Based on the empirical Gardner equation describing the relationship between density and compressional wave velocity, the converted wave reflection coefficient extrema attributes for AVO analysis are proposed and the r...Based on the empirical Gardner equation describing the relationship between density and compressional wave velocity, the converted wave reflection coefficient extrema attributes for AVO analysis are proposed and the relations between the extrema position and amplitude, average velocity ratio across the interface, and shear wave reflection coefficient are derived. The extrema position is a monotonically decreasing function of average velocity ratio, and the extrema amplitude is a function of average velocity ratio and shear wave reflection coefficient. For theoretical models, the average velocity ratio and shear wave reflection coefficient are inverted from the extrema position and amplitude obtained from fitting a power function to converted wave AVO curves. Shear wave reflection coefficient sections have clearer physical meaning than conventional converted wave stacked sections and establish the theoretical foundation for geological structural interpretation and event correlation. "The method of inverting average velocity ratio and shear wave reflection coefficient from the extrema position and amplitude obtained from fitting a power function is applied to real CCP gathers. The inverted average velocity ratios are consistent with those computed from compressional and shear wave well logs.展开更多
In this paper, we use the method of pseudo-offset migration (POM) to complete converted wave pre-stack time migration with amplitude-preservation in an anisotropic medium. The method maps the original traces into co...In this paper, we use the method of pseudo-offset migration (POM) to complete converted wave pre-stack time migration with amplitude-preservation in an anisotropic medium. The method maps the original traces into common conversion scatter point (CCSP) gathers directly by POM, which simplifies the conventional processing procedure for converted waves. The POM gather fold and SNR are high, which is favorable for velocity analysis and especially suitable for seismic data with low SNR. We used equivalent anisotropic theory to compute anisotropic parameters. Based on the scattering wave traveltime equation in a VTI medium, the POM pseudo-offset migration in anisotropic media was deduced. By amplitude-preserving POM gather mapping, velocity analysis, stack processing, and so on, the anisotropic migration results were acquired. The forward modeling computation and actual data processing demonstrate the validity of converted wave pre-stack time migration with amplitude-preservation using the anisotropic POM method.展开更多
Seismic velocity is important to migration of seismic data, interpretation of lithology and lithofacies as well as prediction of reservoir. The information of shear wave velocity is required to reduce the uncertainty ...Seismic velocity is important to migration of seismic data, interpretation of lithology and lithofacies as well as prediction of reservoir. The information of shear wave velocity is required to reduce the uncertainty for discriminating lithology, identifying fluid type in porous material and calculating gas saturation in reservoir prediction. Based on Zoeppritz equations, a numeral and scanning method was proposed in this paper. Shear wave velocity can be calculated with prestack converted wave data. The effects were demonstrated by inversion of theoretical and real seismic data.展开更多
In multi-component oil and gas exploration using ocean bottom nodes,converted wave data is rich in lithological and fracture information.One of the urgent problems to be solved is how to construct an accurate shear wa...In multi-component oil and gas exploration using ocean bottom nodes,converted wave data is rich in lithological and fracture information.One of the urgent problems to be solved is how to construct an accurate shear wave velocity model of the shallow sea bottom by leveraging the seismic wave information at the fluid-solid interface in the ocean,and improve the lateral resolution of marine converted wave data.Given that the dispersion characteristics of surface waves are sensitive to the S-wave velocity of subsurface media,and that Scholte surface waves,which propagate at the interface between liquid and solid media,exist in the data of marine oil and gas exploration,this paper proposes a Scholte wave inversion and modeling method based on oil and gas exploration using ocean bottom nodes.By using the method for calculating the Scholte wave dispersion spectrum based on the Bessel kernel function,the accuracy of dispersion spectrum analysis is improved,and more accurate dispersion curves are picked up.Through the adaptive weighted least squares Scholte wave dispersion inversion algorithm,the Scholte wave dispersion equation for liquid-solid media is solved,and the shear wave velocity model of the shallow sea bottom is calculated.Theoretical tests and applications of realdata have proven that this method can significantly improve the lateral resolution of converted wave data,provide high-quality data for subsequent inversion of marine multi-component oil and gas exploration data and reservoir reflection information,and contribute to the development of marine oil and gas exploration technology.展开更多
This paper presents a new type of triangular Sharp Eagle wave energy converter(WEC)platform.On the basis of the linear potential flow theory and the finite element analysis method,the hydrodynamic performance and stru...This paper presents a new type of triangular Sharp Eagle wave energy converter(WEC)platform.On the basis of the linear potential flow theory and the finite element analysis method,the hydrodynamic performance and structural response of the platform are studied,considering the actual platform motion and free surface rise under extreme sea states.First,the effects of the wave frequency and direction on the wave-induced loads and dynamic responses were examined.The motion at a wave direction angle of 0°is relatively low.On this basis,the angle constrained by the two sides of the Sharp Eagle floaters should be aligned with the main wave direction to avoid significant platform motion under extreme sea states.Additionally,the structural response of the platform,including the wave-absorbing floaters,is investigated.The results highlighted that the conditions or locations where yielding,buckling,and fatigue failures occur were different.In this context,the connection area of the Sharp Eagle floaters and platform is prone to yielding failure under oblique wave action,whereas the pontoon and side of the Sharp Eagle floaters are prone to buckling failure during significant vertical motion.Additionally,fatigue damage is most likely to occur at the connection between the middle column on both sides of the Sharp Eagle floaters and the pontoons.The findings of this paper revealed an intrinsic connection between wave-induced loads and the dynamic and structural responses of the platform,which provides a useful reference for the improved design of WECs.展开更多
