期刊文献+
共找到1,225篇文章
< 1 2 62 >
每页显示 20 50 100
A Convolutional and Transformer Based Deep Neural Network for Automatic Modulation Classification 被引量:5
1
作者 Shanchuan Ying Sai Huang +3 位作者 Shuo Chang Zheng Yang Zhiyong Feng Ningyan Guo 《China Communications》 SCIE CSCD 2023年第5期135-147,共13页
Automatic modulation classification(AMC)aims at identifying the modulation of the received signals,which is a significant approach to identifying the target in military and civil applications.In this paper,a novel dat... Automatic modulation classification(AMC)aims at identifying the modulation of the received signals,which is a significant approach to identifying the target in military and civil applications.In this paper,a novel data-driven framework named convolutional and transformer-based deep neural network(CTDNN)is proposed to improve the classification performance.CTDNN can be divided into four modules,i.e.,convolutional neural network(CNN)backbone,transition module,transformer module,and final classifier.In the CNN backbone,a wide and deep convolution structure is designed,which consists of 1×15 convolution kernels and intensive cross-layer connections instead of traditional 1×3 kernels and sequential connections.In the transition module,a 1×1 convolution layer is utilized to compress the channels of the previous multi-scale CNN features.In the transformer module,three self-attention layers are designed for extracting global features and generating the classification vector.In the classifier,the final decision is made based on the maximum a posterior probability.Extensive simulations are conducted,and the result shows that our proposed CTDNN can achieve superior classification performance than traditional deep models. 展开更多
关键词 automatic modulation classification deep neural network convolutional neural network TRANSFORMER
在线阅读 下载PDF
CM通信模块冗余故障原理及处理方案研究 被引量:1
2
作者 张启飞 冯明 +1 位作者 文登宇 苏正 《自动化仪表》 2025年第10期19-23,32,共6页
为了保障核电机组稳定运行、提高CM通信模块的运维能力,对CM通信模块出现的一种冗余故障进行研究。通过对故障现象、工作原理的分析,结合试验测试对CM通信模块冗余故障的原理进行分析,得到CM通信模块冗余故障发生的原因。基于对冗余故... 为了保障核电机组稳定运行、提高CM通信模块的运维能力,对CM通信模块出现的一种冗余故障进行研究。通过对故障现象、工作原理的分析,结合试验测试对CM通信模块冗余故障的原理进行分析,得到CM通信模块冗余故障发生的原因。基于对冗余故障发生原因的分析,结合实际运维工作,提出一种核电机组应对CM通信模块冗余故障的处理方案。方案综合运用预防性维修、风险控制预案、改造换型等方式,降低在运系统故障概率及影响。给出了核电机组运行状态下,处理此类故障的风险分析和控制方法。对于后续新建系统,提出在通信信号设计时充分考虑通信模块可靠性和故障特性,以避免重要信号通过通信模块传输,从而合理分散通信负荷并通过逻辑设计减少通信模块故障对系统控制功能的影响。该研究对于降低故障影响并提升系统可靠性具有指导意义。 展开更多
关键词 核电站 分布式控制系统 cm通信模块 冗余故障 风险分析 风险控制
在线阅读 下载PDF
基于CNNs技术的MCM互连可靠性研究
3
作者 张博昊 林倩 邬海峰 《固体电子学研究与进展》 2025年第4期80-86,共7页
鉴于有限元分析(Finite element analysis,FEA)耗时和耗资源的缺点和日益复杂的电路规模,为了加速电路的互连可靠性分析,以多芯片模块(Multi-chip module,MCM)为例,结合FEA和卷积神经网络(Convolutional neural network,CNN)技术对其互... 鉴于有限元分析(Finite element analysis,FEA)耗时和耗资源的缺点和日益复杂的电路规模,为了加速电路的互连可靠性分析,以多芯片模块(Multi-chip module,MCM)为例,结合FEA和卷积神经网络(Convolutional neural network,CNN)技术对其互连可靠性进行研究。通过训练FEA所得预测数据,CNN技术可以快速构建该模型的输入输出非线性关系。再通过对建模得到的互连可靠性数据进行统计分析,可以得到该MCM模型的最佳的工作条件。这为MCM的互连可靠性设计和分析提供了重要指导。 展开更多
关键词 有限元分析(FEA) 卷积神经网络(CNN) 电迁移 多芯片模块(Mcm) 互连可靠性
原文传递
A Multi-Task Learning Framework for Joint Sub-Nyquist Wideband Spectrum Sensing and Modulation Recognition
4
