期刊文献+
共找到378篇文章
< 1 2 19 >
每页显示 20 50 100
Reconstruction of pile-up events using a one-dimensional convolutional autoencoder for the NEDA detector array
1
作者 J.M.Deltoro G.Jaworski +15 位作者 A.Goasduff V.González A.Gadea M.Palacz J.J.Valiente-Dobón J.Nyberg S.Casans A.E.Navarro-Antón E.Sanchis G.de Angelis A.Boujrad S.Coudert T.Dupasquier S.Ertürk O.Stezowski R.Wadsworth 《Nuclear Science and Techniques》 2025年第2期62-70,共9页
Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have ... Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have been used for pile-up rejection,both digital and analogue,but some pile-up events may contain pulses of interest and need to be reconstructed.The paper proposes a new method for reconstructing pile-up events acquired with a neutron detector array(NEDA)using an one-dimensional convolutional autoencoder(1D-CAE).The datasets for training and testing the 1D-CAE are created from data acquired from the NEDA.The new pile-up signal reconstruction method is evaluated from the point of view of how similar the reconstructed signals are to the original ones.Furthermore,it is analysed considering the result of the neutron-gamma discrimination based on charge comparison,comparing the result obtained from original and reconstructed signals. 展开更多
关键词 1D-cae autoencoder cae convolutional neural network(CNN) Neutron detector Neutron-gamma discrimination(NGD) Machine learning Pulse shape discrimination Pile-up pulse
在线阅读 下载PDF
Adapting Convolutional Autoencoder for DDoS Attack Detection via Joint Reconstruction Learning and Refined Anomaly Scoring
2
作者 Seulki Han Sangho Son +1 位作者 Won Sakong Haemin Jung 《Computers, Materials & Continua》 2025年第11期2893-2912,共20页
As cyber threats become increasingly sophisticated,Distributed Denial-of-Service(DDoS)attacks continue to pose a serious threat to network infrastructure,often disrupting critical services through overwhelming traffic... As cyber threats become increasingly sophisticated,Distributed Denial-of-Service(DDoS)attacks continue to pose a serious threat to network infrastructure,often disrupting critical services through overwhelming traffic.Although unsupervised anomaly detection using convolutional autoencoders(CAEs)has gained attention for its ability to model normal network behavior without requiring labeled data,conventional CAEs struggle to effectively distinguish between normal and attack traffic due to over-generalized reconstructions and naive anomaly scoring.To address these limitations,we propose CA-CAE,a novel anomaly detection framework designed to improve DDoS detection through asymmetric joint reconstruction learning and refined anomaly scoring.Our architecture connects two CAEs sequentially with asymmetric filter allocation,which amplifies reconstruction errors for anomalous data while preserving low errors for normal traffic.Additionally,we introduce a scoring mechanism that incorporates exponential decay weighting to emphasize recent anomalies and relative traffic volume adjustment to highlight highrisk instances,enabling more accurate and timely detection.We evaluate CA-CAE on