With the depletion of fossil fuels and increasing environmental concerns,the development of renewable energy,such as wave energy,has become a critical component of global energy strategies.However,challenges persist i...With the depletion of fossil fuels and increasing environmental concerns,the development of renewable energy,such as wave energy,has become a critical component of global energy strategies.However,challenges persist in the field testing methodologies for wave energy converters(WECs).In this paper,a numerical wave field of the Dawanshan Island Sea Area in Zhuhai City is constructed based on the MIKE21 SW wave model and by using an NCEP wind field driving model.In conjunction with the IEC-62600-100 standard,by taking site testing of the“Wanshan”wave energy converter on which a sea trial has been conducted in Dawanshan Island of Zhuhai city as an example,research on-site testing method for a wave energy converter has been carried out.The wave measurement position for the“Wanshan”converter was determined by combining statistically analyzed field data with a validated numerical wave model.By comparing a valid wave height at the position where a wave rider is located with a valid wave height at the position where the“Wanshan”wave energy converter is situated,the correlation coefficient between simulation and observed data reached 0.90,with a root-mean-square error of 0.19.The representativeness of wave measurement data during site testing is verified and can be used as a basis for calculating the input energy of the“Wanshan”wave energy converter.展开更多
PS converted-waves (C-waves) have been commonly used to image through gas clouds but the C-wave imaging may also be degraded by the diodic effect introduced by the gas cloud. It may be compensated for using a veloci...PS converted-waves (C-waves) have been commonly used to image through gas clouds but the C-wave imaging may also be degraded by the diodic effect introduced by the gas cloud. It may be compensated for using a velocity perturbation method which decouples the diodic moveout into two parts: the base velocity and the velocity perturbation. Gas clouds are widely distributed in the Sanhu area in the Qaidam basin of northwest China which is rich in natural gas. A land 2D3C seismic dataset is analyzed from the Sanhu area and significant diodic effects are observed in the data which harm the C-wave imaging. The diodic correction is applied to this data and the resultant C-wave imaging and the details of the reservoir structure are significantly improved. The diodic moveout plays an important role in working out the residu~ shear wave statics and the association of diodie correction and shear wave residual statics computation is a key step of C-wave high fidelity imaging in the gas cloud area. Finally, the new process workflow with diodic moveout is given.展开更多
In this work,an oscillating-body wave energy converter(OBWEC)with a hydraulic power take-off(PTO)system named“Dolphin 1”is designed,in which the hydraulic PTO system is equivalent to a transfer station and plays a c...In this work,an oscillating-body wave energy converter(OBWEC)with a hydraulic power take-off(PTO)system named“Dolphin 1”is designed,in which the hydraulic PTO system is equivalent to a transfer station and plays a crucial role in ensuring the stability of the electrical energy output and the efficiency of the overall system.A corresponding mathematical model for the hydraulic PTO system has been established,the factors that influence its performance have been studied,and an algorithm for solving the optimal working pressure has been derived in this paper.Moreover,a PID control method to enable the hydraulic PTO system to automatically achieve optimal performance under different wave conditions has been designed.The results indicate that,compared with single-chamber hydraulic cylinders,double-chamber hydraulic cylinders have a wider application range and greater performance;the accumulator can stabilize the output power of the hydraulic PTO system and slightly increase it;excessively large or small hydraulic motor displacement hinders system performance;and each wave condition corresponds to a unique optimal working pressure for the hydraulic PTO system.In addition,the relationship between the optimal working pressure P_(m)and the pressure P_(h)of the wave force acting on the piston satisfies P_(m)^(2)=∫_(t_(1))^(t_(2))P_(h)^(2)dt/(t_(2)-t_(1)).Furthermore,adjusting the hydraulic motor displacement automatically via a PID controller ensures that the actual working pressure of the hydraulic PTO system consistently reaches or approaches its theoretically optimal value under various wave conditions,which is a very effective control method for enhancing the performance of the hydraulic PTO system.展开更多
Using the ERA5 wave reanalysis,the distributions and trends of global available wave energy storage during 1980−2019 are analyzed.The results show that the available wave energy storage is not only related to total wa...Using the ERA5 wave reanalysis,the distributions and trends of global available wave energy storage during 1980−2019 are analyzed.The results show that the available wave energy storage is not only related to total wave energy storage but is also affected by the local available wave probability.Different distributions and trends between the available wave energy and total wave energy storage are observed.Larger values of total wave energy storage are concentrated in the high-latitude westerlies zone,whereas available wave energy storage exhibits greater concentration in the middle-low latitude regions.In each basin,there is a notable upward trend in both total wave energy storage and available wave energy storage.However,the northern Hemisphere(NH)exhibits an increasing trend in available wave probability,whereas the southern Hemisphere(SH)experiences a decreasing trend.This divergence contributes to the spatial distributions of available wave energy storage becoming increasingly uniform.These trends in wave energy are primarily influenced by changes in significant wave height.Although the increasing trend of significant wave height across all frequency ranges induces the growth of total wave energy storage,only the increasing of wave heights falling in 1.3−4 m can cause the growth of available wave energy storage.The consistent increasing rates of wave height under different mean levels contribute to the divergent trends in available wave probability.展开更多
The interaction between regular waves and an oscillating wave energy converter(WEC)in front of a vertical seawall is investigated using a 2D analytical model.A three-degree of freedom(DOF)WEC and a WEC hinged to the s...The interaction between regular waves and an oscillating wave energy converter(WEC)in front of a vertical seawall is investigated using a 2D analytical model.A three-degree of freedom(DOF)WEC and a WEC hinged to the seawall(constrained to pitch mode)are considered to examine the influence of the DOF of the WEC on the wave energy extraction performance.Results show that the piston-mode water resonance in the gap and the coupled WEC and water column resonant motion significantly influence the wave energy extraction efficiency.At low frequency,the case with a 3-DOF WEC has a broader high-efficiency bandwidth than that with a heaving WEC.However,3-DOF WEC exhibits worse performance at high frequencies.The frequency response of the wave energy capture width ratio(CWR)for the pitching WEC case shows a trimodal trend under the specified conditions.It showcases the best overall wave energy extraction performance in terms of the high-efficiency bandwidth.Furthermore,a parametric study indicates that the gap distance between the WEC and the seawall has tremendous effects on the CWR of both cases.As the position of the hinge point of the pitching WEC changes,the CWR at the low and high frequencies shows opposite trends.展开更多
Two asymmetric types of floating breakwaters integrated with a wave energy converter(WEC-FBs),a floating square box with a triangle(trapezoidal type)or a wave baffle(L type)attached to its rear side,have been proposed...Two asymmetric types of floating breakwaters integrated with a wave energy converter(WEC-FBs),a floating square box with a triangle(trapezoidal type)or a wave baffle(L type)attached to its rear side,have been proposed.In this research,the hydrodynamic performance,including capture width ratio(CWR),wave transmission coefficient,heave motion,and force coefficient,were studied and compared between the two types.A numerical simulation model based on the Navier-Stokes equation was employed.The effects of power take-off(PTO)damping coefficient,wave periods,and draft/displacement on the hydrodynamic performance of the two structure shapes were simulated and investigated.The results reveal that the L type performs better in shorter wave periods,and the trapezoidal type exhibits a higher CWR in intermediate wave periods.This study offers knowledge of the design and protection of the two WEC-FB types.展开更多
