This study numerically examines the heat and mass transfer characteristics of two ternary nanofluids via converging and diverg-ing channels.Furthermore,the study aims to assess two ternary nanofluids combinations to d...This study numerically examines the heat and mass transfer characteristics of two ternary nanofluids via converging and diverg-ing channels.Furthermore,the study aims to assess two ternary nanofluids combinations to determine which configuration can provide better heat and mass transfer and lower entropy production,while ensuring cost efficiency.This work bridges the gap be-tween academic research and industrial feasibility by incorporating cost analysis,entropy generation,and thermal efficiency.To compare the velocity,temperature,and concentration profiles,we examine two ternary nanofluids,i.e.,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O and TiO_(2)+SiO_(2)+Cu/H_(2)O,while considering the shape of nanoparticles.The velocity slip and Soret/Dufour effects are taken into consideration.Furthermore,regression analysis for Nusselt and Sherwood numbers of the model is carried out.The Runge-Kutta fourth-order method with shooting technique is employed to acquire the numerical solution of the governed system of ordinary differential equations.The flow pattern attributes of ternary nanofluids are meticulously examined and simulated with the fluc-tuation of flow-dominating parameters.Additionally,the influence of these parameters is demonstrated in the flow,temperature,and concentration fields.For variation in Eckert and Dufour numbers,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher temperature than TiO_(2)+SiO_(2)+Cu/H_(2)O.The results obtained indicate that the ternary nanofluid TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher heat transfer rate,lesser entropy generation,greater mass transfer rate,and lower cost than that of TiO_(2)+SiO_(2)+Cu/H_(2)O ternary nanofluid.展开更多
The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they ...The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they exhibit dense interconnectivity(Braitenburg and Schüz,1998;Campagnola et al.,2022).The strength and probability of connectivity depend on cell type,inter-neuronal distance,and species.Still,every cortical neuron receives input from thousands of other neurons while transmitting output to a similar number of neurons.Second,communication between neurons occurs primarily via chemical or electrical synapses.展开更多
A new type of composite CVT(continuously variable transmission) systemsfeatured by power flow divergence and dual-mode convergence, capable of improving CVT's efficiencyand power capacity or making AMTs(automated ...A new type of composite CVT(continuously variable transmission) systemsfeatured by power flow divergence and dual-mode convergence, capable of improving CVT's efficiencyand power capacity or making AMTs(automated manual transmissions) become continuously variable, isstudied. With specific mechano-mechanical and electromechanical composite CVT systems as detailedexamples, its basic working principles are expatiated. General methods and key points in designingand realizing such systems are also analyzed and discussed.展开更多
While interval-valued picture fuzzy sets(IvPFSs)provide a powerful tool for modeling uncertainty and ambiguity in various fields,existing divergence measures for IvPFSs remain limited and often produce counterintuitiv...While interval-valued picture fuzzy sets(IvPFSs)provide a powerful tool for modeling uncertainty and ambiguity in various fields,existing divergence measures for IvPFSs remain limited and often produce counterintuitive results.To address these shortcomings,this paper introduces two novel divergencemeasures for IvPFSs,inspired by the Jensen-Shannon divergence.The fundamental properties of the proposed measures-non-degeneracy,symmetry,triangular inequality,and boundedness-are rigorously proven.Comparative analyses with existing measures are conducted through specific cases and numerical examples,clearly demonstrating the advantages of our approach.Furthermore,we apply the new divergence measures to develop an enhanced interval-valued picture fuzzy TOPSIS method for risk assessment in construction projects,showing the practical applicability and effectiveness of our contributions.展开更多
The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the...The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the equivalent conditions of complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space.The results complement the corresponding results in probability space to those for sequences of independent,identically distributed random variables under sublinear expectation space.展开更多
A Bayesian network reconstruction method based on norm minimization is proposed to address the sparsity and iterative divergence issues in network reconstruction caused by noise and missing values.This method achieves...A Bayesian network reconstruction method based on norm minimization is proposed to address the sparsity and iterative divergence issues in network reconstruction caused by noise and missing values.This method achieves precise adjustment of the network structure by constructing a preliminary random network model and introducing small-world network characteristics and combines L1 norm minimization regularization techniques to control model complexity and optimize the inference process of variable dependencies.In the experiment of game network reconstruction,when the success rate of the L1 norm minimization model’s existence connection reconstruction reaches 100%,the minimum data required is about 40%,while the minimum data required for a sparse Bayesian learning network is about 45%.In terms of operational efficiency,the running time for minimizing the L1 normis basically maintained at 1.0 s,while the success rate of connection reconstruction increases significantly with an increase in data volume,reaching a maximum of 13.2 s.Meanwhile,in the case of a signal-to-noise ratio of 10 dB,the L1 model achieves a 100% success rate in the reconstruction of existing connections,while the sparse Bayesian network had the highest success rate of 90% in the reconstruction of non-existent connections.In the analysis of actual cases,the maximum lift and drop track of the research method is 0.08 m.The mean square error is 5.74 cm^(2).The results indicate that this norm minimization-based method has good performance in data efficiency and model stability,effectively reducing the impact of outliers on the reconstruction results to more accurately reflect the actual situation.展开更多
