This study numerically examines the heat and mass transfer characteristics of two ternary nanofluids via converging and diverg-ing channels.Furthermore,the study aims to assess two ternary nanofluids combinations to d...This study numerically examines the heat and mass transfer characteristics of two ternary nanofluids via converging and diverg-ing channels.Furthermore,the study aims to assess two ternary nanofluids combinations to determine which configuration can provide better heat and mass transfer and lower entropy production,while ensuring cost efficiency.This work bridges the gap be-tween academic research and industrial feasibility by incorporating cost analysis,entropy generation,and thermal efficiency.To compare the velocity,temperature,and concentration profiles,we examine two ternary nanofluids,i.e.,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O and TiO_(2)+SiO_(2)+Cu/H_(2)O,while considering the shape of nanoparticles.The velocity slip and Soret/Dufour effects are taken into consideration.Furthermore,regression analysis for Nusselt and Sherwood numbers of the model is carried out.The Runge-Kutta fourth-order method with shooting technique is employed to acquire the numerical solution of the governed system of ordinary differential equations.The flow pattern attributes of ternary nanofluids are meticulously examined and simulated with the fluc-tuation of flow-dominating parameters.Additionally,the influence of these parameters is demonstrated in the flow,temperature,and concentration fields.For variation in Eckert and Dufour numbers,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher temperature than TiO_(2)+SiO_(2)+Cu/H_(2)O.The results obtained indicate that the ternary nanofluid TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher heat transfer rate,lesser entropy generation,greater mass transfer rate,and lower cost than that of TiO_(2)+SiO_(2)+Cu/H_(2)O ternary nanofluid.展开更多
The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they ...The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they exhibit dense interconnectivity(Braitenburg and Schüz,1998;Campagnola et al.,2022).The strength and probability of connectivity depend on cell type,inter-neuronal distance,and species.Still,every cortical neuron receives input from thousands of other neurons while transmitting output to a similar number of neurons.Second,communication between neurons occurs primarily via chemical or electrical synapses.展开更多
A new type of composite CVT(continuously variable transmission) systemsfeatured by power flow divergence and dual-mode convergence, capable of improving CVT's efficiencyand power capacity or making AMTs(automated ...A new type of composite CVT(continuously variable transmission) systemsfeatured by power flow divergence and dual-mode convergence, capable of improving CVT's efficiencyand power capacity or making AMTs(automated manual transmissions) become continuously variable, isstudied. With specific mechano-mechanical and electromechanical composite CVT systems as detailedexamples, its basic working principles are expatiated. General methods and key points in designingand realizing such systems are also analyzed and discussed.展开更多
This chapter starts with an introduction illuminating the theoretical back-ground necessary for taking culture into account in HCI design. Definitions of concepts used are provided followed by a historical overview on...This chapter starts with an introduction illuminating the theoretical back-ground necessary for taking culture into account in HCI design. Definitions of concepts used are provided followed by a historical overview on taking culture into account in HCI design. Subsequently, a glimpse of the current state of research in culture-centered HCI design is derived from secondary literature providing the gist of the structures, processes, methods, models and theoretic approaches concerning the relationship between culture and HCI design (“converging” strategies). After presenting controversies and challenges, a short discussion of results from empirical studies and design recommendations for culture-centered HCI design lead to implications and trends in future intercultural user interface design research to close the knowledge gap (the “divergence”) regarding the relationship between culture and Human-Computer Interaction (HCI), i.e. converging the divergence to reach the convergent divergence.展开更多