a real-world network traffic dataset collected using Cisco NetFlow,containing over 190,000 normal instances and only 78 anomalous instances—an extremely imbalanced scenario(0.0004% anomalies).We validate the proposed framework through extensive experiments,including statistical tests and comparisons with baseline models.Despite this challenge,our method achieves significant improvement,increasing the F1-score from 0.515 obtained by the baseline CAE to 0.934,and outperforming other models.These results demonstrate the effectiveness,scalability,and practicality of CA-CAE for unsupervised DDoS detection in realistic network environments.By combining lightweight model architecture with a domain-aware scoring strategy,our framework provides a robust solution for early detection of DDoS attacks without relying on labeled attack data. 展开更多
关键词 Anomaly detection DDoS attack detection convolutional autoencoder
在线阅读 下载PDF
Bridge damage identification based on convolutional autoencoders and extreme gradient boosting trees 被引量:5
3
作者 Duan Yuanfeng Duan Zhengteng +1 位作者 Zhang Hongmei Cheng J.J.Roger 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期221-229,共9页
To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the accele... To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios. 展开更多
关键词 structural health monitoring damage identification convolutional autoencoder(cae) extreme gradient boosting tree(XGBoost) machine learning
在线阅读 下载PDF
Aircraft engine fault detection based on grouped convolutional denoising autoencoders 被引量:9
4
作者 Xuyun FU Hui LUO +1 位作者 Shisheng ZHONG Lin LIN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第2期296-307,共12页
Many existing aircraft engine fault detection methods are highly dependent on performance deviation data that are provided by the original equipment manufacturer. To improve the independent engine fault detection abil... Many existing aircraft engine fault detection methods are highly dependent on performance deviation data that are provided by the original equipment manufacturer. To improve the independent engine fault detection ability, Aircraft Communications Addressing and Reporting System(ACARS) data can be used. However, owing to the characteristics of high dimension, complex correlations between parameters, and large noise content, it is difficult for existing methods to detect faults effectively by using ACARS data. To solve this problem, a novel engine fault detection method based on original ACARS data is proposed. First, inspired by computer vision methods, all variables were divided into separated groups according to their correlations. Then, an improved convolutional denoising autoencoder was used to extract the features of each group. Finally, all of the extracted features were fused to form feature vectors. Thereby, fault samples could be identified based on these feature vectors. Experiments were conducted to validate the effectiveness and efficiency of our method and other competing methods by considering real ACARS data as the data source. The results reveal the good performance of our method with regard to comprehensive fault detection and robustness. Additionally, the computational and time costs of our method are shown to be relatively low. 展开更多