Utilizing computational fluid dynamics(CFD),this study analyzes the relative pitching motion amplitude and conversion efficiency of the parallelogram raft wave energy converter(R-WEC)under wave current conditions,exam...Utilizing computational fluid dynamics(CFD),this study analyzes the relative pitching motion amplitude and conversion efficiency of the parallelogram raft wave energy converter(R-WEC)under wave current conditions,examining the effects of power take-off(PTO)parameters,wave parameters,and flow velocity on R-WEC hydrodynamic performance.The research includes an analysis of a single point mooring system to determine optimal mooring conditions.Through comparative analysis of energy conversion efficiency across 10 single mooring modes and nine double-mooring modes,the study evaluates their impact on the R-WEC.Findings demonstrate that flow velocity adversely affects wave energy capture.Energy conversion efficiency exhibits an initial increase followed by a decrease as damping coefficient or wave frequency coefficient increases.An optimal anchor chain unit mass coefficient exists that maximizes R-WEC energy conversion efficiency.The dual mooring system demonstrates marginally enhanced energy conversion efficiency compared with single mooring,with specific impacts on R-wave energy converters(WECs)documented.These findings provide valuable reference data for R-WEC design optimization and operational strategies to enhance conversion efficiency.展开更多
The power generation performance of a heaving body wave energy converter(HBWEC)can be enhanced through strategic deployment in proximity to natural or artificial coastal structures.In this study,coastal structures are...The power generation performance of a heaving body wave energy converter(HBWEC)can be enhanced through strategic deployment in proximity to natural or artificial coastal structures.In this study,coastal structures are represented by a partial reflection wall,enabling the device to harness additional reflected wave energy.However,the mechanisms by which the reflection coefficient and the clearance between the wall and the device affect energy conversion performance remain inadequately understood.This study experimentally investigates these effects.The findings demonstrate that the clearance impact on HBWEC power performance near partial reflection walls aligns with standing wave variation characteristics,with optimal positioning near the second antinode of the HBWEC's heaving natural period.Enhanced reflection coefficients improve energy conversion efficiency within the wave spectrum around the device's heaving natural period.Additionally,significant water sloshing observed within the clearance may diminish power performance,as verified through computational fluid dynamics(CFD)analysis.This phenomenon results from the multiplicative relationship of leeside clearance with 0.5λ(λis the wavelength).These insights suggest that practical engineering implementation requires balanced consideration of reflection coefficient,clearance,sloshing phenomenon,and heaving restriction system,rather than individual parameter optimization.展开更多
We explore the incorporation of an oscillating water column(OWC)device into a monopile foundation designed for offshore wind power generation.The hydrodynamic characteristics of the structure are investigated,includin...We explore the incorporation of an oscillating water column(OWC)device into a monopile foundation designed for offshore wind power generation.The hydrodynamic characteristics of the structure are investigated,including the free water surface and air pressure response inside the OwC chamber,the wave energy capture performance,and the wave load response under various power take-off(PTO)damping and wave conditions.An orifice is employed to represent the quadratic PTO damping effect.Results indicate that increasing the PTO opening ratio increases the peak frequency of the water surface oscillation coefficient inside the OWC chamber,as well as the OWC pneumatic power.The load-reduction effect of the OWC device in the positive direction is likely related to the water surface oscillation inside the chamber and the wave energy extraction efficiency.At high wave frequencies,the water surface oscillation coefficient is relatively small,while the pneumatic power remains at a large value,and the OwC device can effectively reduce wave loads in the direction of incoming waves.The optimal opening ratio of 1.51%may balance wave energy utilization efficiency with structural protection for the device.展开更多
The integrated system composed of wave energy converters and floating wind turbines offers substantial potential for reducing the levelized cost of energy(LCOE) by sharing the infrastructure, mooring system, substatio...The integrated system composed of wave energy converters and floating wind turbines offers substantial potential for reducing the levelized cost of energy(LCOE) by sharing the infrastructure, mooring system, substations and cables.This paper proposes an integrated system consisting of a semi-submersible wind turbine platform and three Wave Star flap-type wave energy converters. The coupled motion model of the integrated system is established and validated on the basis of viscously corrected potential flow theory. This study investigates the influence of two key parameters,the arm length and hinge points of flap-type wave energy converters, on system performance. The results reveal that variations in the arm length of flap-type wave energy converters(WECs) are the primary determinants of the integrated system's dynamic characteristics, whereas changes in hinge points predominantly affect device power generation.Additionally, incorporating WECs reduces the pitch and heave motions of the platform within a specific wave frequency range, thereby enhancing the energy output of the integrated system at the operational sea site. The performance of this hybrid system at a selected sea site is further assessed via the proposed aero-hydroservo coupling simulations.展开更多
This review paper examines the various types of electrical generators used to convert wave energy into electrical energy.The focus is on both linear and rotary generators,including their design principles,operational ...This review paper examines the various types of electrical generators used to convert wave energy into electrical energy.The focus is on both linear and rotary generators,including their design principles,operational efficiencies,and technological advancements.Linear generators,such as Induction,permanent magnet synchronous,and switched reluctance types,are highlighted for their direct conversion capability,eliminating the need for mechanical gearboxes.Rotary Induction generators,permanent magnet synchronous generators,and doubly-fed Induction generators are evaluated for their established engineering principles and integration with existing grid infrastructure.The paper discusses the historical development,environmental benefits,and ongoing advancements in wave energy technologies,emphasizing the increasing feasibility and scalability of wave energy as a renewable source.Through a comprehensive analysis,this review provides insights into the current state and future prospects of electrical generators in wave energy conversion,underscoring their potential to significantly reduce reliance on fossil fuels and mitigate environmental impacts.展开更多