The central Pacific(CP) zonal wind divergence and convergence indices are defined, and the forming mechanism of CP El Nio(La Nia) events is discussed preliminarily. The results show that the divergence and converg...The central Pacific(CP) zonal wind divergence and convergence indices are defined, and the forming mechanism of CP El Nio(La Nia) events is discussed preliminarily. The results show that the divergence and convergence of the zonal wind anomaly(ZWA) are the key process in the forming of CP El Nio(La Nia) events. A correlation analysis between the central Pacific zonal wind divergence and convergence indices and central Pacific El Nio indices indicates that there is a remarkable lag correlation between them. The central Pacific zonal wind divergence and convergence indices can be used to predict the CP events. Based on these results, a linear regression equation is obtained to predict the CP El Nio(La Nia) events 5 months ahead.展开更多
The supersonic nozzle is a new apparatus which can be used to condense and separate water and heavy hydrocarbons from natural gas.The swirling separation of natural gas in the convergent-divergent nozzle was numerical...The supersonic nozzle is a new apparatus which can be used to condense and separate water and heavy hydrocarbons from natural gas.The swirling separation of natural gas in the convergent-divergent nozzle was numerically simulated based on a new design which incorporates a central body. Axial distribution of the main parameters of gas flow was investigated,while the basic parameters of gas flow were obtained as functions of radius at the nozzle exit.The effect of the nozzle geometry on the swirling separation was analyzed.The numerical results show that water and heavy hydrocarbons can be condensed and separated from natural gas under the combined effect of the low temperature(-80℃) and the centrifugal field(482,400g,g is the acceleration of gravity).The gas dynamic parameters are uniformly distributed correspondingly in the radial central region of the channel,for example the distribution range of the static temperature and the centrifugal acceleration are from -80 to -55℃and 220,000g to 500,000g,respectively,which would create good conditions for the cyclone separation of the liquids.However,high gradients of gas dynamic parameters near the channel walls may impair the process of separation.The geometry of the nozzle has a great influence on the separation performance. Increasing the nozzle convergent angle can improve the separation efficiency.The swirling natural gas can be well separated when the divergent angle takes values from 4°to 12°in the convergent-divergent nozzle.展开更多
In this research article,we introduce a numerical investigation through artificial neural networks(ANN)integrated with evolutionary algorithm especially Archimedean optimization algorithm(AOA)hybrid with the water cyc...In this research article,we introduce a numerical investigation through artificial neural networks(ANN)integrated with evolutionary algorithm especially Archimedean optimization algorithm(AOA)hybrid with the water cycle algorithm(WCA)to address and enhance the analysis of the non-linear magneto-hydrodynamic(MHD)Jeffery-Hamel problem,especially stretching/shrinking in convergent and divergent channel.This combined technique is referred to as ANN-AOA-WCA.The complex nonlinear magneto-hydrodynamic Jeffery-Hamel problem based partial differential equations are transformed into non-linear system of ordinary differential equations for velocity and temperature.We formulate the ANN based fitness function to find the solution of non-linear differential.Subsequently,we employ a novel hybridization of AOA and WCA(AOA-WCA)to optimize the ANN based fitness function and identify the best optimal weights and biases for ANN.To demonstrate the effectiveness and versatility of our proposed hybrid method,we explore MHD models across a range of Reynolds numbers,channel angles and stretchable boundary value leading to the development of two distinct cases.ANN-AOA-WCA numerical results closely align with reference solutions(NDSOLVE)and the absolute error between NDSOLVE and ANN-AOA-WCA is up to 3.35´10^(-8),particularly critical to the understanding of stretchable convergent and divergent channel.Furthermore,to validate the ANN-AOA-WCA technique,we conducted a statistical analysis over 150 independence runs to find the fitness value.展开更多
In this paper, we have investigated two observed situations in a multi-lane road. The first one concerns a fast merging vehicle. The second situation is related to the case of a fast vehicle leaving the fastest lane b...In this paper, we have investigated two observed situations in a multi-lane road. The first one concerns a fast merging vehicle. The second situation is related to the case of a fast vehicle leaving the fastest lane back into the slowest lane and targeting a specific way out. We are interested in the relaxation time T, i.e., which is the time that the merging (diverging) vehicle spends before reaching the desired lane. Using analytical treatment and numerical simulations for the NaSch model, we have