In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergen...In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergence of NSD random variables.We establish and improve a general result on the complete f-moment convergence for Sung’s type randomly weighted sums of NSD random variables under some general assumptions.As an application,we show the complete consistency for the randomly weighted estimator in a nonparametric regression model based on NSD errors.展开更多
The dynamic kinetic resolution(DKR)process remains a highly efficacious approach for constructing chiral amino alcohols via the catalytic asymmetric hydrogenation ofα-amino ketones.We report herein a highly efficient...The dynamic kinetic resolution(DKR)process remains a highly efficacious approach for constructing chiral amino alcohols via the catalytic asymmetric hydrogenation ofα-amino ketones.We report herein a highly efficient and enantioselective anti-selective dynamic kinetic asymmetric hydrogenation ofα-amino ketones catalyzed by Ir-(S)-f-phamidol system,providing various chiral amino alcohols and chiral oxazolidin-2-ones divergently with high diastereo-and enantioselectivity(up to 99%yield,up to 99%ee and up to 99:1 dr).In addition,the reaction could be performed on the gram-scale,and the resulting chiral amino alcohols are key intermediates of norephedrine and metaraminol.展开更多
Long-term niche differentiation will lead to the evolution of diverse adaptive strategies for species in diverse environments. The present study selected two Forsythia species, Forsythia mandshurica(Fm)-which naturall...Long-term niche differentiation will lead to the evolution of diverse adaptive strategies for species in diverse environments. The present study selected two Forsythia species, Forsythia mandshurica(Fm)-which naturally occurs in a cold temperate zone and Forsythia suspensa(Fs)-which thrives in a warm temperate zone-to reveal their differential chilling defense mechanisms by integrating morpho-physiological,transcriptomic, and metabolomic data. Transcriptome results show that Fm has evolved in a series of adaptive mechanisms designed to help the plants to cope with chilling stress by enhancing sugar, amino acid, hormone, polyamine, and phenol content to improve cell osmotic potential and to mitigate petal browning. Metabolomic data suggested the increased chilling resistance of Fm relies on in the plant being rich in a-linolenic acid, linoleic acid, as well as two amino acids, Phe and Trp, and has low levels of cinnamic acid and gramine in flowers compared to Fs. A higher abundance of glutathione disulfide and NADPH regulated by glutathione peroxidases and NADPH improved the ability of the cellular antioxidant and reduction-oxidation system stability in Fm;Additionally, the elevated levels of pyruvate, a-ketoglutaric acid, and oxaloacetic acid in Fm contributed to a significantly enhanced ATP production in mitochondria. Through Ka/Ks and gene expression analysis,four transcription factors, EVM0025036(bHLH), EVM0010639 and EVM0007275(AP2), and EVM0025908(bZIP) were identified that may contribute to the high cold tolerance of Fm. These adaptations highlight the intricate interplay between genetic and physiological processes that shape the survival strategies of plants in response to their specific ecological niches.展开更多
Objective:With Persicaria capitata as test materials,we compared and analyzed the chloroplast(cp)genome characteristics as well as their phylogenetic relationships and evolutionary history with related species of Pers...Objective:With Persicaria capitata as test materials,we compared and analyzed the chloroplast(cp)genome characteristics as well as their phylogenetic relationships and evolutionary history with related species of Persicaria nepalensis,Persicaria japonica,Persicaria chinensis,Persicaria filiformis,Persicaria perfoliata,Persicaria pubescens,Persicaria hnydropiper.Methods:The Illumina HiSeq high-throughput sequencing platform was used for the first time for P.capitata cp genome sequencing.NOVOPlasty and CpGAVAS2 were used for assembly and annotation,and Codon W,DnaSP,and MISA were used to conduct a series of comparative genomic analyses between the plant and seven species of the same genus.A phylogenetic tree was constructed using the maximum likelihood(ML)and neighbor-joining(NJ)methods,and divergence time was estimated using BEAST.Results:The total length of P.capitata cp genome was 158,821 bp,with a guanine and cytosine(GC)content of 38.0%,exhibiting a typical circular tetrad structure.The genome contains 127 annotated genes,including 82 protein-coding and 45 tRNA-encoding genes.The cp genome harbors simple sequence repeat(SSR)loci primarily composed of A/T.The conserved species structure of this genus is reinforced by the expansion and contraction of the inverted repeat(IR)region.The non-coding regions of the cp genomes exhibited significant differences among the genera.Six different mutation hotspots(psbK-psbI,atpI-rps2,petN-psbD,atpB-rbcL,cemA-petA,ndhI-ndhA-ycf1)were screened from the non-coding regions of genes with high nucleotide variability(pI).These hotspots were expected to define the phylogenetic species of Persicaria.Furthermore,phylogenetic analysis of Polygonaceae plants showed that P.capitata was more closely related to P.chinensis than P.nepalensis.Analysis of divergence time indicated that Polygonaceae originated in the Late Cretaceous(~180 Ma)and began to differentiate during the Middle Miocene.Persicaria differentiated~66.44 million years ago,during the Miocene.Conclusions:Our findings will serve as a scientific basis for further research on species identification and evolution,population genetics,and phylogenetic analysis of P.capitata.Further,we provide valuable information for understanding the origin and evolution of Persicaria in Polygonaceae and estimating the differentiation time of Persicaria and its population.展开更多
The rapid development of Internet technology has made“Internet+”a hallmark of the current era.The transformation and development of traditional media into all-media have provided a guiding direction for the developm...The rapid development of Internet technology has made“Internet+”a hallmark of the current era.The transformation and development of traditional media into all-media have provided a guiding direction for the development of campus media.The traditional form of campus media,which mainly consists of campus newspapers and campus radio,can no longer meet the application demands of modern higher education for media.In line with the current media convergence environment,campus media need to actively innovate to achieve their own development and progress in keeping with the times.This article explores the innovation path of campus media in the context of media convergence,analyzing the promotion of campus media innovation by the development of new media,the diversification of campus media innovation,and the effective ways of campus media innovation,in order to promote the realization of the innovation and development goals of campus media in the context of media convergence.展开更多