关键词 Aircraft engines ANOMALY DETECTION convolutional NEURAL Network(CNN) DENOISING autoencoder Engine health management FAULT DETECTION
原文传递
Automatic Detection of COVID-19 Using a Stacked Denoising Convolutional Autoencoder
5
作者 Habib Dhahri Besma Rabhi +3 位作者 Slaheddine Chelbi Omar Almutiry Awais Mahmood Adel M.Alimi 《Computers, Materials & Continua》 SCIE EI 2021年第12期3259-3274,共16页
The exponential increase in new coronavirus disease 2019(COVID-19)cases and deaths has made COVID-19 the leading cause of death in many countries.Thus,in this study,we propose an efficient technique for the automatic ... The exponential increase in new coronavirus disease 2019(COVID-19)cases and deaths has made COVID-19 the leading cause of death in many countries.Thus,in this study,we propose an efficient technique for the automatic detection of COVID-19 and pneumonia based on X-ray images.A stacked denoising convolutional autoencoder(SDCA)model was proposed to classify X-ray images into three classes:normal,pneumonia,and COVID-19.The SDCA model was used to obtain a good representation of the input data and extract the relevant features from noisy images.The proposed model’s architecture mainly composed of eight autoencoders,which were fed to two dense layers and SoftMax classifiers.The proposed model was evaluated with 6356 images from the datasets from different sources.The experiments and evaluation of the proposed model were applied to an 80/20 training/validation split and for five cross-validation data splitting,respectively.The metrics used for the SDCA model were the classification accuracy,precision,sensitivity,and specificity for both schemes.Our results demonstrated the superiority of the proposed model in classifying X-ray images with high accuracy of 96.8%.Therefore,this model can help physicians accelerate COVID-19 diagnosis. 展开更多
关键词 Stacked autoencoder augmentation multiclassification COVID-19 convolutional neural network
在线阅读 下载PDF
A Convolutional Autoencoder Based Fault Detection Method for Metro Railway Turnout
6
作者 Chen Chen Xingqiu Li +2 位作者 Kai Huang Zhongwei Xu Meng Mei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期471-485,共15页
Railway turnout is one of the critical equipment of Switch&Crossing(S&C)Systems in railway,related to the train’s safety and operation efficiency.With the advancement of intelligent sensors,data-driven fault ... Railway turnout is one of the critical equipment of Switch&Crossing(S&C)Systems in railway,related to the train’s safety and operation efficiency.With the advancement of intelligent sensors,data-driven fault detection technology for railway turnout has become an important research topic.However,little research in the literature has investigated the capability of data-driven fault detection technology for metro railway turnout.This paper presents a convolutional autoencoder-based fault detection method for the metro railway turnout considering human field inspection