作者 Dong Xin Stefanos Bakirtzis +1 位作者 Zhang Jiliang Zhang Jie 《China Communications》 2025年第1期128-138,共11页
The utilization of millimeter-wave frequencies and cognitive radio(CR)are promising ways to increase the spectral efficiency of wireless communication systems.However,conventional CR spectrum sensing techniques entail... The utilization of millimeter-wave frequencies and cognitive radio(CR)are promising ways to increase the spectral efficiency of wireless communication systems.However,conventional CR spectrum sensing techniques entail sampling the received signal at a Nyquist rate,and they are not viable for wideband signals due to their high cost.This paper expounds on how sub-Nyquist sampling in conjunction with deep learning can be leveraged to remove this limitation.To this end,we propose a multi-task learning(MTL)framework using convolutional neural networks for the joint inference of the underlying narrowband signal number,their modulation scheme,and their location in a wideband spectrum.We demonstrate the effectiveness of the proposed framework for real-world millimeter-wave wideband signals collected by physical devices,exhibiting a 91.7% accuracy in the joint inference task when considering up to two narrowband signals over a wideband spectrum.Ultimately,the proposed data-driven approach enables on-the-fly wideband spectrum sensing,combining accuracy,and computational efficiency,which are indispensable for CR and opportunistic networking. 展开更多
关键词 automated modulation classification cognitive radio convolutional neural networks deep learning spectrum sensing sub-Nyquist sampling
在线阅读 下载PDF
AG-GCN: Vehicle Re-Identification Based on Attention-Guided Graph Convolutional Network
5
作者 Ya-Jie Sun Li-Wei Qiao Sai Ji 《Computers, Materials & Continua》 2025年第7期1769-1785,共17页
Vehicle re-identification involves matching images of vehicles across varying camera views.The diversity of camera locations along different roadways leads to significant intra-class variation and only minimal inter-c... Vehicle re-identification involves matching images of vehicles across varying camera views.The diversity of camera locations along different roadways leads to significant intra-class variation and only minimal inter-class similarity in the collected vehicle images,which increases the complexity of re-identification tasks.To tackle these challenges,this study proposes AG-GCN(Attention-Guided Graph Convolutional Network),a novel framework integrating several pivotal components.Initially,AG-GCN embeds a lightweight attention module within the ResNet-50 structure to learn feature weights automatically,thereby improving the representation of vehicle features globally by highlighting salient features and suppressing extraneous ones.Moreover,AG-GCN adopts a graph-based structure to encapsulate deep local features.A graph convolutional network then amalgamates these features to understand the relationships among vehicle-related characteristics.Subsequently,we amalgamate feature maps from both the attention and graph-based branches for a more comprehensive representation of vehicle features.The framework then gauges feature similarities and ranks them,thus enhancing the accuracy of vehicle re-identification.Comprehensive qualitative and quantitative analyses on two publicly available datasets verify the efficacy of AG-GCN in addressing intra-class and inter-class variability issues. 展开更多