Scientists have introduced new methods for capturing energy from ocean waves.Specifically,scientists have focused on a type of wave energy converter(WEC)that is nonbuoyant(i.e.,a body that cannot float).Typically,the ...Scientists have introduced new methods for capturing energy from ocean waves.Specifically,scientists have focused on a type of wave energy converter(WEC)that is nonbuoyant(i.e.,a body that cannot float).Typically,the WEC is most effective when it is in resonance,which occurs when the natural frequency of the WEC aligns with that of the ocean waves.Therefore,accurately predicting the movement of the WEC is crucial for adjusting its system to resonate with the incoming waves for optimal performance.In this study,artificial intelligence techniques,such as random forest,extra trees(ET),and support vector machines,are created to forecast the vertical movement of a nonbuoyant WEC.The developed models require two variables as input,namely,the water wave height and its time period.A total of approximately 4500 data points,which include nonlinear water wave height and duration ob-tained from a laboratory experiment,are used as the input for these models,with the resulting vertical movement as the output.When comparing the three models based on their processing speed and accuracy,the ET model stands out as the most efficient.Ultimately,the ET model is tested using data from a real ocean setting.展开更多
This paper presents an overview of the recent developments in hybrid wind-wave energy.With the focus on floating concepts,the possible configurations introduced in the literature are categorized and depicted,and the m...This paper presents an overview of the recent developments in hybrid wind-wave energy.With the focus on floating concepts,the possible configurations introduced in the literature are categorized and depicted,and the main conclusions obtained from the references are summarized.Moreover,offshore wind and wave resources are discussed in terms of complementarity and supplementarity,offering a new perspective to developing hybrid wind-wave energy systems that look for synergies not limited to maximizing power output.Then,the feasibility of the concepts under development is discussed in detail,with focus on technical feasibility,dynamic feasibility and limitations of the methods employed.The hybrid configurations that surpassed the experimental validation phase are highlighted,and the experimental results are summarized.By compiling more than 40 floating wind turbine concepts,new relations are drawn between power,wind turbine dimensions,platforms’draft and displacement,which are further related to the payload allowance of the units to accommodate wave devices and onboard power take-off systems.Bearing in mind that it is a challenge to model the exact dynamics of hybrid floating wind-wave platforms,this paper elucidates the current research gaps,limitations and future trends in the field.Lastly,based on the overview and topics discussed,several major conclusions are drawn concerning hybrid synergies,dynamics and hydrodynamics of hybrid platforms,feasibility of concepts,among other regards.展开更多
This paper provides an overview of the global wave resource for energy exploration.The most popular metrics and estimators for wave energy resource characterization have been compiled and classified by levels of energ...This paper provides an overview of the global wave resource for energy exploration.The most popular metrics and estimators for wave energy resource characterization have been compiled and classified by levels of energy exploration.A review of existing prospective wave energy resource assessments worldwide is also given,and those studies have been collated and classified by continent.Finally,information about forty existing open sea wave energy test sites worldwide and their characteristics is depicted and displayed on a newly created global map.It has been found that wave power density is still the most consensual metric used for wave energy resource assessment purposes among researchers.Nonetheless,to accomplish a comprehensive wave resource assessment for exploitation,the computation of other metrics at the practicable,technical,and socio-economic levels has also been performed at both spatial and temporal domains.Overall,regions in latitudes between 40°and 60°of both hemispheres are those where the highest wave power density is concentrated.Some areas where the most significant wave power density occurs are in offshore regions of southern Australia,New Zealand,South Africa,Chile,the British Isles,Iceland,and Greenland.However,Europe has been the continent where most research efforts have been done targeting wave energy characterisation for exploitation.展开更多
In transversely isotropic media with a vertical symmetry axis (VTI), the converted-wave (C-wave) moveout over intermediate-to-far offsets is determined by four parameters. These are the C-wave stacking velocity Vc...In transversely isotropic media with a vertical symmetry axis (VTI), the converted-wave (C-wave) moveout over intermediate-to-far offsets is determined by four parameters. These are the C-wave stacking velocity Vc2 , the vertical and effective velocity ratios γ0 and γeff, and the anisotropic parameter χeff. We refer to the four parameters as the C-wave stacking velocity model. The purpose of C-wave velocity analysis is to determine this stacking velocity model. The C-wave stacking velocity model Vc2, γ0, γeff, and χeff can be determined from P-and C-wave reflection moveout data. However, error propagation is a severe problem in C-wave reflection-moveout inversion. The current short-spread stacking velocity as deduced from hyperbolic moveout does not provide sufficient accuracy to yield meaningful inverted values for the anisotropic parameters. The non-hyperbolic moveout over intermediate-offsets (x/z from 1.0 to 1.5) is no longer negligible and can be quantified using a background γ. Non-hyperbolic analysis with a γ correction over the intermediate offsets can yield Vc2 with errors less than 1% for noise free data. The procedure is very robust, allowing initial guesses of γ with up to 20% errors. It is also applicable for vertically inhomogeneous anisotropic media. This improved accuracy makes it possible to estimate anisotropic parameters using 4C seismic data. Two practical work flows are presented for this purpose: the double-scanning flow and the single-scanning flow. Applications to synthetic and real data show that the two flows yield results with similar accuracy but the single-scanning flow is more efficient than the double-scanning flow.展开更多
基金National 973 Key Basic Research Development Program (No.2005CB422104)SINOPEC's Scientific and Technological Development Program (No.P05063)
文摘Based on the empirical Gardner equation describing the relationship between density and compressional wave velocity, the converted wave reflection coefficient extrema attributes for AVO analysis are proposed and the relations between the extrema position and amplitude, average velocity ratio across the interface, and shear wave reflection coefficient are derived. The extrema position is a monotonically decreasing function of average velocity ratio, and the extrema amplitude is a function of average velocity ratio and shear wave reflection coefficient. For theoretical models, the average velocity ratio and shear wave reflection coefficient are inverted from the extrema position and amplitude obtained from fitting a power function to converted wave AVO curves. Shear wave reflection coefficient sections have clearer physical meaning than conventional converted wave stacked sections and establish the theoretical foundation for geological structural interpretation and event correlation. "The method of inverting average velocity ratio and shear wave reflection coefficient from the extrema position and amplitude obtained from fitting a power function is applied to real CCP gathers. The inverted average velocity ratios are consistent with those computed from compressional and shear wave well logs.