scenarios.First,the one-dimensional original time-series signal is converted into a twodimensional image by data pre-processing and 2D representation.Next,a binary classification model based on the convolutional autoencoder is developed to implement fault detection.The profile and structure information can be captured by processing data as images.The performance of our method is evaluated and tested on real-world operational current data in themetro stations.Experimental results show that the proposedmethod achieves better performance,especially in terms of error rate and specificity,and is robust in practical engineering applications. 展开更多
关键词 convolutional autoencoder fault detection metro railway turnout
在线阅读 下载PDF
Robust Deep 3D Convolutional Autoencoder for Hyperspectral Unmixing with Hypergraph Learning
7
作者 Peiyuan Jia Miao Zhang Yi Shen 《Journal of Harbin Institute of Technology(New Series)》 CAS 2021年第5期1-8,共8页
Hyperspectral unmixing aims to acquire pure spectra of distinct substances(endmembers)and fractional abundances from highly mixed pixels.In this paper,a deep unmixing network framework is designed to deal with the noi... Hyperspectral unmixing aims to acquire pure spectra of distinct substances(endmembers)and fractional abundances from highly mixed pixels.In this paper,a deep unmixing network framework is designed to deal with the noise disturbance.It contains two parts:a three⁃dimensional convolutional autoencoder(denoising 3D CAE)which recovers data from noised input,and a restrictive non⁃negative sparse autoencoder(NNSAE)which incorporates a hypergraph regularizer as well as a l2,1⁃norm sparsity constraint to improve the unmixing performance.The deep denoising 3D CAE network was constructed for noisy data retrieval,and had strong capacity of extracting the principle and robust local features in spatial and spectral domains efficiently by training with corrupted data.Furthermore,a part⁃based nonnegative sparse autoencoder with l2,1⁃norm penalty was concatenated,and a hypergraph regularizer was designed elaborately to represent similarity of neighboring pixels in spatial dimensions.Comparative experiments were conducted on synthetic and real⁃world data,which both demonstrate the effectiveness and robustness of the proposed network. 展开更多
关键词 deep learning unsupervised unmixing convolutional autoencoder HYPERGRAPH hyperspectral data
在线阅读 下载PDF
Deep convolutional adversarial graph autoencoder using positive pointwise mutual information for graph embedding
8
作者 MA Xiuhui WANG Rong +3 位作者 CHEN Shudong DU Rong ZHU Danyang ZHAO Hua 《High Technology Letters》 EI CAS 2022年第1期98-106,共9页
Graph embedding aims to map the high-dimensional nodes to a low-dimensional space and learns the graph relationship from its latent representations.Most existing graph embedding methods focus on the topological struct... Graph embedding aims to map the high-dimensional nodes to a low-dimensional space and learns the graph relationship from its latent representations.Most existing graph embedding methods focus on the topological structure of graph data,but ignore the semantic