关键词 Vehicle re-identification a lightweight attention module global features local features graph convolution network
在线阅读 下载PDF
Recognition of intrapulse modulation mode in radar signal with BRN-EST
6
作者 Yan Cheng Ke Mei Hao Zeng 《Journal of Electronic Science and Technology》 2025年第4期113-122,共10页
Neural network-based methods for intrapulse modulation recognition in radar signals have demonstrated significant improvements in classification accuracy.However,these approaches often rely on complex network structur... Neural network-based methods for intrapulse modulation recognition in radar signals have demonstrated significant improvements in classification accuracy.However,these approaches often rely on complex network structures,resulting in high computational resource requirements that limit their practical deployment in real-world settings.To address this issue,this paper proposes a bottleneck residual network with efficient soft-thresholding(BRN-EST)network,which integrates multiple lightweight design strategies and noise-reduction modules to maintain high recognition accuracy while significantly reducing computational complexity.Experimental results on the classical low-probability-of-intercept(LPI)radar signal dataset demonstrate that BRN-EST achieves comparable accuracy to state-of-the-art methods while reducing computational complexity by approximately 50%. 展开更多
关键词 Attention mechanism convolutional neural network Low probability of intercept radar Recognition of intrapulse modulation
在线阅读 下载PDF
基于CMS的中小企业网站建设 被引量:20
7
作者 林罡 《淮阴工学院学报》 CAS 2007年第1期26-29,共4页
为了使网站能迅速跟进大量信息衍生及业务模式变革的脚步,摆脱页面制作无序、网站风格不统一、大量信息堆积、发布异常沉重、改版工作量大、系统扩展能力差的问题,采用Mambo内容管理系统(CMS)可对网站的模版系统结构、PHP模版布局文件... 为了使网站能迅速跟进大量信息衍生及业务模式变革的脚步,摆脱页面制作无序、网站风格不统一、大量信息堆积、发布异常沉重、改版工作量大、系统扩展能力差的问题,采用Mambo内容管理系统(CMS)可对网站的模版系统结构、PHP模版布局文件、模块支持以及管理后台进行控制,提高企业各种类型的数字资源管理利用的效率,使建站更加轻松且更具个性。 展开更多
关键词 cmS Mambo 网站内容管理 模版 模块
在线阅读 下载PDF
基于CMS的高校学院网站建设 被引量:11
8
作者 黄海艇 胡俊溟 《电脑学习》 2009年第1期30-31,共2页
采用内容管理系统CMS可对网站的模板结构、模板布局文件、模块支持以及文章栏目发布进行控制。
关键词 cmS 网站内容管理 模板 模块
在线阅读 下载PDF
基于多任务学习的跳频调制方式识别与信噪比估计方法
9
作者 汪有鹏 王昊 曹建银 《现代电子技术》 北大核心 2026年第1期66-72,共7页
针对目前在跳频信号识别的多任务学习中存在跷跷板现象和使用IQ信号训练出的模型泛化能力较差的问题,文中提出一种改进的方法,采用CGC的多任务网络框架结合大卷积核与结构重参数化技术,以提高跳频信号调制识别和信噪比估计的准确性。该... 针对目前在跳频信号识别的多任务学习中存在跷跷板现象和使用IQ信号训练出的模型泛化能力较差的问题,文中提出一种改进的方法,采用CGC的多任务网络框架结合大卷积核与结构重参数化技术,以提高跳频信号调制识别和信噪比估计的准确性。该多任务网络架构采用硬参数共享,将网络通道划分为专家通道和共享通道,并引入了包含大卷积核结构重参数化与残差结构的MobileBlock层。与多任务学习中常用的MMOE结构模型相比,跳频信号调制识别的分类准确率更高,信噪比估计的均方误差更小。实验结果证明了该方法在现代军事通信对抗中的应用潜力,为跳频信号识别和参数估计提供了一个较好的解决方案。 展开更多
关键词 跳频信号 调制识别 信噪比估计 多任务学习 大核卷积 结构重参数化
在线阅读 下载PDF
一种实现高性能TCM的卷积编码器结构 被引量:4
10
作者 金子建 朱雪龙 陆大(纟金) 《电子学报》 EI CAS CSCD 北大核心 1992年第7期51-58,共8页
本文提出了一种用于网格编码调制(TCM)技术的卷积编码器结构,并在三种不同的信号分配约束条件下对具有最大自由欧几里德距离的TCM码进行了搜索,结果表明:当状态数目较少时,Ungerboeck建议的规则是获得好码的前提条件,当状态增多时,可能... 本文提出了一种用于网格编码调制(TCM)技术的卷积编码器结构,并在三种不同的信号分配约束条件下对具有最大自由欧几里德距离的TCM码进行了搜索,结果表明:当状态数目较少时,Ungerboeck建议的规则是获得好码的前提条件,当状态增多时,可能存在有其它的信号分配形式达到最好的性能。 展开更多