文摘In this paper, we use the method of pseudo-offset migration (POM) to complete converted wave pre-stack time migration with amplitude-preservation in an anisotropic medium. The method maps the original traces into common conversion scatter point (CCSP) gathers directly by POM, which simplifies the conventional processing procedure for converted waves. The POM gather fold and SNR are high, which is favorable for velocity analysis and especially suitable for seismic data with low SNR. We used equivalent anisotropic theory to compute anisotropic parameters. Based on the scattering wave traveltime equation in a VTI medium, the POM pseudo-offset migration in anisotropic media was deduced. By amplitude-preserving POM gather mapping, velocity analysis, stack processing, and so on, the anisotropic migration results were acquired. The forward modeling computation and actual data processing demonstrate the validity of converted wave pre-stack time migration with amplitude-preservation using the anisotropic POM method.
基金National 973 Key Basic Research Development Program (2005CB422104)SINOPEC's Scientific and Techno-logical Development Program(P05063)
文摘Seismic velocity is important to migration of seismic data, interpretation of lithology and lithofacies as well as prediction of reservoir. The information of shear wave velocity is required to reduce the uncertainty for discriminating lithology, identifying fluid type in porous material and calculating gas saturation in reservoir prediction. Based on Zoeppritz equations, a numeral and scanning method was proposed in this paper. Shear wave velocity can be calculated with prestack converted wave data. The effects were demonstrated by inversion of theoretical and real seismic data.
基金financially supported by the Scientific Research and Technology Development Project of China National Petroleum Corporation(No.2021ZG02)titled"Development of Seismic Data Processing Software for Ocean Nodes(OBN)"。
文摘In multi-component oil and gas exploration using ocean bottom nodes,converted wave data is rich in lithological and fracture information.One of the urgent problems to be solved is how to construct an accurate shear wave velocity model of the shallow sea bottom by leveraging the seismic wave information at the fluid-solid interface in the ocean,and improve the lateral resolution of marine converted wave data.Given that the dispersion characteristics of surface waves are sensitive to the S-wave velocity of subsurface media,and that Scholte surface waves,which propagate at the interface between liquid and solid media,exist in the data of marine oil and gas exploration,this paper proposes a Scholte wave inversion and modeling method based on oil and gas exploration using ocean bottom nodes.By using the method for calculating the Scholte wave dispersion spectrum based on the Bessel kernel function,the accuracy of dispersion spectrum analysis is improved,and more accurate dispersion curves are picked up.Through the adaptive weighted least squares Scholte wave dispersion inversion algorithm,the Scholte wave dispersion equation for liquid-solid media is solved,and the shear wave velocity model of the shallow sea bottom is calculated.Theoretical tests and applications of realdata have proven that this method can significantly improve the lateral resolution of converted wave data,provide high-quality data for subsequent inversion of marine multi-component oil and gas exploration data and reservoir reflection information,and contribute to the development of marine oil and gas exploration technology.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3003805)Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2022356)Guangzhou Basic and Applied Basic Research Project(Grant No.2023A04J0955).
文摘This paper presents a new type of triangular Sharp Eagle wave energy converter(WEC)platform.On the basis of the linear potential flow theory and the finite element analysis method,the hydrodynamic performance and structural response of the platform are studied,considering the actual platform motion and free surface rise under extreme sea states.First,the effects of the wave frequency and direction on the wave-induced loads and dynamic responses were examined.The motion at a wave direction angle of 0°is relatively low.On this basis,the angle constrained by the two sides of the Sharp Eagle floaters should be aligned with the main wave direction to avoid significant platform motion under extreme sea states.Additionally,the structural response of the platform,including the wave-absorbing floaters,is investigated.The results highlighted that the conditions or locations where yielding,buckling,and fatigue failures occur were different.In this context,the connection area of the Sharp Eagle floaters and platform is prone to yielding failure under oblique wave action,whereas the pontoon and side of the Sharp Eagle floaters are prone to buckling failure during significant vertical motion.Additionally,fatigue damage is most likely to occur at the connection between the middle column on both sides of the Sharp Eagle floaters and the pontoons.The findings of this paper revealed an intrinsic connection between wave-induced loads and the dynamic and structural responses of the platform,which provides a useful reference for the improved design of WECs.
基金supported by the“National Ocean Technology Center Innovation Fund”under Project No.N3220Z002,led by Ning Jia.The official website of the National Ocean Technology Center is accessible at:http://www.notcsoa.org.cn/.