This study looks at how the Belt and Road Initiative(BRI)has affected the economic convergence of the Central Asian Turkic Republics,China,Pakistan,and their major diplomatic partners in the Silk Road region.Using bet...This study looks at how the Belt and Road Initiative(BRI)has affected the economic convergence of the Central Asian Turkic Republics,China,Pakistan,and their major diplomatic partners in the Silk Road region.Using beta and sigma convergence models over a predetermined time frame,the research evaluates economic alignment trends statistically and looks into how trade openness,FDI,and human capital affect the convergence process.The research attempts to discover larger causes of convergence,such as institutional quality and geopolitical closeness,by combining econometric analysis with regional economic dynamics.The purpose of the results is to provide policy suggestions that will improve equitable and sustainable economic convergence inside the Silk Road circle,promoting international cooperation and growth.展开更多
In this study,we present a deterministic convergence analysis of Gated Recurrent Unit(GRU)networks enhanced by a smoothing L_(1)regularization technique.While GRU architectures effectively mitigate gradient vanishing/...In this study,we present a deterministic convergence analysis of Gated Recurrent Unit(GRU)networks enhanced by a smoothing L_(1)regularization technique.While GRU architectures effectively mitigate gradient vanishing/exploding issues in sequential modeling,they remain prone to overfitting,particularly under noisy or limited training data.Traditional L_(1)regularization,despite enforcing sparsity and accelerating optimization,introduces non-differentiable points in the error function,leading to oscillations during training.To address this,we propose a novel smoothing L_(1)regularization framework that replaces the non-differentiable absolute function with a quadratic approximation,ensuring gradient continuity and stabilizing the optimization landscape.Theoretically,we rigorously establish threekey properties of the resulting smoothing L_(1)-regularizedGRU(SL_(1)-GRU)model:(1)monotonic decrease of the error function across iterations,(2)weak convergence characterized by vanishing gradients as iterations approach infinity,and(3)strong convergence of network weights to fixed points under finite conditions.Comprehensive experiments on benchmark datasets-spanning function approximation,classification(KDD Cup 1999 Data,MNIST),and regression tasks(Boston Housing,Energy Efficiency)-demonstrate SL_(1)-GRUs superiority over baseline models(RNN,LSTM,GRU,L_(1)-GRU,L2-GRU).Empirical results reveal that SL_(1)-GRU achieves 1.0%-2.4%higher test accuracy in classification,7.8%-15.4%lower mean squared error in regression compared to unregularized GRU,while reducing training time by 8.7%-20.1%.These outcomes validate the method’s efficacy in balancing computational efficiency and generalization capability,and they strongly corroborate the theoretical calculations.The proposed framework not only resolves the non-differentiability challenge of L_(1)regularization but also provides a theoretical foundation for convergence guarantees in recurrent neural network training.展开更多
Mammalian scent glands mediate species-specific chemical communication,yet the mechanistic basis for convergent musk production remain incompletely understood.Forest musk deer and muskrat have independently evolved sp...Mammalian scent glands mediate species-specific chemical communication,yet the mechanistic basis for convergent musk production remain incompletely understood.Forest musk deer and muskrat have independently evolved specialized musk-secreting glands,representing a striking case of convergent evolution.Through an integrated multi-omics approach,this study identified cyclopentadecanone as a shared key metabolic precursor in musk from both forest musk deer and muskrat,although downstream metabolite profiles diverged between the two lineages.Single-cell RNA sequencing revealed that these specialized apocrine glands possessed unique secretory architecture and exhibited transcriptional profiles associated with periodic musk production,distinct from those in conventional apocrine glands.Convergent features were evident at the cellular level,where acinar,ductal,and basal epithelial subtypes showed parallel molecular signatures across both taxa.Notably,acinar cells in both species expressed common genes involved in fatty acid and glycerolipid metabolism(e.g.,ACSBG1,HSD17B12,HACD2,and HADHA),suggesting a conserved molecular framework for musk precursor biosynthesis.Metagenomic analysis of musk samples further revealed parallel microbial community structures dominated by Corynebacterium and enriched in lipid metabolic pathways.These findings suggest multi-level convergence in musk biosynthesis,from molecular pathways to microbial communities,providing novel insights into mammalian chemical signaling and artificial musk production.展开更多
Extreme heat and chronic water scarcity present formidable challenges to large desert-dwelling mammals.In addition to camels,antelopes within the Hippotraginae and Alcelaphinae subfamilies also exhibit remarkable phys...Extreme heat and chronic water scarcity present formidable challenges to large desert-dwelling mammals.In addition to camels,antelopes within the Hippotraginae and Alcelaphinae subfamilies also exhibit remarkable physiological and genetic specializations for desert survival.Among them,the critically endangered addax(Addax nasomaculatus)represents the most desert-adapted antelope species.However,the evolutionary and molecular mechanisms underlying desert adaptations remain largely unexplored.Herein,a high-quality genome assembly of the addax was generated to investigate the molecular evolution of desert adaptation in camels and desert antelopes.Comparative genomic analyses identified 136 genes harboring convergent amino acid substitutions implicated in crucial biological processes,including water reabsorption,fat metabolism,and stress response.Notably,a convergent R146S amino acid mutation in the prostaglandin EP2 receptor gene PTGER2 significantly reduced receptor activity,potentially facilitating large-mammal adaptation to arid environments.Lineage-specific innovations were also identified in desert antelopes,including previously uncharacterized conserved non-coding elements.Functional assays revealed that several of these elements exerted significant regulatory effects in vitro,suggesting potential roles in adaptive gene expression.Additionally,signals of introgression and variation in genetic load were observed,indicating their possible influence on desert adaptation.These findings provide insights into the sequential evolutionary processes that drive physiological resilience in arid environments and highlight the importance of convergent evolution in shaping adaptive traits in large terrestrial mammals.展开更多