information of graph data,which results in the unsatisfied performance in practical applications.To overcome the problem,this paper proposes a novel deep convolutional adversarial graph autoencoder(GAE)model.To embed the semantic information between nodes in the graph data,the random walk strategy is first used to construct the positive pointwise mutual information(PPMI)matrix,then,graph convolutional net-work(GCN)is employed to encode the PPMI matrix and node content into the latent representation.Finally,the learned latent representation is used to reconstruct the topological structure of the graph data by decoder.Furthermore,the deep convolutional adversarial training algorithm is introduced to make the learned latent representation conform to the prior distribution better.The state-of-the-art experimental results on the graph data validate the effectiveness of the proposed model in the link prediction,node clustering and graph visualization tasks for three standard datasets,Cora,Citeseer and Pubmed. 展开更多
关键词 graph autoencoder(GAE) positive pointwise mutual information(PPMI) deep convolutional generative adversarial network(DCGAN) graph convolutional network(GCN) se-mantic information
在线阅读 下载PDF
锂离子电池健康状态的DCAE-Transformer预测方法研究 被引量:2
9
作者 李浩平 于波涛 +3 位作者 孟荣华 金朱鸿 杜昕毅 李景瑞 《三峡大学学报(自然科学版)》 CAS 北大核心 2025年第1期106-112,共7页
提出了一种基于Transformer的DCAE-Transformer模型,旨在改善健康状态(SOH)估计的准确性.该方法通过Pearson相关系数筛选关键特征,利用去噪自编码器(DAE)和卷积神经网络(CNN)相结合进行数据预处理和特征提取,再将数据输入Transformer框... 提出了一种基于Transformer的DCAE-Transformer模型,旨在改善健康状态(SOH)估计的准确性.该方法通过Pearson相关系数筛选关键特征,利用去噪自编码器(DAE)和卷积神经网络(CNN)相结合进行数据预处理和特征提取,再将数据输入Transformer框架完成预测.使用NASA和CALCE提供的数据集进行验证,DCAE-Transformer模型在NASA电池样本上的误差指标(EMA、EMAP和ERMS)均低于1%,R2值超过99.5%;在CALCE样本上,误差指标低于5%,R2值超过98%.结果表明,该模型在锂电池SOH估计方面具有较高的精确性和泛化性. 展开更多
关键词 锂电池 健康状态估计 卷积去噪自编码器 TRANSFORMER 预测性能
在线阅读 下载PDF
基于CAE和改进式VGGNet的心电身份识别算法
10
作者 严洁 张烨菲 张显飞 《计算机工程》 北大核心 2025年第1期295-303,共9页
随着物联网技术和人工智能技术的不断发展,生物识别技术面临着信息泄露的风险。心电图(ECG)信号因其活体识别的高防伪性在生物识别领域具有一定的优势。针对传统ECG识别算法不能适应多变的采集环境、识别稳定性不高以及基于深度神经网络... 随着物联网技术和人工智能技术的不断发展,生物识别技术面临着信息泄露的风险。心电图(ECG)信号因其活体识别的高防伪性在生物识别领域具有一定的优势。针对传统ECG识别算法不能适应多变的采集环境、识别稳定性不高以及基于深度神经网络的ECG识别算法模型参数量较大与难以实现快速响应等问题,提出一种基于卷积自动编码器(CAE)和改进式VGGNet的ECG身份识别算法。首先设计了结合小波阈值去噪和单心拍分割的预处理方法,得到干净的单周期ECG信号作为模型输入。其次构建了基于CAE的信号模态特征提取与降维处理模块,学习得到输入数据更小维度的潜在表示。最后基于VGGNet优化模型设计,进一步深入学习特征表示,得到个体识别的结果。实验结果表明,该算法在MIT-BIH Arrhythmia Database、European ST-T Database和ECG-ID等数据库的189位测试者中实现了96%以上的识别精度,其中European ST-T Database的识别精度高达99.82%,可实现准确率较高、泛化能力较强的个体身份识别。 展开更多
关键词 心电图 ECG识别 卷积自动编码器 残差网络 信号预处理
在线阅读 下载PDF
基于VMD-CAE的无监督结构损伤识别研究
11
作者 王梦倩 康帅 +1 位作者 李传飞 董正方 《振动与冲击》 北大核心 2025年第11期309-320,共12页
为了进一步扩展深度学习方法在基于振动信号的结构损伤识别中的应用,提出了一种基于变分模态分解(variational mode decomposition,VMD)和卷积自编码(convolutional auto-encoder,CAE)相结合的无监督结构损伤识别方法。首先,利用VMD对... 为了进一步扩展深度学习方法在基于振动信号的结构损伤识别中的应用,提出了一种基于变分模态分解(variational mode decomposition,VMD)和卷积自编码(convolutional auto-encoder,CAE)相结合的无监督结构损伤识别方法。首先,利用VMD对振动信号进行分解,去除噪声和一些无关成分的影响,选取与结构自振特性相关的成分作为有效分量;然后通过叠加有效分量作为CAE模型的输入,进而重构信号,通过学习健康样本数据的特征,得到最大重构误差作为判断结构是否损坏的阈值。最后将该方法应用到IASC-ASCE SHM Benchmark结构试验数据和卡塔尔大学看台试验数据,并将结果与其他模型进行了对比,结果表明该方法在两个数据集上的识别结果都更加准确。即使当样本中含有噪声时,也能显著提高噪声样本的识别精度,具有较强的抗噪能力。 展开更多