关键词 网格编码调制 卷积编码器
在线阅读 下载PDF
Turbo码与TCM编码调制技术研究 被引量:3
11
作者 王嘉梅 王秀玲 +1 位作者 戴懿 郑志航 《计算机与网络》 2000年第8期24-25,共2页
本文研究了Turbo码与网格编码调制(Trellis Coded Modulation,TCM)相结合的编码调制技术,给出了Turbo码与TCM相结合的调制方案,对Turbo码与TCM调制方案进行了计算机仿真,仿真结果表明,其性能要优于传统的采用卷积码的TCM调制。
关键词 卷积码 网格编码调制 TURBO码
全文增补中
GCM^(+)-LANet:遥感图像语义分割的全局卷积模块与局部注意力网络模型 被引量:1
12
作者 翁梦倩 胡蕾 +2 位作者 张永梅 凌杰 李云洪 《遥感技术与应用》 CSCD 北大核心 2022年第4期820-828,共9页
遥感图像地物种类丰富、尺寸多变、分布不均衡、背景复杂,导致经典图像语义分割网络难以在遥感图像上取得理想分割效果。局部注意力网络模型(LANet)在遥感图像语义分割上取得了较好的实验效果,但大尺寸、小尺寸和细长的地物目标分割效... 遥感图像地物种类丰富、尺寸多变、分布不均衡、背景复杂,导致经典图像语义分割网络难以在遥感图像上取得理想分割效果。局部注意力网络模型(LANet)在遥感图像语义分割上取得了较好的实验效果,但大尺寸、小尺寸和细长的地物目标分割效果不佳。提出了一种改进LANet网络的高分辨率遥感图像语义分割网络模型,首先,针对全局特征提取设计了全局卷积模块(GCM^(+)),以组合卷积的形式扩大感受野,提升大尺寸地物目标的分割性能;其次,利用针对计算机视觉提出的激活函数Funnel ReLU(FReLU)来解决细小目标漏分的问题。实验结果表明:该网络模型在Potsdam数据集上平均交并比达到了75.83%,像素准确率达到了94.95%,比基础网络LANet有较大提升。 展开更多
关键词 遥感图像 语义分割 全局卷积模块 局部注意力网络模型 激活函数
原文传递
淋巴结≥2 cm的晚期宫颈癌患者后程缩野加量调强放疗的疗效观察 被引量:3
13
作者 刘雅雯 章玲玲 +1 位作者 李凌 涂海燕 《实用癌症杂志》 2021年第4期668-671,共4页
目的比较淋巴结直径≥2 cm的局部晚期宫颈癌患者接受调强放疗(IMRT)时选择后程缩野加量或同步加量照射的疗效及不良反应。方法入组153例经病理确诊为宫颈癌,伴盆腔和(或)腹主动脉旁淋巴结转移且直径≥2 cm的患者,调强放疗(IMRT)时随机... 目的比较淋巴结直径≥2 cm的局部晚期宫颈癌患者接受调强放疗(IMRT)时选择后程缩野加量或同步加量照射的疗效及不良反应。方法入组153例经病理确诊为宫颈癌,伴盆腔和(或)腹主动脉旁淋巴结转移且直径≥2 cm的患者,调强放疗(IMRT)时随机接受后程缩野加量(n=76)及同步加量(n=77)照射。后程缩野加量组:计划靶体积(PTV):45 Gy/25 F/1.8 Gy,完成治疗后行第2次CT定位扫描,仅勾画可见肿瘤靶体积(GTV)即转移淋巴结:14.4 Gy/8 F/1.8 Gy。同步加量组:PTV:45 Gy/25 F/1.8 Gy,GTV:同步加量至60 Gy/25 F/2.4 Gy。结果后程缩野加量组与同步加量组相较,两组近期有效率为82.9%vs.87%;远期有效率分别为77.6%vs.81.8%(P>0.05);复发率为15.8%vs.13%(P>0.05)。两组均未出现Ⅲ~Ⅳ级的近期及远期放射性反应。其中,两组患者Ⅰ~Ⅱ级的近期放射性反应主要为放射性皮炎(1.3%vs.3.9%;P<0.05)、放射性肠炎(3.9%vs.15.6%;P<0.05)、放射性胃炎(1.3%vs.5.2%;P<0.05)、放射性膀胱炎(6.5%vs.1.3%;P<0.05)。Ⅰ~Ⅱ级的远期放射性反应主要为放射性肠炎(7.8%vs.1.3%;P<0.05)、放射性膀胱炎(3.9%vs.1.3%;P<0.05)。结论对于淋巴结≥2 cm的局部晚期宫颈癌患者,后程缩野加量放疗疗效并不劣于同步加量放疗,但不良反应的发生率却明显低于后者。因此后程缩野加量放疗或可成为该部分患者的临床选择。 展开更多
关键词 宫颈癌 淋巴结≥2 cm 后程缩野放疗 同步加量
暂未订购
ANC: Attention Network for COVID-19 Explainable Diagnosis Based on Convolutional Block Attention Module 被引量:10
14
作者 Yudong Zhang Xin Zhang Weiguo Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第6期1037-1058,共22页
Aim: To diagnose COVID-19 more efficiently and more correctly, this study proposed a novel attention network forCOVID-19 (ANC). Methods: Two datasets were used in this study. An 18-way data augmentation was proposed t... Aim: To diagnose COVID-19 more efficiently and more correctly, this study proposed a novel attention network forCOVID-19 (ANC). Methods: Two datasets were used in this study. An 18-way data augmentation was proposed toavoid overfitting. Then, convolutional block attention module (CBAM) was integrated to our model, the structureof which is fine-tuned. Finally, Grad-CAM was used to provide an explainable diagnosis. Results: The accuracyof our ANC methods on two datasets are 96.32% ± 1.06%, and 96.00% ± 1.03%, respectively. Conclusions: Thisproposed ANC method is superior to 9 state-of-the-art approaches. 展开更多
关键词 Deep learning convolutional block attention module attention mechanism COVID-19 explainable diagnosis
在线阅读 下载PDF
基于Moodle平台的教师CMS的研究 被引量:2
15
作者 黄和飞 赵榆琴 《电脑知识与技术》 2009年第5X期3962-3963,共2页