This study introduces a novel distance measure(DM)for(p,q,r)-spherical fuzzy sets((p,q,to improve decision-making in complex and uncertain environments.Many existing distance measures eitherr)-SFSs)fail to satisfy ess...This study introduces a novel distance measure(DM)for(p,q,r)-spherical fuzzy sets((p,q,to improve decision-making in complex and uncertain environments.Many existing distance measures eitherr)-SFSs)fail to satisfy essential axiomatic properties or produce unintuitive outcomes.To address these limitations,we propose a new three-dimensional divergence-based DM that ensures mathematical consistency,enhances the discrimination of information,and adheres to the axiomatic framework of distance theory.Building on this foundation,we construct a multi-criteria decision-making(MCDM)model that utilizes the proposed DM to evaluate and rank alternatives effectively.The applicability and robustness of the model are validated through a practical case study,demonstrating that it leads to more rational,consistent,and reliable decision outcomes compared to existing approaches.展开更多
As a practicing anatomic pathologist specialized in urologic pathology,a vast difference may be observed between what pathologists designate as neuroendocrine(or small cell)carcinoma of the prostate,and what clinician...As a practicing anatomic pathologist specialized in urologic pathology,a vast difference may be observed between what pathologists designate as neuroendocrine(or small cell)carcinoma of the prostate,and what clinicians or basic scientists define as such.展开更多
This chapter starts with an introduction illuminating the theoretical back-ground necessary for taking culture into account in HCI design. Definitions of concepts used are provided followed by a historical overview on...This chapter starts with an introduction illuminating the theoretical back-ground necessary for taking culture into account in HCI design. Definitions of concepts used are provided followed by a historical overview on taking culture into account in HCI design. Subsequently, a glimpse of the current state of research in culture-centered HCI design is derived from secondary literature providing the gist of the structures, processes, methods, models and theoretic approaches concerning the relationship between culture and HCI design (“converging” strategies). After presenting controversies and challenges, a short discussion of results from empirical studies and design recommendations for culture-centered HCI design lead to implications and trends in future intercultural user interface design research to close the knowledge gap (the “divergence”) regarding the relationship between culture and Human-Computer Interaction (HCI), i.e. converging the divergence to reach the convergent divergence.展开更多
Alarm calls in bird vocalizations serve as acoustic signals announcing danger.Owing to the convergent evolution of alarm calls,some bird species can beneft from eavesdropping on certain parameters of alarm calls of ot...Alarm calls in bird vocalizations serve as acoustic signals announcing danger.Owing to the convergent evolution of alarm calls,some bird species can beneft from eavesdropping on certain parameters of alarm calls of other species.Vocal mimicry,displayed by many bird species,aids defense against predators and may help brood parasites during parasitism.In the coevolutionary dynamics between brood parasites,such as the common cuckoo(Cuculus canorus),and their hosts,female cuckoo vocalizations can induce hosts to leave the nest,increasing the probability of successful parasitism and reducing the risk of host attacks.Such cuckoo calls were thought to mimic those of the sparrowhawk.However,owing to their similarity to alarm calls,we propose a new hypothesis:Female cuckoos cheat their hosts by mimicking the parameters of the host alarm call.In this study,we tested this new hypothesis and the sparrowhawk mimicry hypothesis simultaneously by manipulating the syllable rate in male and female common cuckoo vocalizations and playing them in front of the host Oriental reed warbler(Acrocephalus orientalis)for examination.The results indicate that similar to a normal female cuckoo call,a female call with a reduced syllable rate prompted the hosts to leave their nests more frequently and rapidly than male cuckoo calls.Additionally,the male cuckoo calls with increased syllable rate did not prompt the host to leave their nests more frequently or quickly compared with the male cuckoo calls with a normal syllable rate.Our results further confrm that female common cuckoos mimic the vocalizations of Eurasian sparrowhawks(Accipiter nisus),reveal the function mechanisms underlying such mimicry,and support the theory of imperfect mimicry.展开更多
The harmonic balance method(HBM)has been widely applied to get the periodic solution of nonlinear systems,however,its convergence rate as well as computation efficiency is dramatically degraded when the system is high...The harmonic balance method(HBM)has been widely applied to get the periodic solution of nonlinear systems,however,its convergence rate as well as computation efficiency is dramatically degraded when the system is highly non-smooth,e.g.,discontinuous.In order to accelerate the convergence,an enriched HBM is developed in this paper where the non-smooth Bernoulli bases are additionally introduced to enrich the conventional Fourier bases.The basic idea behind is that the convergence rate of the HB solution,as a truncated Fourier series,can be improved if the smoothness of the solution becomes finer.Along this line,using non-smooth Bernoulli bases can compensate the highly non-smooth part of the solution and then,the smoothness of the residual part for Fourier approximation is improved so as to achieve accelerated convergence.Numerical examples are conducted on systems with non-smooth restoring and/or external forces.The results confirm that the proposed enriched HBM indeed increases the convergence rate and the increase becomes more significant if more non-smooth bases are used.展开更多
基金supported by DST-FIST(Government of India)(Grant No.SR/FIST/MS-1/2017/13)and Seed Money Project(Grant No.DoRDC/733).