found two states, namely, the free state in which the merging (diverging) vehicle reaches the desired lane, and the trapped state in which T diverges. We have established phase diagrams for several values of the braking probability. In the second situation, we have shown that diverging from the fast lane targeting a specific way out is not a simple task. Even if the diverging vehicle is in the free phase, two different states can be distinguished. One is the critical state, in which the diverging car can probably reach the desired way out. The other is the safe state, in which the diverging car can surely reach the desired way out. In order to be in the safe state, we have found that the driver of the diverging car must know the critical distance (below which the way out will be out of his reach) in each lane. Furthermore, this critical distance depends on the density of cars, and it follows an exponential law.展开更多
Let S = {1,1/2,1/2^2,…,1/∞ = 0} and I = [0, 1] be the unit interval. We use ↓USC(S) and ↓C(S) to denote the families of the regions below of all upper semi-continuous maps and of the regions below of all conti...Let S = {1,1/2,1/2^2,…,1/∞ = 0} and I = [0, 1] be the unit interval. We use ↓USC(S) and ↓C(S) to denote the families of the regions below of all upper semi-continuous maps and of the regions below of all continuous maps from S to I and ↓C0(S) = {↓f∈↓C(S) : f(0) = 0}. ↓USC(S) endowed with the Vietoris topology is a topological space. A pair of topological spaces (X, Y) means that X is a topological space and Y is its subspace. Two pairs of topological spaces (X, Y) and (A, B) are called pair-homeomorphic (≈) if there exists a homeomorphism h : X→A from X onto A such that h(Y) = B. It is proved that, (↓USC(S),↓C0(S)) ≈(Q, s) and (↓USC(S),↓C(S)/ ↓C0(S))≈(Q, c0), where Q = [-1,1]^ω is the Hilbert cube and s = (-1,1)^ω,c0= {(xn)∈Q : limn→∞= 0}. But we do not know what (↓USC(S),↓C(S))is.展开更多
Since the first Diverging Diamond Interchange (DDI) implementation in 2009, most of the performance studies developed for this type of interchange have been based on simulations and historical crash data, with a small...Since the first Diverging Diamond Interchange (DDI) implementation in 2009, most of the performance studies developed for this type of interchange have been based on simulations and historical crash data, with a small numbe<span style="font-family:Verdana;">r of studies using Automated Traffic Signal Performance Measures (ATS</span><span style="font-family:Verdana;">PM). Simulation models require considerable effort to collect volumes and to model actual controller operations. Safety studies based on historical crashes usually require from 3 to 5 years of data collection. ATSPMs rely on sensing equipment. This study describes the use of connected vehicle trajectory data to analyze the performance of a DDI located in the metropolitan area of Fort Wayne, IN. An extension of the Purdue Probe Diagram (PPD) is proposed to assess the levels of delay, progression, and saturation. Further, an additional PPD variation is presented that provides a convenient visualization to qualitatively understand progression patterns and to evaluate queue length for spillback in the critical interior crossover. Over 7000 trajectories and 130,000 GPS points were analyzed between the 7</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> and the 11</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> of June 2021 from 5:00 AM to 10:00 PM to estimate the DDI’s arrivals on green, level of service, split failures, and downstream blockage. Although this technique was demonstrated for weekdays, the ubiquity of connected vehicle data makes it very ea</span><span style="font-family:Verdana;">sy to adapt these techniques to analysis during special events, winter sto</span><span style="font-family:Verdana;">rms, and weekends. Furthermore, the methodologies presented in this paper can be applied by any agency wanting to assess the performance of any DDI in their jurisdiction.</span>展开更多
The structural features of fiber suspensions are dependent on the fiber alignment in the flows. In this work the orientation distribution function and orientation tensors for semi-concentrated fiber suspensions in ...The structural features of fiber suspensions are dependent on the fiber alignment in the flows. In this work the orientation distribution function and orientation tensors for semi-concentrated fiber suspensions in converging channel flow were calculated, and the evolutions of the fiber alignment and the bulk effective vis-cosity were analyzed. The results showed that the bulk stress and the effective viscosity were functions of therate-of-strain tensor and the fiber orientation state ; and that the fiber suspensions evolved to steady alignment and tended to concentrate to some preferred directions close to but not same as the directions of local stream-lines. The bulk effective viscosity depended on the product of Reynolds number and time. The decrease of ef-fective viscosity near the boundary benefited the increase of the rate of flow. Finally when the fiber alignment went into steady state, the structural features of fiber suspensions were not dependent on the Reynolds numberbut on the converging channel angle.展开更多