通过对Moodle的功能、特点及CMS系统要素的全面分析,探讨了Moodle环境下设计开发CMS的系统结构及实现过程,为教师使用Moodle快速搭建个性化的CMS提供理论和实践参考。
关键词 MOODLE 课程管理系统(cmS) B/S结构 模块 学习活动
在线阅读 下载PDF
Incremental Learning of Radio Modulation Classification Based on Sample Recall 被引量:2
16
作者 Yan Zhao Shichuan Chen +4 位作者 Tao Chen Weiguo Shen Shilian Zheng Zhijin Zhao Xiaoniu Yang 《China Communications》 SCIE CSCD 2023年第7期258-272,共15页
Radio modulation classification has always been an important technology in the field of communications.The difficulty of incremental learning in radio modulation classification is that learning new tasks will lead to ... Radio modulation classification has always been an important technology in the field of communications.The difficulty of incremental learning in radio modulation classification is that learning new tasks will lead to catastrophic forgetting of old tasks.In this paper,we propose a sample memory and recall framework for incremental learning of radio modulation classification.For data with different signal-to-noise ratios,we use a partial memory strategy by selecting appropriate samples for memorizing.We compare the performance of our proposed method with three baselines through a large number of simulation experiments.Results show that our method achieves far higher classification accuracy than finetuning method and feature extraction method.Furthermore,it performs closely to joint training method which uses all old data in terms of classification accuracy which validates the effectiveness of our method against catastrophic forgetting. 展开更多
关键词 radio modulation classification incremen-tal learning deep learning convolutional neural net-work.
在线阅读 下载PDF
MobileNet network optimization based on convolutional block attention module 被引量:3
17
作者 ZHAO Shuxu MEN Shiyao YUAN Lin 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第2期225-234,共10页
Deep learning technology is widely used in computer vision.Generally,a large amount of data is used to train the model weights in deep learning,so as to obtain a model with higher accuracy.However,massive data and com... Deep learning technology is widely used in computer vision.Generally,a large amount of data is used to train the model weights in deep learning,so as to obtain a model with higher accuracy.However,massive data and complex model structures require more calculating resources.Since people generally can only carry and use mobile and portable devices in application scenarios,neural networks have limitations in terms of calculating resources,size and power consumption.Therefore,the efficient lightweight model MobileNet is used as the basic network in this study for optimization.First,the accuracy of the MobileNet model is improved by adding methods such as the convolutional block attention module(CBAM)and expansion convolution.Then,the MobileNet model is compressed by using pruning and weight quantization algorithms based on weight size.Afterwards,methods such as Python crawlers and data augmentation are employed to create a garbage classification data set.Based on the above model optimization strategy,the garbage classification mobile terminal application is deployed on mobile phones and raspberry pies,realizing completing the garbage classification task more conveniently. 展开更多