关键词 深度学习 结构损伤识别 无监督 变分模态分解(VMD) 卷积自编码(cae)
在线阅读 下载PDF
一种基于CAE-GAN的RV减速器降噪方法
12
作者 范啸宇 刘韬 +3 位作者 王振亚 陈朝阳 王亚南 王贵勇 《噪声与振动控制》 北大核心 2025年第5期84-91,共8页
针对在RV减速器往复运动过程中所采集的振动信号干扰大,传统滤波方法过分依赖专家经验以及参数选择困难等问题,提出一种基于卷积自编码的生成对抗网络(Convolutional Auto-encoder GAN,CAE-GAN),应用于RV减速器振动信号降噪。首先,针对... 针对在RV减速器往复运动过程中所采集的振动信号干扰大,传统滤波方法过分依赖专家经验以及参数选择困难等问题,提出一种基于卷积自编码的生成对抗网络(Convolutional Auto-encoder GAN,CAE-GAN),应用于RV减速器振动信号降噪。首先,针对生成对抗网络(Generative Adversarial Networks,GAN)训练时收敛困难的问题,通过引入距离函数改进生成器的损失函数,提高模型的稳定性。其次,引入跳跃连接改进生成器的网络结构,在增强模型收敛能力的同时,进一步提升模型的降噪性能。最后,使用RV减速器振动数据对所提方法进行验证。实验结果表明:所提方法具有更好的降噪性能且能够提高故障诊断准确率。 展开更多
关键词 振动与波 RV减速器 cae-GAN 卷积神经网络 降噪
在线阅读 下载PDF
Plant Disease Detection and Classification Using Hybrid Model Based on Convolutional Auto Encoder and Convolutional Neural Network
13
作者 Tajinder Kumar Sarbjit Kaur +4 位作者 Purushottam Sharma Ankita Chhikara Xiaochun Cheng Sachin Lalar Vikram Verma 《Computers, Materials & Continua》 2025年第6期5219-5234,共16页
During its growth stage,the plant is exposed to various diseases.Detection and early detection of crop diseases is amajor challenge in the horticulture industry.Crop infections can harmtotal crop yield and reduce farm... During its growth stage,the plant is exposed to various diseases.Detection and early detection of crop diseases is amajor challenge in the horticulture industry.Crop infections can harmtotal crop yield and reduce farmers’income if not identified early.Today’s approved method involves a professional plant pathologist to diagnose the disease by visual inspection of the afflicted plant leaves.This is an excellent use case for Community Assessment and Treatment Services(CATS)due to the lengthy manual disease diagnosis process and the accuracy of identification is directly proportional to the skills of pathologists.An alternative to conventional Machine Learning(ML)methods,which require manual identification of parameters for exact results,is to develop a prototype that can be classified without pre-processing.To automatically diagnose tomato leaf disease,this research proposes a hybrid model using the Convolutional Auto-Encoders(CAE)network and the CNN-based deep learning architecture of DenseNet.To date,none of the modern systems described in this paper have a combined model based on DenseNet,CAE,and ConvolutionalNeuralNetwork(CNN)todiagnose the ailments of tomato leaves automatically.Themodelswere trained on a dataset obtained from the Plant Village repository.The dataset consisted of 9920 tomato leaves,and the model-tomodel accuracy ratio was 98.35%.Unlike other approaches discussed in this paper,this hybrid strategy requires fewer training components.Therefore,the training time to classify plant diseases with the trained algorithm,as well as the training time to automatically detect the ailments of tomato leaves,is significantly reduced. 展开更多
关键词 Tomato leaf disease deep learning DenseNet-121 convolutional autoencoder convolutional neural network
在线阅读 下载PDF
基于频域TCAE-Informer的滚动轴承剩余使用寿命预测方法
14
作者 闫昊 李思雨 +3 位作者 展先彪 董恩志 温亮 贾希胜 《兵工学报》 北大核心 2025年第S1期408-418,共11页