文摘With the depletion of fossil fuels and increasing environmental concerns,the development of renewable energy,such as wave energy,has become a critical component of global energy strategies.However,challenges persist in the field testing methodologies for wave energy converters(WECs).In this paper,a numerical wave field of the Dawanshan Island Sea Area in Zhuhai City is constructed based on the MIKE21 SW wave model and by using an NCEP wind field driving model.In conjunction with the IEC-62600-100 standard,by taking site testing of the“Wanshan”wave energy converter on which a sea trial has been conducted in Dawanshan Island of Zhuhai city as an example,research on-site testing method for a wave energy converter has been carried out.The wave measurement position for the“Wanshan”converter was determined by combining statistically analyzed field data with a validated numerical wave model.By comparing a valid wave height at the position where a wave rider is located with a valid wave height at the position where the“Wanshan”wave energy converter is situated,the correlation coefficient between simulation and observed data reached 0.90,with a root-mean-square error of 0.19.The representativeness of wave measurement data during site testing is verified and can be used as a basis for calculating the input energy of the“Wanshan”wave energy converter.
基金supported by the National Natural Science Foundation of China (No. 41074080)the Important National Science & Technology Specific Projects (No. 2011ZX05019-008)
文摘PS converted-waves (C-waves) have been commonly used to image through gas clouds but the C-wave imaging may also be degraded by the diodic effect introduced by the gas cloud. It may be compensated for using a velocity perturbation method which decouples the diodic moveout into two parts: the base velocity and the velocity perturbation. Gas clouds are widely distributed in the Sanhu area in the Qaidam basin of northwest China which is rich in natural gas. A land 2D3C seismic dataset is analyzed from the Sanhu area and significant diodic effects are observed in the data which harm the C-wave imaging. The diodic correction is applied to this data and the resultant C-wave imaging and the details of the reservoir structure are significantly improved. The diodic moveout plays an important role in working out the residu~ shear wave statics and the association of diodie correction and shear wave residual statics computation is a key step of C-wave high fidelity imaging in the gas cloud area. Finally, the new process workflow with diodic moveout is given.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52071094 and 51979065).
文摘In this work,an oscillating-body wave energy converter(OBWEC)with a hydraulic power take-off(PTO)system named“Dolphin 1”is designed,in which the hydraulic PTO system is equivalent to a transfer station and plays a crucial role in ensuring the stability of the electrical energy output and the efficiency of the overall system.A corresponding mathematical model for the hydraulic PTO system has been established,the factors that influence its performance have been studied,and an algorithm for solving the optimal working pressure has been derived in this paper.Moreover,a PID control method to enable the hydraulic PTO system to automatically achieve optimal performance under different wave conditions has been designed.The results indicate that,compared with single-chamber hydraulic cylinders,double-chamber hydraulic cylinders have a wider application range and greater performance;the accumulator can stabilize the output power of the hydraulic PTO system and slightly increase it;excessively large or small hydraulic motor displacement hinders system performance;and each wave condition corresponds to a unique optimal working pressure for the hydraulic PTO system.In addition,the relationship between the optimal working pressure P_(m)and the pressure P_(h)of the wave force acting on the piston satisfies P_(m)^(2)=∫_(t_(1))^(t_(2))P_(h)^(2)dt/(t_(2)-t_(1)).Furthermore,adjusting the hydraulic motor displacement automatically via a PID controller ensures that the actual working pressure of the hydraulic PTO system consistently reaches or approaches its theoretically optimal value under various wave conditions,which is a very effective control method for enhancing the performance of the hydraulic PTO system.
基金The National Key R&D Program of China under contract No.2023YFE0126300the National Natural Science Foundation of China under contract No.41930538the Open Fund of China Meteorological Administration Hydro-Meteorology Key Laboratory,Hohai University,under contract No.23SWQXM049.
文摘Using the ERA5 wave reanalysis,the distributions and trends of global available wave energy storage during 1980−2019 are analyzed.The results show that the available wave energy storage is not only related to total wave energy storage but is also affected by the local available wave probability.Different distributions and trends between the available wave energy and total wave energy storage are observed.Larger values of total wave energy storage are concentrated in the high-latitude westerlies zone,whereas available wave energy storage exhibits greater concentration in the middle-low latitude regions.In each basin,there is a notable upward trend in both total wave energy storage and available wave energy storage.However,the northern Hemisphere(NH)exhibits an increasing trend in available wave probability,whereas the southern Hemisphere(SH)experiences a decreasing trend.This divergence contributes to the spatial distributions of available wave energy storage becoming increasingly uniform.These trends in wave energy are primarily influenced by changes in significant wave height.Although the increasing trend of significant wave height across all frequency ranges induces the growth of total wave energy storage,only the increasing of wave heights falling in 1.3−4 m can cause the growth of available wave energy storage.The consistent increasing rates of wave height under different mean levels contribute to the divergent trends in available wave probability.
基金supported by the Key R&D Program of Shandong Province,China(No.2021ZLGX04)the National Natural Science Foundation of China(No.52171284)。
文摘The interaction between regular waves and an oscillating wave energy converter(WEC)in front of a vertical seawall is investigated using a 2D analytical model.A three-degree of freedom(DOF)WEC and a WEC hinged to the seawall(constrained to pitch mode)are considered to examine the influence of the DOF of the WEC on the wave energy extraction performance.Results show that the piston-mode water resonance in the gap and the coupled WEC and water column resonant motion significantly influence the wave energy extraction efficiency.At low frequency,the case with a 3-DOF WEC has a broader high-efficiency bandwidth than that with a heaving WEC.However,3-DOF WEC exhibits worse performance at high frequencies.The frequency response of the wave energy capture width ratio(CWR)for the pitching WEC case shows a trimodal trend under the specified conditions.It showcases the best overall wave energy extraction performance in terms of the high-efficiency bandwidth.Furthermore,a parametric study indicates that the gap distance between the WEC and the seawall has tremendous effects on the CWR of both cases.As the position of the hinge point of the pitching WEC changes,the CWR at the low and high frequencies shows opposite trends.
