proposed MAM pooling method performed better than the maximum pooling,average pooling,and minimum pooling methods in all pool sizes on three different datasets. 展开更多
关键词 Pooling convolutional neural networks deep learning
在线阅读 下载PDF
Uplink NOMA signal transmission with convolutional neural networks approach 被引量:3
17
作者 LIN Chuan CHANG Qing LI Xianxu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期890-898,共9页
Non-orthogonal multiple access(NOMA), featuring high spectrum efficiency, massive connectivity and low latency, holds immense potential to be a novel multi-access technique in fifth-generation(5G) communication. Succe... Non-orthogonal multiple access(NOMA), featuring high spectrum efficiency, massive connectivity and low latency, holds immense potential to be a novel multi-access technique in fifth-generation(5G) communication. Successive interference cancellation(SIC) is proved to be an effective method to detect the NOMA signal by ordering the power of received signals and then decoding them. However, the error accumulation effect referred to as error propagation is an inevitable problem. In this paper,we propose a convolutional neural networks(CNNs) approach to restore the desired signal impaired by the multiple input multiple output(MIMO) channel. Especially in the uplink NOMA scenario,the proposed method can decode multiple users' information in a cluster instantaneously without any traditional communication signal processing steps. Simulation experiments are conducted in the Rayleigh channel and the results demonstrate that the error performance of the proposed learning system outperforms that of the classic SIC detection. Consequently, deep learning has disruptive potential to replace the conventional signal detection method. 展开更多
关键词 non-orthogonal multiple access(NOMA) deep learning(DL) convolutional neural networks(CNNs) signal detection
在线阅读 下载PDF
Intelligent Prediction Approach for Diabetic Retinopathy Using Deep Learning Based Convolutional Neural Networks Algorithm by Means of Retina Photographs 被引量:2
18
作者 G.Arun Sampaul Thomas Y.Harold Robinson +3 位作者 E.Golden Julie Vimal Shanmuganathan Seungmin Rho Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2021年第2期1613-1629,共17页
Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed,leak fluid and vision impairment.Symptoms of retinopathy are blurred vision,changes in color perception,red spots,and... Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed,leak fluid and vision impairment.Symptoms of retinopathy are blurred vision,changes in color perception,red spots,and eye pain and it cannot be detected with a naked eye.In this paper,a new methodology based on Convolutional Neural Networks(CNN)is developed and proposed to intelligent retinopathy prediction and give a decision about the presence of retinopathy with automatic diabetic retinopathy screening with accurate diagnoses.The CNN model is trained by different images of eyes that have retinopathy and those which do not have retinopathy.The fully connected layers perform the classification process of the images from the dataset with the pooling layers minimize the coherence among the adjacent layers.The feature loss factor increases the label value to identify the patterns with the kernel-based matching.The performance of the proposed model is compared with the related methods of DREAM,KNN,GD-CNN and SVM.Experimental results show that the proposed CNN performs better. 展开更多
关键词 convolutional neural networks dental diagnosis image recognition diabetic retinopathy detection
在线阅读 下载PDF
Prediction of constrained modulus for granular soil using 3D discrete element method and convolutional neural networks 被引量:1
19
作者 Tongwei Zhang Shuang Li +1 位作者 Huanzhi Yang Fanyu Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4769-4781,共13页
To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 ... To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 simulations of one-dimensional compression tests on coarse-grained sand using the three-dimensional(3D)discrete element method(DEM)were conducted to construct a database.In this process,the positions of the particles were randomly altered,and the particle assemblages changed.Interestingly,besides confirming the influence of particle size distribution parameters,the stress-strain curves differed despite an identical gradation size statistic when the particle position varied.Subsequently,the obtained data were partitioned into training,validation,and testing datasets at a 7:2:1 ratio.To convert the DEM model into a multi-dimensional matrix that computers can recognize,the 3D DEM models were first sliced to extract multi-layer two-dimensional(2D)cross-sectional data.Redundant information was then eliminated via gray processing,and the data were stacked to form a new 3D matrix representing the granular soil’s fabric.Subsequently,utilizing the Python language and Pytorch framework,a 3D convolutional neural networks(CNNs)model was developed to establish the relationship between the constrained modulus obtained from DEM simulations and the soil’s fabric.The mean squared error(MSE)function was utilized to assess the loss value during the training process.When the learning rate(LR)fell within the range of 10-5e10-1,and the batch sizes(BSs)were 4,8,16,32,and 64,the loss value stabilized after 100 training epochs in the training and validation dataset.For BS?32 and LR?10-3,the loss reached a minimum.In the testing set,a comparative evaluation of the predicted constrained modulus from the 3D CNNs versus the simulated modulus obtained via DEM reveals a minimum mean absolute percentage error(MAPE)of 4.43%under the optimized condition,demonstrating the accuracy of this approach.Thus,by combining DEM and CNNs,the variation of soil’s mechanical characteristics related to its random fabric would be efficiently evaluated by directly tracking the particle assemblages. 展开更多
关键词 Soil structure Constrained modulus Discrete element model(DEM) convolutional neural networks(CNNs) Evaluation of error
在线阅读 下载PDF
Sentence Similarity Measurement with Convolutional Neural Networks Using Semantic and Syntactic Features 被引量:1
20
作者 Shiru Zhang Zhiyao Liang Jian Lin 《Computers, Materials & Continua》 SCIE EI 2020年第5期943-957,共15页
Calculating the semantic similarity of two sentences is an extremely challenging problem.We propose a solution based on convolutional neural networks(CNN)using semantic and syntactic features of sentences.The similari... Calculating the semantic similarity of two sentences is an extremely challenging problem.We propose a solution based on convolutional neural networks(CNN)using semantic and syntactic features of sentences.The similarity score between two sentences is computed as follows.First,given a sentence,two matrices are constructed accordingly,which are called the syntax model input matrix and the semantic model input matrix;one records some syntax features,and the other records some semantic features.By experimenting with different arrangements of representing the syntactic and semantic features of the sentences in the matrices,we adopt the most effective way of constructing the matrices.Second,these two matrices are given to two neural networks,which are called the sentence model and the semantic model,respectively.The convolution process of the neural networks of the two models is carried out in multiple perspectives.The outputs of the two models are combined as a vector,which is the representation of the sentence.Third,given the representation vectors of two sentences,the similarity score of these representations is computed by a layer in the CNN.Experiment results show that our algorithm(SSCNN)surpasses the performance MPCPP,which noticeably the best recent work of using CNN for sentence similarity computation.Comparing with MPCNN,the convolution computation in SSCNN is considerably simpler.Based on the results of this work,we suggest that by further utilization of semantic and syntactic features,the performance of sentence similarity measurements has considerable potentials to be improved in the future. 展开更多
关键词 Sentence similarity neural network convolutional neural networks
在线阅读 下载PDF
上一页 1 2 82 下一页 到第
使用帮助 返回顶部