Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bound...Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bounded functions L<sup>∞</sup>(X, μ) on X. We confirm that the commutative von Neumann algebras M⊂B(H), with H=L<sup>2</sup>(X, μ), are unitary equivariant to the maximal ideals of the commutative algebra C(X). Subsequenly, we use the measure groupoid to formulate the algebraic and topological structures of the commutative algebra C(X) following its action on M(X) and define its representation and ergodic dynamical system on the commutative von Neumann algebras of M of B(H) .展开更多
A large class of algebras(possibly nonassociative)with group-coalgebraic structures,called quasigroup Hopf group-coalgebras,is introduced and studied.Quasigroup Hopf group-coalgebras provide a unifying framework for t...A large class of algebras(possibly nonassociative)with group-coalgebraic structures,called quasigroup Hopf group-coalgebras,is introduced and studied.Quasigroup Hopf group-coalgebras provide a unifying framework for the classical Hopf algebras and Hopf group-coalgebras as well as Hopf quasigroups.Then,basic results similar to those in Hopf algebras H are proved,such as anti-(co)multiplicativity of the antipode S:H→H,and S^(2)=id if H is commutative or cocommutative.展开更多
In this paper, we first give a sufficient and necessary condition for a Hopf algebra to be a Yetter-Drinfel'd module, and prove that the finite dual of a Yetter-Drinfel'd module is still a Yetter-Drinfel'd...In this paper, we first give a sufficient and necessary condition for a Hopf algebra to be a Yetter-Drinfel'd module, and prove that the finite dual of a Yetter-Drinfel'd module is still a Yetter-Drinfel'd module. Finally, we introduce a concept of convolution module.展开更多
We study the convolution algebra H_(*)^(G×C^(*))(Z)of G×C^(*)-equivariant homology group on the Steinberg variety of type B/C and define an algebra Y that maps to H_(*)^(G×C^(*))(Z).We also study the G-...We study the convolution algebra H_(*)^(G×C^(*))(Z)of G×C^(*)-equivariant homology group on the Steinberg variety of type B/C and define an algebra Y that maps to H_(*)^(G×C^(*))(Z).We also study the G-equivariant case and prove that there is a map from a certain twisted current algebra to H_(*)^(G)(Z).展开更多
文摘Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bounded functions L<sup>∞</sup>(X, μ) on X. We confirm that the commutative von Neumann algebras M⊂B(H), with H=L<sup>2</sup>(X, μ), are unitary equivariant to the maximal ideals of the commutative algebra C(X). Subsequenly, we use the measure groupoid to formulate the algebraic and topological structures of the commutative algebra C(X) following its action on M(X) and define its representation and ergodic dynamical system on the commutative von Neumann algebras of M of B(H) .
基金The National Natural Science Foundation of China(No.11371088,11571173,11871144)the Natural Science Foundation of Jiangsu Province(No.BK20171348).
文摘A large class of algebras(possibly nonassociative)with group-coalgebraic structures,called quasigroup Hopf group-coalgebras,is introduced and studied.Quasigroup Hopf group-coalgebras provide a unifying framework for the classical Hopf algebras and Hopf group-coalgebras as well as Hopf quasigroups.Then,basic results similar to those in Hopf algebras H are proved,such as anti-(co)multiplicativity of the antipode S:H→H,and S^(2)=id if H is commutative or cocommutative.
文摘In this paper, we first give a sufficient and necessary condition for a Hopf algebra to be a Yetter-Drinfel'd module, and prove that the finite dual of a Yetter-Drinfel'd module is still a Yetter-Drinfel'd module. Finally, we introduce a concept of convolution module.
基金partially supported by the Fundamental Research Funds for the central universities.
文摘We study the convolution algebra H_(*)^(G×C^(*))(Z)of G×C^(*)-equivariant homology group on the Steinberg variety of type B/C and define an algebra Y that maps to H_(*)^(G×C^(*))(Z).We also study the G-equivariant case and prove that there is a map from a certain twisted current algebra to H_(*)^(G)(Z).