基金Supported by Shandong Provincial Natural Science Foundation,China(ZR2020ME259)Open Fund of Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation(CDPM2021KF21).
文摘Two asymmetric types of floating breakwaters integrated with a wave energy converter(WEC-FBs),a floating square box with a triangle(trapezoidal type)or a wave baffle(L type)attached to its rear side,have been proposed.In this research,the hydrodynamic performance,including capture width ratio(CWR),wave transmission coefficient,heave motion,and force coefficient,were studied and compared between the two types.A numerical simulation model based on the Navier-Stokes equation was employed.The effects of power take-off(PTO)damping coefficient,wave periods,and draft/displacement on the hydrodynamic performance of the two structure shapes were simulated and investigated.The results reveal that the L type performs better in shorter wave periods,and the trapezoidal type exhibits a higher CWR in intermediate wave periods.This study offers knowledge of the design and protection of the two WEC-FB types.
基金supported by the National Natural Science Foundation of China(Grant Nos.52071348 and 51979129)。
文摘Utilizing computational fluid dynamics(CFD),this study analyzes the relative pitching motion amplitude and conversion efficiency of the parallelogram raft wave energy converter(R-WEC)under wave current conditions,examining the effects of power take-off(PTO)parameters,wave parameters,and flow velocity on R-WEC hydrodynamic performance.The research includes an analysis of a single point mooring system to determine optimal mooring conditions.Through comparative analysis of energy conversion efficiency across 10 single mooring modes and nine double-mooring modes,the study evaluates their impact on the R-WEC.Findings demonstrate that flow velocity adversely affects wave energy capture.Energy conversion efficiency exhibits an initial increase followed by a decrease as damping coefficient or wave frequency coefficient increases.An optimal anchor chain unit mass coefficient exists that maximizes R-WEC energy conversion efficiency.The dual mooring system demonstrates marginally enhanced energy conversion efficiency compared with single mooring,with specific impacts on R-wave energy converters(WECs)documented.These findings provide valuable reference data for R-WEC design optimization and operational strategies to enhance conversion efficiency.
基金supported by the National Natural Science Foundation of China(Grant Nos.52201322,52401323,and52222109)the Fundamental Research Funds for the Central Universities(Grant No.2024ZYGXZR042)+1 种基金Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2022B1515020036 and 2023A1515012144)the Project of State Key Laboratory of Subtropical Building and Urban Science(Grant No.2023ZB14)。
文摘The power generation performance of a heaving body wave energy converter(HBWEC)can be enhanced through strategic deployment in proximity to natural or artificial coastal structures.In this study,coastal structures are represented by a partial reflection wall,enabling the device to harness additional reflected wave energy.However,the mechanisms by which the reflection coefficient and the clearance between the wall and the device affect energy conversion performance remain inadequately understood.This study experimentally investigates these effects.The findings demonstrate that the clearance impact on HBWEC power performance near partial reflection walls aligns with standing wave variation characteristics,with optimal positioning near the second antinode of the HBWEC's heaving natural period.Enhanced reflection coefficients improve energy conversion efficiency within the wave spectrum around the device's heaving natural period.Additionally,significant water sloshing observed within the clearance may diminish power performance,as verified through computational fluid dynamics(CFD)analysis.This phenomenon results from the multiplicative relationship of leeside clearance with 0.5λ(λis the wavelength).These insights suggest that practical engineering implementation requires balanced consideration of reflection coefficient,clearance,sloshing phenomenon,and heaving restriction system,rather than individual parameter optimization.
基金supported by the“Pioneer”R&D Program of Zhejiang(No.2022C03009)the National Natural Science Foundation of China(Nos.52022092,51979247,and 52211530092),the Talent Program of Zhejiang Province(No.2021R52050)the Natural Science Foundation of Zhejiang Province(No.LZ23E090001),China.
文摘We explore the incorporation of an oscillating water column(OWC)device into a monopile foundation designed for offshore wind power generation.The hydrodynamic characteristics of the structure are investigated,including the free water surface and air pressure response inside the OwC chamber,the wave energy capture performance,and the wave load response under various power take-off(PTO)damping and wave conditions.An orifice is employed to represent the quadratic PTO damping effect.Results indicate that increasing the PTO opening ratio increases the peak frequency of the water surface oscillation coefficient inside the OWC chamber,as well as the OWC pneumatic power.The load-reduction effect of the OWC device in the positive direction is likely related to the water surface oscillation inside the chamber and the wave energy extraction efficiency.At high wave frequencies,the water surface oscillation coefficient is relatively small,while the pneumatic power remains at a large value,and the OwC device can effectively reduce wave loads in the direction of incoming waves.The optimal opening ratio of 1.51%may balance wave energy utilization efficiency with structural protection for the device.
基金financially supported by the National Natural Science Foundation of China National Outstanding Youth Science Fund Project (Grant No. 52222109)the National Natural Science Foundation of China (Grant No. 52201322)+1 种基金Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2024A1515240006, 2022B1515020036 and 2023A1515012144)the Project of State Key Laboratory of Subtropical Building and Urban Science (Grant No. 2023ZB14)。
文摘The integrated system composed of wave energy converters and floating wind turbines offers substantial potential for reducing the levelized cost of energy(LCOE) by sharing the infrastructure, mooring system, substations and cables.This paper proposes an integrated system consisting of a semi-submersible wind turbine platform and three Wave Star flap-type wave energy converters. The coupled motion model of the integrated system is established and validated on the basis of viscously corrected potential flow theory. This study investigates the influence of two key parameters,the arm length and hinge points of flap-type wave energy converters, on system performance. The results reveal that variations in the arm length of flap-type wave energy converters(WECs) are the primary determinants of the integrated system's dynamic characteristics, whereas changes in hinge points predominantly affect device power generation.Additionally, incorporating WECs reduces the pitch and heave motions of the platform within a specific wave frequency range, thereby enhancing the energy output of the integrated system at the operational sea site. The performance of this hybrid system at a selected sea site is further assessed via the proposed aero-hydroservo coupling simulations.