文摘This study numerically examines the heat and mass transfer characteristics of two ternary nanofluids via converging and diverg-ing channels.Furthermore,the study aims to assess two ternary nanofluids combinations to determine which configuration can provide better heat and mass transfer and lower entropy production,while ensuring cost efficiency.This work bridges the gap be-tween academic research and industrial feasibility by incorporating cost analysis,entropy generation,and thermal efficiency.To compare the velocity,temperature,and concentration profiles,we examine two ternary nanofluids,i.e.,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O and TiO_(2)+SiO_(2)+Cu/H_(2)O,while considering the shape of nanoparticles.The velocity slip and Soret/Dufour effects are taken into consideration.Furthermore,regression analysis for Nusselt and Sherwood numbers of the model is carried out.The Runge-Kutta fourth-order method with shooting technique is employed to acquire the numerical solution of the governed system of ordinary differential equations.The flow pattern attributes of ternary nanofluids are meticulously examined and simulated with the fluc-tuation of flow-dominating parameters.Additionally,the influence of these parameters is demonstrated in the flow,temperature,and concentration fields.For variation in Eckert and Dufour numbers,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher temperature than TiO_(2)+SiO_(2)+Cu/H_(2)O.The results obtained indicate that the ternary nanofluid TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher heat transfer rate,lesser entropy generation,greater mass transfer rate,and lower cost than that of TiO_(2)+SiO_(2)+Cu/H_(2)O ternary nanofluid.
基金supported in part by the Rosetrees Trust(#CF-2023-I-2_113)by the Israel Ministry of Innovation,Science,and Technology(#7393)(to ES).
文摘The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they exhibit dense interconnectivity(Braitenburg and Schüz,1998;Campagnola et al.,2022).The strength and probability of connectivity depend on cell type,inter-neuronal distance,and species.Still,every cortical neuron receives input from thousands of other neurons while transmitting output to a similar number of neurons.Second,communication between neurons occurs primarily via chemical or electrical synapses.
基金This project is supported by National Natural Science Foundation of China (No.50275053) and Provincial Natural Science Fundation of Guangdong (No.020857).
文摘A new type of composite CVT(continuously variable transmission) systemsfeatured by power flow divergence and dual-mode convergence, capable of improving CVT's efficiencyand power capacity or making AMTs(automated manual transmissions) become continuously variable, isstudied. With specific mechano-mechanical and electromechanical composite CVT systems as detailedexamples, its basic working principles are expatiated. General methods and key points in designingand realizing such systems are also analyzed and discussed.
基金the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Small Research Project under grant number RGP1/141/46.
文摘While interval-valued picture fuzzy sets(IvPFSs)provide a powerful tool for modeling uncertainty and ambiguity in various fields,existing divergence measures for IvPFSs remain limited and often produce counterintuitive results.To address these shortcomings,this paper introduces two novel divergencemeasures for IvPFSs,inspired by the Jensen-Shannon divergence.The fundamental properties of the proposed measures-non-degeneracy,symmetry,triangular inequality,and boundedness-are rigorously proven.Comparative analyses with existing measures are conducted through specific cases and numerical examples,clearly demonstrating the advantages of our approach.Furthermore,we apply the new divergence measures to develop an enhanced interval-valued picture fuzzy TOPSIS method for risk assessment in construction projects,showing the practical applicability and effectiveness of our contributions.
基金supported by Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University(Grant No.102/01003002031)Re-accompanying Funding Project of Academic Achievements of Jingdezhen Ceramic University(Grant Nos.215/20506277,215/20506341)。
文摘The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the equivalent conditions of complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space.The results complement the corresponding results in probability space to those for sequences of independent,identically distributed random variables under sublinear expectation space.
基金supported by the Scientific and Technological Developing Scheme of Jilin Province,China(No.20240101371JC)the National Natural Science Foundation of China(No.62107008).
文摘A Bayesian network reconstruction method based on norm minimization is proposed to address the sparsity and iterative divergence issues in network reconstruction caused by noise and missing values.This method achieves precise adjustment of the network structure by constructing a preliminary random network model and introducing small-world network characteristics and combines L1 norm minimization regularization techniques to control model complexity and optimize the inference process of variable dependencies.In the experiment of game network reconstruction,when the success rate of the L1 norm minimization model’s existence connection reconstruction reaches 100%,the minimum data required is about 40%,while the minimum data required for a sparse Bayesian learning network is about 45%.In terms of operational efficiency,the running time for minimizing the L1 normis basically maintained at 1.0 s,while the success rate of connection reconstruction increases significantly with an increase in data volume,reaching a maximum of 13.2 s.Meanwhile,in the case of a signal-to-noise ratio of 10 dB,the L1 model achieves a 100% success rate in the reconstruction of existing connections,while the sparse Bayesian network had the highest success rate of 90% in the reconstruction of non-existent connections.In the analysis of actual cases,the maximum lift and drop track of the research method is 0.08 m.The mean square error is 5.74 cm^(2).The results indicate that this norm minimization-based method has good performance in data efficiency and model stability,effectively reducing the impact of outliers on the reconstruction results to more accurately reflect the actual situation.