Although it is well known that cloud cavitation shows unsteady behavior with the growing motion of an attached cavity, the shedding motion of a cloud, the collapsing motion of the cloud shed downstream and a reentrant...Although it is well known that cloud cavitation shows unsteady behavior with the growing motion of an attached cavity, the shedding motion of a cloud, the collapsing motion of the cloud shed downstream and a reentrant motion in flow fields such as on a 2-D hydrofoil and in a convergent- divergent channel with a rectangular cross-section, observations for the periodic behavior of cloud cavitation in a cylindrical nozzle with a convergent-divergent part, which is mainly used in an industrial field, have hardly been conducted. From engineering viewpoints, it is important to elucidate the mechanism of periodic cavitation behavior in a cylindrical nozzle. In this study, a high-speed observation technique with an image analysis technique was applied to the cloud cavitation behavior in the nozzle to make clear the mechanism of unsteady behavior. As a result, it was observed in the nozzle that the periodic behavior occurs in the cloud cavitation and pressure waves form at the collapse of clouds shed downstream. Also, it was found through the image analysis based on the present technique that the pressure wave plays a role as a trigger mechanism to cause a reentrant motion at the downstream end of an attached cavity.展开更多
The converging Richtmyer-Meshkov(RM)instability on single-and dual-mode N2/SF6 interfaces is studied by an upwind conservation element and solution element solver.An unperturbed case is first considered,and it is foun...The converging Richtmyer-Meshkov(RM)instability on single-and dual-mode N2/SF6 interfaces is studied by an upwind conservation element and solution element solver.An unperturbed case is first considered,and it is found that the shocked interface undergoes a long-term deceleration after a period of uniform motion.The evolution of single-mode interface at the early stage exhibits an evident nonlinearity,which can be reasonably predicted by the nonlinear model of Wang et al.(Phys Plasmas 22:082702,2015).During the deceleration stage,the perturbation amplitude drops quickly and even becomes a negative(phase inversion)before the reshock due to the Rayleigh-Taylor(RT)stabilization.After the reshock,the interface experiences a phase inversion again or does not,depending on the reshock time.The growth of the second-order harmonic in the deceleration stage clearly reveals the competition between the RT effect and the nonlinearity.For dual-mode interfaces,the growth of the first mode(wavenumber k1)relies heavily on the second mode(wavenumber k2)due to the mode coupling effect.Specifically,for cases where k2 is an even or odd multiple of k1,the growth of the first mode is inhibited or promoted depending on its initial amplitude sign and the phase difference between two basic waves,while for cases where k2 is a non-integer multiple of k1,the second mode has negligible influence on the first mode.Through a systematic study,signs of perturbation amplitudes of the generated k2−k1 and k2+k1 waves are obtained for all possible dual-mode configurations,which are reasonably predicted by a modified Haan model(Phys Fluids B 3:2349-2355,1991).展开更多
Riemann zeta function has a key role in number theory and in its applications. In this paper we present a new fast converging series for . Applications of the series include the computation of the and recursive comput...Riemann zeta function has a key role in number theory and in its applications. In this paper we present a new fast converging series for . Applications of the series include the computation of the and recursive computation of , and generally . We discuss on the production of irrational number sequences e.g. for encryption coding and zeta function maps for analysis and synthesis of log-time sampled signals.展开更多
By thoroughly reviewing international studies on technology convergence and divergence, four kinds of hypothesis are proposed based on patent data Herfindhal index (HI) measurement. The main fmding is that technolog...By thoroughly reviewing international studies on technology convergence and divergence, four kinds of hypothesis are proposed based on patent data Herfindhal index (HI) measurement. The main fmding is that technology convergence does exist, based on patent technology records in China, primarily driven by overseas companies' strategic behavior, such as field intensiveness, competition during technology maturity session, and patent technology growth.展开更多