文摘This review paper examines the various types of electrical generators used to convert wave energy into electrical energy.The focus is on both linear and rotary generators,including their design principles,operational efficiencies,and technological advancements.Linear generators,such as Induction,permanent magnet synchronous,and switched reluctance types,are highlighted for their direct conversion capability,eliminating the need for mechanical gearboxes.Rotary Induction generators,permanent magnet synchronous generators,and doubly-fed Induction generators are evaluated for their established engineering principles and integration with existing grid infrastructure.The paper discusses the historical development,environmental benefits,and ongoing advancements in wave energy technologies,emphasizing the increasing feasibility and scalability of wave energy as a renewable source.Through a comprehensive analysis,this review provides insights into the current state and future prospects of electrical generators in wave energy conversion,underscoring their potential to significantly reduce reliance on fossil fuels and mitigate environmental impacts.
文摘Scientists have introduced new methods for capturing energy from ocean waves.Specifically,scientists have focused on a type of wave energy converter(WEC)that is nonbuoyant(i.e.,a body that cannot float).Typically,the WEC is most effective when it is in resonance,which occurs when the natural frequency of the WEC aligns with that of the ocean waves.Therefore,accurately predicting the movement of the WEC is crucial for adjusting its system to resonate with the incoming waves for optimal performance.In this study,artificial intelligence techniques,such as random forest,extra trees(ET),and support vector machines,are created to forecast the vertical movement of a nonbuoyant WEC.The developed models require two variables as input,namely,the water wave height and its time period.A total of approximately 4500 data points,which include nonlinear water wave height and duration ob-tained from a laboratory experiment,are used as the input for these models,with the resulting vertical movement as the output.When comparing the three models based on their processing speed and accuracy,the ET model stands out as the most efficient.Ultimately,the ET model is tested using data from a real ocean setting.
基金supported by the Portuguese Foundation for Science and Technology(Fundação para a Ciência e Tecnologia-FCT)it contributes to the Strategic Research Plan of the Centre for Marine Technology and Ocean Engineering(Grant No.UIDB/UIDP/00134/2020)funded the first author for his PhD Scholarship(Grant No.SFRH/BD/145602/2019).
文摘This paper presents an overview of the recent developments in hybrid wind-wave energy.With the focus on floating concepts,the possible configurations introduced in the literature are categorized and depicted,and the main conclusions obtained from the references are summarized.Moreover,offshore wind and wave resources are discussed in terms of complementarity and supplementarity,offering a new perspective to developing hybrid wind-wave energy systems that look for synergies not limited to maximizing power output.Then,the feasibility of the concepts under development is discussed in detail,with focus on technical feasibility,dynamic feasibility and limitations of the methods employed.The hybrid configurations that surpassed the experimental validation phase are highlighted,and the experimental results are summarized.By compiling more than 40 floating wind turbine concepts,new relations are drawn between power,wind turbine dimensions,platforms’draft and displacement,which are further related to the payload allowance of the units to accommodate wave devices and onboard power take-off systems.Bearing in mind that it is a challenge to model the exact dynamics of hybrid floating wind-wave platforms,this paper elucidates the current research gaps,limitations and future trends in the field.Lastly,based on the overview and topics discussed,several major conclusions are drawn concerning hybrid synergies,dynamics and hydrodynamics of hybrid platforms,feasibility of concepts,among other regards.
文摘This paper provides an overview of the global wave resource for energy exploration.The most popular metrics and estimators for wave energy resource characterization have been compiled and classified by levels of energy exploration.A review of existing prospective wave energy resource assessments worldwide is also given,and those studies have been collated and classified by continent.Finally,information about forty existing open sea wave energy test sites worldwide and their characteristics is depicted and displayed on a newly created global map.It has been found that wave power density is still the most consensual metric used for wave energy resource assessment purposes among researchers.Nonetheless,to accomplish a comprehensive wave resource assessment for exploitation,the computation of other metrics at the practicable,technical,and socio-economic levels has also been performed at both spatial and temporal domains.Overall,regions in latitudes between 40°and 60°of both hemispheres are those where the highest wave power density is concentrated.Some areas where the most significant wave power density occurs are in offshore regions of southern Australia,New Zealand,South Africa,Chile,the British Isles,Iceland,and Greenland.However,Europe has been the continent where most research efforts have been done targeting wave energy characterisation for exploitation.
基金This work is funded by the Edinburgh Anisotropy Project of the British Geological Survey.
文摘In transversely isotropic media with a vertical symmetry axis (VTI), the converted-wave (C-wave) moveout over intermediate-to-far offsets is determined by four parameters. These are the C-wave stacking velocity Vc2 , the vertical and effective velocity ratios γ0 and γeff, and the anisotropic parameter χeff. We refer to the four parameters as the C-wave stacking velocity model. The purpose of C-wave velocity analysis is to determine this stacking velocity model. The C-wave stacking velocity model Vc2, γ0, γeff, and χeff can be determined from P-and C-wave reflection moveout data. However, error propagation is a severe problem in C-wave reflection-moveout inversion. The current short-spread stacking velocity as deduced from hyperbolic moveout does not provide sufficient accuracy to yield meaningful inverted values for the anisotropic parameters. The non-hyperbolic moveout over intermediate-offsets (x/z from 1.0 to 1.5) is no longer negligible and can be quantified using a background γ. Non-hyperbolic analysis with a γ correction over the intermediate offsets can yield Vc2 with errors less than 1% for noise free data. The procedure is very robust, allowing initial guesses of γ with up to 20% errors. It is also applicable for vertically inhomogeneous anisotropic media. This improved accuracy makes it possible to estimate anisotropic parameters using 4C seismic data. Two practical work flows are presented for this purpose: the double-scanning flow and the single-scanning flow. Applications to synthetic and real data show that the two flows yield results with similar accuracy but the single-scanning flow is more efficient than the double-scanning flow.