基金supported by the National Social Science Fundation(Grant No.21BTJ040)the Project of Outstanding Young People in University of Anhui Province(Grant Nos.2023AH020037,SLXY2024A001).
文摘In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergence of NSD random variables.We establish and improve a general result on the complete f-moment convergence for Sung’s type randomly weighted sums of NSD random variables under some general assumptions.As an application,we show the complete consistency for the randomly weighted estimator in a nonparametric regression model based on NSD errors.
基金the National Key R&D Program of China(No.2021YFA1500201)Shenzhen Science and Technology Innovation Committee(No.KQTD20150717103157174)+6 种基金Stable Support Plan Program of Shenzhen Natural Science Fund(No.20200925161222002)Key-Area Research and Development Program of Guangdong Province(No.2020B010188001)Innovative Team of Universities in Guangdong Province(No.2020KCXTD016)National Natural Science Foundation of China(No.21991113)the National Natural Science Foundation of China(Nos.21901107 and 22171129)the Guangdong Basic and Applied Basic Research Foundation(2022B1515020055)Shenzhen Science and Technology Innovation Committee(No.JCYJ20210324104202007)for financial support。
文摘The dynamic kinetic resolution(DKR)process remains a highly efficacious approach for constructing chiral amino alcohols via the catalytic asymmetric hydrogenation ofα-amino ketones.We report herein a highly efficient and enantioselective anti-selective dynamic kinetic asymmetric hydrogenation ofα-amino ketones catalyzed by Ir-(S)-f-phamidol system,providing various chiral amino alcohols and chiral oxazolidin-2-ones divergently with high diastereo-and enantioselectivity(up to 99%yield,up to 99%ee and up to 99:1 dr).In addition,the reaction could be performed on the gram-scale,and the resulting chiral amino alcohols are key intermediates of norephedrine and metaraminol.
基金supported by the National Natural Science Foundation of China(Grant NO.32360307).
文摘Long-term niche differentiation will lead to the evolution of diverse adaptive strategies for species in diverse environments. The present study selected two Forsythia species, Forsythia mandshurica(Fm)-which naturally occurs in a cold temperate zone and Forsythia suspensa(Fs)-which thrives in a warm temperate zone-to reveal their differential chilling defense mechanisms by integrating morpho-physiological,transcriptomic, and metabolomic data. Transcriptome results show that Fm has evolved in a series of adaptive mechanisms designed to help the plants to cope with chilling stress by enhancing sugar, amino acid, hormone, polyamine, and phenol content to improve cell osmotic potential and to mitigate petal browning. Metabolomic data suggested the increased chilling resistance of Fm relies on in the plant being rich in a-linolenic acid, linoleic acid, as well as two amino acids, Phe and Trp, and has low levels of cinnamic acid and gramine in flowers compared to Fs. A higher abundance of glutathione disulfide and NADPH regulated by glutathione peroxidases and NADPH improved the ability of the cellular antioxidant and reduction-oxidation system stability in Fm;Additionally, the elevated levels of pyruvate, a-ketoglutaric acid, and oxaloacetic acid in Fm contributed to a significantly enhanced ATP production in mitochondria. Through Ka/Ks and gene expression analysis,four transcription factors, EVM0025036(bHLH), EVM0010639 and EVM0007275(AP2), and EVM0025908(bZIP) were identified that may contribute to the high cold tolerance of Fm. These adaptations highlight the intricate interplay between genetic and physiological processes that shape the survival strategies of plants in response to their specific ecological niches.
基金supported by the National Natural Science Foundation of China(82060913).
文摘Objective:With Persicaria capitata as test materials,we compared and analyzed the chloroplast(cp)genome characteristics as well as their phylogenetic relationships and evolutionary history with related species of Persicaria nepalensis,Persicaria japonica,Persicaria chinensis,Persicaria filiformis,Persicaria perfoliata,Persicaria pubescens,Persicaria hnydropiper.Methods:The Illumina HiSeq high-throughput sequencing platform was used for the first time for P.capitata cp genome sequencing.NOVOPlasty and CpGAVAS2 were used for assembly and annotation,and Codon W,DnaSP,and MISA were used to conduct a series of comparative genomic analyses between the plant and seven species of the same genus.A phylogenetic tree was constructed using the maximum likelihood(ML)and neighbor-joining(NJ)methods,and divergence time was estimated using BEAST.Results:The total length of P.capitata cp genome was 158,821 bp,with a guanine and cytosine(GC)content of 38.0%,exhibiting a typical circular tetrad structure.The genome contains 127 annotated genes,including 82 protein-coding and 45 tRNA-encoding genes.The cp genome harbors simple sequence repeat(SSR)loci primarily composed of A/T.The conserved species structure of this genus is reinforced by the expansion and contraction of the inverted repeat(IR)region.The non-coding regions of the cp genomes exhibited significant differences among the genera.Six different mutation hotspots(psbK-psbI,atpI-rps2,petN-psbD,atpB-rbcL,cemA-petA,ndhI-ndhA-ycf1)were screened from the non-coding regions of genes with high nucleotide variability(pI).These hotspots were expected to define the phylogenetic species of Persicaria.Furthermore,phylogenetic analysis of Polygonaceae plants showed that P.capitata was more closely related to P.chinensis than P.nepalensis.Analysis of divergence time indicated that Polygonaceae originated in the Late Cretaceous(~180 Ma)and began to differentiate during the Middle Miocene.Persicaria differentiated~66.44 million years ago,during the Miocene.Conclusions:Our findings will serve as a scientific basis for further research on species identification and evolution,population genetics,and phylogenetic analysis of P.capitata.Further,we provide valuable information for understanding the origin and evolution of Persicaria in Polygonaceae and estimating the differentiation time of Persicaria and its population.