滚动轴承是大量旋转机械中的关键部件,其剩余使用寿命(Remaining Useful Life,RUL)预测问题关系到设备能否安全稳定运行。为解决目前RUL预测精度低的问题,提出一种在频域上结合时间卷积自编码器(Temporal Convolutional Autoencoder,TC... 滚动轴承是大量旋转机械中的关键部件,其剩余使用寿命(Remaining Useful Life,RUL)预测问题关系到设备能否安全稳定运行。为解决目前RUL预测精度低的问题,提出一种在频域上结合时间卷积自编码器(Temporal Convolutional Autoencoder,TCAE)和Informer网络的滚动轴承RUL预测方法(TCAE-Informer)。所提方法设计了一种TCAE,面向滚动轴承不同时间样本的频域信号,自适应地挖掘更能反映滚动轴承全寿命退化周期的深度特征;搭建起一个Informer网络模型,借助其在长序列信息上的学习优势,有效拟合出深度特征与滚动轴承RUL的映射关系,进而实现滚动轴承RUL预测功能。使用XJTU-SY轴承数据集的对比验证,对照3种RUL预测结果评价指标,所提方法在不同的工况条件下,相比现有的多种方法均能够实现较为准确的RUL预测效果,证明了所提方法具有优越的RUL预测能力和泛化能力。针对不同方法进行了抗干扰测试,所提方法在不同噪声条件下均展现出了更优的RUL预测效果,证明了所提方法具有良好的RUL预测抗干扰能力。 展开更多
关键词 滚动轴承 剩余使用寿命预测 时间卷积自编码器 Informer网络 深度特征提取
在线阅读 下载PDF
基于FCNN和ICAE的SAR图像目标识别方法 被引量:10
15
作者 喻玲娟 王亚东 +2 位作者 谢晓春 林赟 洪文 《雷达学报(中英文)》 CSCD 北大核心 2018年第5期622-631,共10页
近年来,基于卷积神经网络(Convolutional Neural Network, CNN)的合成孔径雷达(Synthetic Aperture Radar, SAR)图像目标识别得到深入研究。全卷积神经网络(Fully Convolutional Neural Network, FCNN)是CNN结构上的改进,它比CNN能获得... 近年来,基于卷积神经网络(Convolutional Neural Network, CNN)的合成孔径雷达(Synthetic Aperture Radar, SAR)图像目标识别得到深入研究。全卷积神经网络(Fully Convolutional Neural Network, FCNN)是CNN结构上的改进,它比CNN能获得更高的识别率,但在训练过程中仍需要大量的带标签训练样本。该文提出一种基于FCNN和改进的卷积自编码器(Improved Convolutional Auto-Encoder, ICAE)的SAR图像目标识别方法,即先用ICAE无监督训练方式获得的编码器网络参数初始化FCNN的部分参数,后用带标签训练样本对FCNN进行训练。基于MSTAR数据集的十类目标分类实验结果表明,在不扩充带标签训练样本的情况下,该方法不仅能获得98.14%的平均正确识别率,而且具有较强的抗噪声能力。 展开更多
关键词 合成孔径雷达 自动目标识别 全卷积神经网络 卷积自编码器 改进的卷积自编码器
在线阅读 下载PDF
CAEFi:基于卷积自编码器降维的信道状态信息指纹室内定位方法 被引量:5
16
作者 王旭东 刘帅 吴楠 《电子与信息学报》 EI CSCD 北大核心 2022年第8期2757-2766,共10页
针对提高Wi-Fi指纹室内定位技术性能,该文首先提出一种基于卷积神经网络(CNN)的信道状态信息(CSI)指纹室内定位方法。该方法在离线阶段联合CSI幅度差和相位差信息对CNN模型进行训练。在廊厅和实验室两种不同室内定位场景进行了定位实验... 针对提高Wi-Fi指纹室内定位技术性能,该文首先提出一种基于卷积神经网络(CNN)的信道状态信息(CSI)指纹室内定位方法。该方法在离线阶段联合CSI幅度差和相位差信息对CNN模型进行训练。在廊厅和实验室两种不同室内定位场景进行了定位实验,分别获得了25 cm和48 cm的平均定位误差;然后,在此基础上重点针对提高基于CNN的CSI室内定位时效性,引入卷积自编码器(CAE)实现CSI的降维处理,在保证原始定位方法精度的前提下,定位时间提高了40%,同时将内存消耗降低到原算法的1/15,实验结果验证了所提算法的有效性。 展开更多
关键词 室内指纹定位 信道状态信息 卷积神经网络 卷积自编码器
在线阅读 下载PDF
基于Autoencoder-TCN的航空发动机排气温度预测 被引量:3
17
作者 孔晨亦 李学仁 杜军 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2020年第5期55-61,共7页
针对目前航空发动机排气温度预测模型精度不高、传统RNN类神经网络对飞行数据时间维度信息挖掘不充分的问题,提出了一种结合自编码器Autoencoder和时间卷积神经网络TCN的航空发动机排气温度预测模型。首先通过Autoencoder方法从飞行数... 针对目前航空发动机排气温度预测模型精度不高、传统RNN类神经网络对飞行数据时间维度信息挖掘不充分的问题,提出了一种结合自编码器Autoencoder和时间卷积神经网络TCN的航空发动机排气温度预测模型。首先通过Autoencoder方法从飞行数据中提取与排气温度相关的特征,以降维后的特征作为输入,建立TCN网络深度学习模型,以航空发动机排气温度作为输出,充分挖掘飞行数据的时间维度信息,从而提高模型精度。最后选取真实飞行数据进行实验,结果表明,与BP、LSTM神经网络模型相比,该模型的平均绝对百分比误差由13.035%和9.593%降低至3.369%,有效提高了模型预测精度。 展开更多
关键词 航空发动机 排气温度 自编码器 时间卷积神经网络
在线阅读 下载PDF
基于1D-DCGAN和1D-CAE的小样本轴承故障跨域诊断方法 被引量:7
18
作者 林培 许杨剑 +3 位作者 傅军平 陈栋栋 鞠晓喆 梁利华 《机电工程》 CAS 北大核心 2023年第3期326-334,共9页
充足的故障样本是基于深度学习的故障诊断方法取得良好效果的保证。然而,数据不平衡是工业大数据的典型特征。为了减小智能诊断方法对样本数量的依赖,同时为了解决小样本下同种设备以及不同设备间的故障诊断问题,提出了一种基于一维卷... 充足的故障样本是基于深度学习的故障诊断方法取得良好效果的保证。然而,数据不平衡是工业大数据的典型特征。为了减小智能诊断方法对样本数量的依赖,同时为了解决小样本下同种设备以及不同设备间的故障诊断问题,提出了一种基于一维卷积生成对抗网络(1D-DCGAN)与一维卷积自编码器(1D-CAE)的轴承故障诊断方法。首先,利用一维卷积层构建了1D-DCGAN网络,凭借其强大的数据生成能力扩充了故障数据集;然后,利用一维卷积层构建了1D-CAE网络,通过无监督学习的方式,有效地提取出了故障样本中的潜在特征,实现了对设备的故障诊断功能;基于迁移学习思想,通过对1D-CAE模型参数进行迁移,进一步地对小样本下的轴承故障进行了跨域诊断;最后,为验证基于1D-DCGAN和1D-CAE的轴承故障诊断方法的效果,采用了美国凯斯西储大学(CWRU)以及西安交通大学(XJTU)轴承数据集进行了实验。实验结果表明:基于1D-DCGAN和1D-CAE的方法明显优于其他对比模型,同种设备的故障识别精度达到了99.21%,不同设备之间的跨域故障识别精度达到了98.87%。研究结果表明:即使在样本数量较少的场景下,基于1D-DCGAN和1D-CAE的方法也能进行同种设备的故障诊断以及不同设备之间的跨域诊断。 展开更多