The action of the wind field and the influence of topography can cause divergence or convergence of surface current. The existence of the divergence-convergence effect is proved and the dynamical significance of the d...The action of the wind field and the influence of topography can cause divergence or convergence of surface current. The existence of the divergence-convergence effect is proved and the dynamical significance of the divergent or convergent state and its link with many marine phenomena are pointed out. Divergence fields of surface current in the Bohai Sea in winter and summer are obtained by numerical modelling describing the divergence-convergence character of seasonally wind-driven current. The relation between the effect and seasonal marine phenomena is discussed. Study on the divergence-convergence effect of surface current (DCESC)can be an indirect method for testing the calculated results.展开更多
Numerical research on the dilute particles movement and deposition characteristics in the vicinity of converging slot-hole(console) was carried out, and the effect of hole shape on the particle deposition characterist...Numerical research on the dilute particles movement and deposition characteristics in the vicinity of converging slot-hole(console) was carried out, and the effect of hole shape on the particle deposition characteristics was investigated. The EI-Batsh deposition model was used to predict the particle deposition characteristics. The results show that the console hole has an obvious advantage in reducing particle deposition in comparison with cylindrical hole, especially under higher blowing ratio. The coolant jet from console holes can cover the wall well. Furthermore, the rotation direction of vortices near console hole is contrary to that near cylindrical hole. For console holes, particle deposition mainly takes place in the upstream area of the holes.展开更多
It is found analytically that the parabolic radial profile of liquid velocity in cylindrical liquid-solid fluidized bed (LSFB) causes particles to circulate around some radial position. This is the main reason for liq...It is found analytically that the parabolic radial profile of liquid velocity in cylindrical liquid-solid fluidized bed (LSFB) causes particles to circulate around some radial position. This is the main reason for liquid-phase axial dispersions. The liquid-phase axial dispersion is depressed as the liquid velocity presents a flatter Bessel radial profile in a converging taper LSFB. The void fraction increases with axial distance in converging taper LSFB. The behavior produces less liquid-phase axial dispersion. Experimental results show good coincidence.展开更多
Converging spherical and cylindrical elastic-plastic waves in an isotropic work-hardening medium is investigated on the basis of a finite difference method. The small amplitude pressure is applied instantaneously and ...Converging spherical and cylindrical elastic-plastic waves in an isotropic work-hardening medium is investigated on the basis of a finite difference method. The small amplitude pressure is applied instantaneously and maintained on the outer surface of a spherical or a cylindrical medium. It is found that for undercritical loading, the induced wave structure is an elastic front followed in turn by an expanding plastic region and an expanding elastic region. For supercritical loading, the elastic front is followed in turn by an expanding plastic region, a narrowing elastic region and an expanding plastic region. After yielding is initiated, the strength of the elastic front is constant and equal to the critical loading pressure. The motion of the continuous elastic-plastic interface is discussed in detail. Spatial distributions of pressure near the axis show the strength of the converging wave is nearly doubled in the reflecting stage.展开更多
A series of novel ester-capped carbosilane dendrimers(G0-COOCH3–G2-COOCH3) were designed and successfully synthesized via a hybrid divergent–convergent method through a facile hydrosilylation reaction. The structu...A series of novel ester-capped carbosilane dendrimers(G0-COOCH3–G2-COOCH3) were designed and successfully synthesized via a hybrid divergent–convergent method through a facile hydrosilylation reaction. The structures of these dendrimers were confirmed by FTIR,1H NMR, and HRMS analyses.展开更多
基金supported by DST-FIST(Government of India)(Grant No.SR/FIST/MS-1/2017/13)and Seed Money Project(Grant No.DoRDC/733).