文摘The rapid development of Internet technology has made“Internet+”a hallmark of the current era.The transformation and development of traditional media into all-media have provided a guiding direction for the development of campus media.The traditional form of campus media,which mainly consists of campus newspapers and campus radio,can no longer meet the application demands of modern higher education for media.In line with the current media convergence environment,campus media need to actively innovate to achieve their own development and progress in keeping with the times.This article explores the innovation path of campus media in the context of media convergence,analyzing the promotion of campus media innovation by the development of new media,the diversification of campus media innovation,and the effective ways of campus media innovation,in order to promote the realization of the innovation and development goals of campus media in the context of media convergence.
文摘This study looks at how the Belt and Road Initiative(BRI)has affected the economic convergence of the Central Asian Turkic Republics,China,Pakistan,and their major diplomatic partners in the Silk Road region.Using beta and sigma convergence models over a predetermined time frame,the research evaluates economic alignment trends statistically and looks into how trade openness,FDI,and human capital affect the convergence process.The research attempts to discover larger causes of convergence,such as institutional quality and geopolitical closeness,by combining econometric analysis with regional economic dynamics.The purpose of the results is to provide policy suggestions that will improve equitable and sustainable economic convergence inside the Silk Road circle,promoting international cooperation and growth.
基金supported by the National Science Fund for Distinguished Young Scholarship(No.62025602)National Natural Science Foundation of China(Nos.U22B2036,11931015)+2 种基金the Fok Ying-Tong Education Foundation China(No.171105)the Fundamental Research Funds for the Central Universities(No.G2024WD0151)in part by the Tencent Foundation and XPLORER PRIZE.
文摘In this study,we present a deterministic convergence analysis of Gated Recurrent Unit(GRU)networks enhanced by a smoothing L_(1)regularization technique.While GRU architectures effectively mitigate gradient vanishing/exploding issues in sequential modeling,they remain prone to overfitting,particularly under noisy or limited training data.Traditional L_(1)regularization,despite enforcing sparsity and accelerating optimization,introduces non-differentiable points in the error function,leading to oscillations during training.To address this,we propose a novel smoothing L_(1)regularization framework that replaces the non-differentiable absolute function with a quadratic approximation,ensuring gradient continuity and stabilizing the optimization landscape.Theoretically,we rigorously establish threekey properties of the resulting smoothing L_(1)-regularizedGRU(SL_(1)-GRU)model:(1)monotonic decrease of the error function across iterations,(2)weak convergence characterized by vanishing gradients as iterations approach infinity,and(3)strong convergence of network weights to fixed points under finite conditions.Comprehensive experiments on benchmark datasets-spanning function approximation,classification(KDD Cup 1999 Data,MNIST),and regression tasks(Boston Housing,Energy Efficiency)-demonstrate SL_(1)-GRUs superiority over baseline models(RNN,LSTM,GRU,L_(1)-GRU,L2-GRU).Empirical results reveal that SL_(1)-GRU achieves 1.0%-2.4%higher test accuracy in classification,7.8%-15.4%lower mean squared error in regression compared to unregularized GRU,while reducing training time by 8.7%-20.1%.These outcomes validate the method’s efficacy in balancing computational efficiency and generalization capability,and they strongly corroborate the theoretical calculations.The proposed framework not only resolves the non-differentiability challenge of L_(1)regularization but also provides a theoretical foundation for convergence guarantees in recurrent neural network training.
基金supported by the National Natural Science Foundation of China(32225009,32370452,82274046)Jilin Agricultural University High-level Talent Introduction Fund(202020218)。
文摘Mammalian scent glands mediate species-specific chemical communication,yet the mechanistic basis for convergent musk production remain incompletely understood.Forest musk deer and muskrat have independently evolved specialized musk-secreting glands,representing a striking case of convergent evolution.Through an integrated multi-omics approach,this study identified cyclopentadecanone as a shared key metabolic precursor in musk from both forest musk deer and muskrat,although downstream metabolite profiles diverged between the two lineages.Single-cell RNA sequencing revealed that these specialized apocrine glands possessed unique secretory architecture and exhibited transcriptional profiles associated with periodic musk production,distinct from those in conventional apocrine glands.Convergent features were evident at the cellular level,where acinar,ductal,and basal epithelial subtypes showed parallel molecular signatures across both taxa.Notably,acinar cells in both species expressed common genes involved in fatty acid and glycerolipid metabolism(e.g.,ACSBG1,HSD17B12,HACD2,and HADHA),suggesting a conserved molecular framework for musk precursor biosynthesis.Metagenomic analysis of musk samples further revealed parallel microbial community structures dominated by Corynebacterium and enriched in lipid metabolic pathways.These findings suggest multi-level convergence in musk biosynthesis,from molecular pathways to microbial communities,providing novel insights into mammalian chemical signaling and artificial musk production.