关键词 旋转机械故障诊断 一维卷积生成对抗网络 一维卷积自编码器 迁移学习 深度学习 样本数量
在线阅读 下载PDF
Unsupervised Electric Motor Fault Detection by Using Deep Autoencoders 被引量:18
19
作者 Emanuele Principi Damiano Rossetti +1 位作者 Stefano Squartini Francesco Piazza 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第2期441-451,共11页
Fault diagnosis of electric motors is a fundamental task for production line testing, and it is usually performed by experienced human operators. In the recent years, several methods have been proposed in the literatu... Fault diagnosis of electric motors is a fundamental task for production line testing, and it is usually performed by experienced human operators. In the recent years, several methods have been proposed in the literature for detecting faults automatically. Deep neural networks have been successfully employed for this task, but, up to the authors' knowledge, they have never been used in an unsupervised scenario. This paper proposes an unsupervised method for diagnosing faults of electric motors by using a novelty detection approach based on deep autoencoders. In the proposed method, vibration signals are acquired by using accelerometers and processed to extract LogMel coefficients as features. Autoencoders are trained by using normal data only, i.e., data that do not contain faults. Three different autoencoders architectures have been evaluated: the multilayer perceptron(MLP) autoencoder, the convolutional neural network autoencoder, and the recurrent autoencoder composed of long short-term memory(LSTM) units. The experiments have been conducted by using a dataset created by the authors, and the proposed approaches have been compared to the one-class support vector machine(OC-SVM) algorithm. The performance has been evaluated in terms area under curve(AUC) of the receiver operating characteristic curve, and the results showed that all the autoencoder-based approaches outperform the OCSVM algorithm. Moreover, the MLP autoencoder is the most performing architecture, achieving an AUC equal to 99.11 %. 展开更多
关键词 autoencoder convolutional NEURAL NETWORKS electric motor fault DETECTION long SHORT-TERM memory NEURAL NETWORKS NOVELTY DETECTION
在线阅读 下载PDF
基于CAE和AGRU的滚动轴承退化趋势预测 被引量:3
20
作者 焦玲玲 陈捷 刘连华 《振动与冲击》 EI CSCD 北大核心 2023年第12期109-117,共9页
针对旋转机械中滚动轴承退化趋势预测存在健康指标构建依赖先验知识、预测精度低等问题,提出了基于卷积自编码器(convolutional auto-encodes,CAE)和融合注意力机制的门控循环单元(attention gated recurrent unit,AGRU)的滚动轴承退化... 针对旋转机械中滚动轴承退化趋势预测存在健康指标构建依赖先验知识、预测精度低等问题,提出了基于卷积自编码器(convolutional auto-encodes,CAE)和融合注意力机制的门控循环单元(attention gated recurrent unit,AGRU)的滚动轴承退化趋势预测方法。首先,该方法通过快速傅里叶变换(fast Fourier transform,FFT)将滚动轴承时域信号转换为频域信号,卷积自编码器从频域信号中自适应提取特征,编码特征通过评估选择构建健康指标(health indicators,HI),在此基础上,将健康指标输入融入注意力的门控循环单元网络(gate recurrent unit,GRU)模型,剪枝算法对模型参数进行优化,完成了滚动轴承性能退化趋势预测。结果表明,所提的方法能获得更准确的滚动轴承退化趋势预测。 展开更多
关键词 滚动轴承 退化趋势预测 卷积自编码器(cae) 门控循环单元(GRU) 注意力机制
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部