文摘This study numerically examines the heat and mass transfer characteristics of two ternary nanofluids via converging and diverg-ing channels.Furthermore,the study aims to assess two ternary nanofluids combinations to determine which configuration can provide better heat and mass transfer and lower entropy production,while ensuring cost efficiency.This work bridges the gap be-tween academic research and industrial feasibility by incorporating cost analysis,entropy generation,and thermal efficiency.To compare the velocity,temperature,and concentration profiles,we examine two ternary nanofluids,i.e.,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O and TiO_(2)+SiO_(2)+Cu/H_(2)O,while considering the shape of nanoparticles.The velocity slip and Soret/Dufour effects are taken into consideration.Furthermore,regression analysis for Nusselt and Sherwood numbers of the model is carried out.The Runge-Kutta fourth-order method with shooting technique is employed to acquire the numerical solution of the governed system of ordinary differential equations.The flow pattern attributes of ternary nanofluids are meticulously examined and simulated with the fluc-tuation of flow-dominating parameters.Additionally,the influence of these parameters is demonstrated in the flow,temperature,and concentration fields.For variation in Eckert and Dufour numbers,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher temperature than TiO_(2)+SiO_(2)+Cu/H_(2)O.The results obtained indicate that the ternary nanofluid TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher heat transfer rate,lesser entropy generation,greater mass transfer rate,and lower cost than that of TiO_(2)+SiO_(2)+Cu/H_(2)O ternary nanofluid.
基金supported in part by the Rosetrees Trust(#CF-2023-I-2_113)by the Israel Ministry of Innovation,Science,and Technology(#7393)(to ES).
文摘The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they exhibit dense interconnectivity(Braitenburg and Schüz,1998;Campagnola et al.,2022).The strength and probability of connectivity depend on cell type,inter-neuronal distance,and species.Still,every cortical neuron receives input from thousands of other neurons while transmitting output to a similar number of neurons.Second,communication between neurons occurs primarily via chemical or electrical synapses.
基金This project is supported by National Natural Science Foundation of China (No.50275053) and Provincial Natural Science Fundation of Guangdong (No.020857).
文摘A new type of composite CVT(continuously variable transmission) systemsfeatured by power flow divergence and dual-mode convergence, capable of improving CVT's efficiencyand power capacity or making AMTs(automated manual transmissions) become continuously variable, isstudied. With specific mechano-mechanical and electromechanical composite CVT systems as detailedexamples, its basic working principles are expatiated. General methods and key points in designingand realizing such systems are also analyzed and discussed.
文摘This chapter starts with an introduction illuminating the theoretical back-ground necessary for taking culture into account in HCI design. Definitions of concepts used are provided followed by a historical overview on taking culture into account in HCI design. Subsequently, a glimpse of the current state of research in culture-centered HCI design is derived from secondary literature providing the gist of the structures, processes, methods, models and theoretic approaches concerning the relationship between culture and HCI design (“converging” strategies). After presenting controversies and challenges, a short discussion of results from empirical studies and design recommendations for culture-centered HCI design lead to implications and trends in future intercultural user interface design research to close the knowledge gap (the “divergence”) regarding the relationship between culture and Human-Computer Interaction (HCI), i.e. converging the divergence to reach the convergent divergence.
基金The National Basic Research Program(973 Program)of China under contract No.2012CB417402the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11010102
文摘The central Pacific(CP) zonal wind divergence and convergence indices are defined, and the forming mechanism of CP El Nio(La Nia) events is discussed preliminarily. The results show that the divergence and convergence of the zonal wind anomaly(ZWA) are the key process in the forming of CP El Nio(La Nia) events. A correlation analysis between the central Pacific zonal wind divergence and convergence indices and central Pacific El Nio indices indicates that there is a remarkable lag correlation between them. The central Pacific zonal wind divergence and convergence indices can be used to predict the CP events. Based on these results, a linear regression equation is obtained to predict the CP El Nio(La Nia) events 5 months ahead.