基金supported by the National Key R&D Program of China(2022YFF1000100)Shaanxi Program for Support of Top-notch Young ProfessionalsFundamental Research Funds for the Central Universities。
文摘Extreme heat and chronic water scarcity present formidable challenges to large desert-dwelling mammals.In addition to camels,antelopes within the Hippotraginae and Alcelaphinae subfamilies also exhibit remarkable physiological and genetic specializations for desert survival.Among them,the critically endangered addax(Addax nasomaculatus)represents the most desert-adapted antelope species.However,the evolutionary and molecular mechanisms underlying desert adaptations remain largely unexplored.Herein,a high-quality genome assembly of the addax was generated to investigate the molecular evolution of desert adaptation in camels and desert antelopes.Comparative genomic analyses identified 136 genes harboring convergent amino acid substitutions implicated in crucial biological processes,including water reabsorption,fat metabolism,and stress response.Notably,a convergent R146S amino acid mutation in the prostaglandin EP2 receptor gene PTGER2 significantly reduced receptor activity,potentially facilitating large-mammal adaptation to arid environments.Lineage-specific innovations were also identified in desert antelopes,including previously uncharacterized conserved non-coding elements.Functional assays revealed that several of these elements exerted significant regulatory effects in vitro,suggesting potential roles in adaptive gene expression.Additionally,signals of introgression and variation in genetic load were observed,indicating their possible influence on desert adaptation.These findings provide insights into the sequential evolutionary processes that drive physiological resilience in arid environments and highlight the importance of convergent evolution in shaping adaptive traits in large terrestrial mammals.
文摘This study introduces a novel distance measure(DM)for(p,q,r)-spherical fuzzy sets((p,q,to improve decision-making in complex and uncertain environments.Many existing distance measures eitherr)-SFSs)fail to satisfy essential axiomatic properties or produce unintuitive outcomes.To address these limitations,we propose a new three-dimensional divergence-based DM that ensures mathematical consistency,enhances the discrimination of information,and adheres to the axiomatic framework of distance theory.Building on this foundation,we construct a multi-criteria decision-making(MCDM)model that utilizes the proposed DM to evaluate and rank alternatives effectively.The applicability and robustness of the model are validated through a practical case study,demonstrating that it leads to more rational,consistent,and reliable decision outcomes compared to existing approaches.
文摘As a practicing anatomic pathologist specialized in urologic pathology,a vast difference may be observed between what pathologists designate as neuroendocrine(or small cell)carcinoma of the prostate,and what clinicians or basic scientists define as such.
文摘This chapter starts with an introduction illuminating the theoretical back-ground necessary for taking culture into account in HCI design. Definitions of concepts used are provided followed by a historical overview on taking culture into account in HCI design. Subsequently, a glimpse of the current state of research in culture-centered HCI design is derived from secondary literature providing the gist of the structures, processes, methods, models and theoretic approaches concerning the relationship between culture and HCI design (“converging” strategies). After presenting controversies and challenges, a short discussion of results from empirical studies and design recommendations for culture-centered HCI design lead to implications and trends in future intercultural user interface design research to close the knowledge gap (the “divergence”) regarding the relationship between culture and Human-Computer Interaction (HCI), i.e. converging the divergence to reach the convergent divergence.
基金funded by the Education Department of Hainan Province(no.HnjgY 2022-12)the National Natural Science Foundation of China(no.32260127).
文摘Alarm calls in bird vocalizations serve as acoustic signals announcing danger.Owing to the convergent evolution of alarm calls,some bird species can beneft from eavesdropping on certain parameters of alarm calls of other species.Vocal mimicry,displayed by many bird species,aids defense against predators and may help brood parasites during parasitism.In the coevolutionary dynamics between brood parasites,such as the common cuckoo(Cuculus canorus),and their hosts,female cuckoo vocalizations can induce hosts to leave the nest,increasing the probability of successful parasitism and reducing the risk of host attacks.Such cuckoo calls were thought to mimic those of the sparrowhawk.However,owing to their similarity to alarm calls,we propose a new hypothesis:Female cuckoos cheat their hosts by mimicking the parameters of the host alarm call.In this study,we tested this new hypothesis and the sparrowhawk mimicry hypothesis simultaneously by manipulating the syllable rate in male and female common cuckoo vocalizations and playing them in front of the host Oriental reed warbler(Acrocephalus orientalis)for examination.The results indicate that similar to a normal female cuckoo call,a female call with a reduced syllable rate prompted the hosts to leave their nests more frequently and rapidly than male cuckoo calls.Additionally,the male cuckoo calls with increased syllable rate did not prompt the host to leave their nests more frequently or quickly compared with the male cuckoo calls with a normal syllable rate.Our results further confrm that female common cuckoos mimic the vocalizations of Eurasian sparrowhawks(Accipiter nisus),reveal the function mechanisms underlying such mimicry,and support the theory of imperfect mimicry.
基金supported by the National Natural Science Foundation of China (Grant No. 12372028)the National Key Research and Development Program of China (Grant No. 2020YFC2201101)the Guangdong Basic and Applied Basic Research Foundation (Grant No.2022A1515011809)。
文摘The harmonic balance method(HBM)has been widely applied to get the periodic solution of nonlinear systems,however,its convergence rate as well as computation efficiency is dramatically degraded when the system is highly non-smooth,e.g.,discontinuous.In order to accelerate the convergence,an enriched HBM is developed in this paper where the non-smooth Bernoulli bases are additionally introduced to enrich the conventional Fourier bases.The basic idea behind is that the convergence rate of the HB solution,as a truncated Fourier series,can be improved if the smoothness of the solution becomes finer.Along this line,using non-smooth Bernoulli bases can compensate the highly non-smooth part of the solution and then,the smoothness of the residual part for Fourier approximation is improved so as to achieve accelerated convergence.Numerical examples are conducted on systems with non-smooth restoring and/or external forces.The results confirm that the proposed enriched HBM indeed increases the convergence rate and the increase becomes more significant if more non-smooth bases are used.