关键词 MobileNet convolutional block attention module(CBAM) model pruning and quantization edge machine learning
在线阅读 下载PDF
Traffic Sign Recognition for Autonomous Vehicle Using Optimized YOLOv7 and Convolutional Block Attention Module 被引量:2
18
作者 P.Kuppusamy M.Sanjay +1 位作者 P.V.Deepashree C.Iwendi 《Computers, Materials & Continua》 SCIE EI 2023年第10期445-466,共22页
The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine ... The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine Learning(ML)have been used in road infrastructure and construction,particularly with the Internet of Things(IoT)devices.Object detection in Computer Vision also plays a key role in improving road infrastructure and addressing trafficrelated problems.This study aims to use You Only Look Once version 7(YOLOv7),Convolutional Block Attention Module(CBAM),the most optimized object-detection algorithm,to detect and identify traffic signs,and analyze effective combinations of adaptive optimizers like Adaptive Moment estimation(Adam),Root Mean Squared Propagation(RMSprop)and Stochastic Gradient Descent(SGD)with the YOLOv7.Using a portion of German traffic signs for training,the study investigates the feasibility of adopting smaller datasets while maintaining high accuracy.The model proposed in this study not only improves traffic safety by detecting traffic signs but also has the potential to contribute to the rapid development of autonomous vehicle systems.The study results showed an impressive accuracy of 99.7%when using a batch size of 8 and the Adam optimizer.This high level of accuracy demonstrates the effectiveness of the proposed model for the image classification task of traffic sign recognition. 展开更多
关键词 Object detection traffic sign detection YOLOv7 convolutional block attention module road sign detection ADAM
在线阅读 下载PDF
多芯片组件(MCM)互连瞬态响应研究的新方法
19
作者 白建军 林争辉 《上海交通大学学报》 EI CAS CSCD 北大核心 2000年第7期892-895,共4页
提出了一种新的多导体传输线的通用 T型单元 ( General T-cell,GTC)模型 ,并在此模型的基础上提出一种新方法来研究 MCM互连线的瞬态响应 .将非均匀、耦合、有耗多导体传输线分段 ,每段由一频域的 GTC模拟 ,根据 GTC的 ABCD矩阵得出多... 提出了一种新的多导体传输线的通用 T型单元 ( General T-cell,GTC)模型 ,并在此模型的基础上提出一种新方法来研究 MCM互连线的瞬态响应 .将非均匀、耦合、有耗多导体传输线分段 ,每段由一频域的 GTC模拟 ,根据 GTC的 ABCD矩阵得出多导体的 ABCD矩阵 ,接着将其麦克劳林展开式嵌入网络的修改节点方程并求得电路的频域冲击响应 ,利用指数衰减多项式 ( EDPF)求得时域冲击响应 .最后利用递归卷积法求得任意激励下的电路响应 .本算法的效率与传统的渐进波形评估法 ( AWE)相同 ,但对于稳定系统其结果可以保证稳定 . 展开更多
关键词 多芯片组件 通用T型单元 互连线 瞬态响应
在线阅读 下载PDF
西门子CM PtP模块Modbus RTU主站通信程序设计 被引量:3
20
作者 薛春阳 尤丽静 +1 位作者 陈炳秋 冀卫杰 《自动化与仪表》 2022年第7期99-102,108,共5页
西门子ET200SP(远程分布式I/O)CM PtP(串口通信模块)在工业控制及自动化领域中应用广泛,负责与现场串行通信设备进行数据交互。其常规的编程方式是利用西门子自带的基础通信指令,此种方法使用难度大,程序编写繁杂,指令功能单一,且不易... 西门子ET200SP(远程分布式I/O)CM PtP(串口通信模块)在工业控制及自动化领域中应用广泛,负责与现场串行通信设备进行数据交互。其常规的编程方式是利用西门子自带的基础通信指令,此种方法使用难度大,程序编写繁杂,指令功能单一,且不易于调试和维护。在研究了CM PtP模块和基础通信指令的特点后,利用西门子编程软件STEP7开发编写了一种基于RS485接口的Modbus RTU主站通信程序。经过实际应用与验证,程序运行稳定可靠,实现了控制器作为主站时采用Modbus RTU通信协议的一对一和一对多的串行通信,该程序降低了使用难度,简化了程序编写,丰富了程序功能,且易于调试和维护,具有很大的应用价值,值得推广。 展开更多
关键词 cm PtP模块 Modbus RTU主站通信 可编程逻辑控制器 通用程序 结构化文本
在线阅读 下载PDF
上一页 1 2 62 下一页 到第
使用帮助 返回顶部