基金supported by the National High Technology Research and Development Program of China("863 program",No.2007AA09Z301) the National Major Science&Technology Specific Projects(No.2008ZX05017-004)
文摘The supersonic nozzle is a new apparatus which can be used to condense and separate water and heavy hydrocarbons from natural gas.The swirling separation of natural gas in the convergent-divergent nozzle was numerically simulated based on a new design which incorporates a central body. Axial distribution of the main parameters of gas flow was investigated,while the basic parameters of gas flow were obtained as functions of radius at the nozzle exit.The effect of the nozzle geometry on the swirling separation was analyzed.The numerical results show that water and heavy hydrocarbons can be condensed and separated from natural gas under the combined effect of the low temperature(-80℃) and the centrifugal field(482,400g,g is the acceleration of gravity).The gas dynamic parameters are uniformly distributed correspondingly in the radial central region of the channel,for example the distribution range of the static temperature and the centrifugal acceleration are from -80 to -55℃and 220,000g to 500,000g,respectively,which would create good conditions for the cyclone separation of the liquids.However,high gradients of gas dynamic parameters near the channel walls may impair the process of separation.The geometry of the nozzle has a great influence on the separation performance. Increasing the nozzle convergent angle can improve the separation efficiency.The swirling natural gas can be well separated when the divergent angle takes values from 4°to 12°in the convergent-divergent nozzle.
文摘In this research article,we introduce a numerical investigation through artificial neural networks(ANN)integrated with evolutionary algorithm especially Archimedean optimization algorithm(AOA)hybrid with the water cycle algorithm(WCA)to address and enhance the analysis of the non-linear magneto-hydrodynamic(MHD)Jeffery-Hamel problem,especially stretching/shrinking in convergent and divergent channel.This combined technique is referred to as ANN-AOA-WCA.The complex nonlinear magneto-hydrodynamic Jeffery-Hamel problem based partial differential equations are transformed into non-linear system of ordinary differential equations for velocity and temperature.We formulate the ANN based fitness function to find the solution of non-linear differential.Subsequently,we employ a novel hybridization of AOA and WCA(AOA-WCA)to optimize the ANN based fitness function and identify the best optimal weights and biases for ANN.To demonstrate the effectiveness and versatility of our proposed hybrid method,we explore MHD models across a range of Reynolds numbers,channel angles and stretchable boundary value leading to the development of two distinct cases.ANN-AOA-WCA numerical results closely align with reference solutions(NDSOLVE)and the absolute error between NDSOLVE and ANN-AOA-WCA is up to 3.35´10^(-8),particularly critical to the understanding of stretchable convergent and divergent channel.Furthermore,to validate the ANN-AOA-WCA technique,we conducted a statistical analysis over 150 independence runs to find the fitness value.
文摘In this paper, we have investigated two observed situations in a multi-lane road. The first one concerns a fast merging vehicle. The second situation is related to the case of a fast vehicle leaving the fastest lane back into the slowest lane and targeting a specific way out. We are interested in the relaxation time T, i.e., which is the time that the merging (diverging) vehicle spends before reaching the desired lane. Using analytical treatment and numerical simulations for the NaSch model, we have found two states, namely, the free state in which the merging (diverging) vehicle reaches the desired lane, and the trapped state in which T diverges. We have established phase diagrams for several values of the braking probability. In the second situation, we have shown that diverging from the fast lane targeting a specific way out is not a simple task. Even if the diverging vehicle is in the free phase, two different states can be distinguished. One is the critical state, in which the diverging car can probably reach the desired way out. The other is the safe state, in which the diverging car can surely reach the desired way out. In order to be in the safe state, we have found that the driver of the diverging car must know the critical distance (below which the way out will be out of his reach) in each lane. Furthermore, this critical distance depends on the density of cars, and it follows an exponential law.
基金The NNSF (10471084) of China and by Guangdong Provincial Natural Science Foundation(04010985).
文摘Let S = {1,1/2,1/2^2,…,1/∞ = 0} and I = [0, 1] be the unit interval. We use ↓USC(S) and ↓C(S) to denote the families of the regions below of all upper semi-continuous maps and of the regions below of all continuous maps from S to I and ↓C0(S) = {↓f∈↓C(S) : f(0) = 0}. ↓USC(S) endowed with the Vietoris topology is a topological space. A pair of topological spaces (X, Y) means that X is a topological space and Y is its subspace. Two pairs of topological spaces (X, Y) and (A, B) are called pair-homeomorphic (≈) if there exists a homeomorphism h : X→A from X onto A such that h(Y) = B. It is proved that, (↓USC(S),↓C0(S)) ≈(Q, s) and (↓USC(S),↓C(S)/ ↓C0(S))≈(Q, c0), where Q = [-1,1]^ω is the Hilbert cube and s = (-1,1)^ω,c0= {(xn)∈Q : limn→∞= 0}. But we do not know what (↓USC(S),↓C(S))is.
文摘Since the first Diverging Diamond Interchange (DDI) implementation in 2009, most of the performance studies developed for this type of interchange have been based on simulations and historical crash data, with a small numbe<span style="font-family:Verdana;">r of studies using Automated Traffic Signal Performance Measures (ATS</span><span style="font-family:Verdana;">PM). Simulation models require considerable effort to collect volumes and to model actual controller operations. Safety studies based on historical crashes usually require from 3 to 5 years of data collection. ATSPMs rely on sensing equipment. This study describes the use of connected vehicle trajectory data to analyze the performance of a DDI located in the metropolitan area of Fort Wayne, IN. An extension of the Purdue Probe Diagram (PPD) is proposed to assess the levels of delay, progression, and saturation. Further, an additional PPD variation is presented that provides a convenient visualization to qualitatively understand progression patterns and to evaluate queue length for spillback in the critical interior crossover. Over 7000 trajectories and 130,000 GPS points were analyzed between the 7</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> and the 11</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> of June 2021 from 5:00 AM to 10:00 PM to estimate the DDI’s arrivals on green, level of service, split failures, and downstream blockage. Although this technique was demonstrated for weekdays, the ubiquity of connected vehicle data makes it very ea</span><span style="font-family:Verdana;">sy to adapt these techniques to analysis during special events, winter sto</span><span style="font-family:Verdana;">rms, and weekends. Furthermore, the methodologies presented in this paper can be applied by any agency wanting to assess the performance of any DDI in their jurisdiction.</span>
文摘The structural features of fiber suspensions are dependent on the fiber alignment in the flows. In this work the orientation distribution function and orientation tensors for semi-concentrated fiber suspensions in converging channel flow were calculated, and the evolutions of the fiber alignment and the bulk effective vis-cosity were analyzed. The results showed that the bulk stress and the effective viscosity were functions of therate-of-strain tensor and the fiber orientation state ; and that the fiber suspensions evolved to steady alignment and tended to concentrate to some preferred directions close to but not same as the directions of local stream-lines. The bulk effective viscosity depended on the product of Reynolds number and time. The decrease of ef-fective viscosity near the boundary benefited the increase of the rate of flow. Finally when the fiber alignment went into steady state, the structural features of fiber suspensions were not dependent on the Reynolds numberbut on the converging channel angle.
文摘Although it is well known that cloud cavitation shows unsteady behavior with the growing motion of an attached cavity, the shedding motion of a cloud, the collapsing motion of the cloud shed downstream and a reentrant motion in flow fields such as on a 2-D hydrofoil and in a convergent- divergent channel with a rectangular cross-section, observations for the periodic behavior of cloud cavitation in a cylindrical nozzle with a convergent-divergent part, which is mainly used in an industrial field, have hardly been conducted. From engineering viewpoints, it is important to elucidate the mechanism of periodic cavitation behavior in a cylindrical nozzle. In this study, a high-speed observation technique with an image analysis technique was applied to the cloud cavitation behavior in the nozzle to make clear the mechanism of unsteady behavior. As a result, it was observed in the nozzle that the periodic behavior occurs in the cloud cavitation and pressure waves form at the collapse of clouds shed downstream. Also, it was found through the image analysis based on the present technique that the pressure wave plays a role as a trigger mechanism to cause a reentrant motion at the downstream end of an attached cavity.
基金the National Natural Science Foundation of China(Grants 11802304 and 11625211)the Science Challenging Project(Grant TZ2016001).
文摘The converging Richtmyer-Meshkov(RM)instability on single-and dual-mode N2/SF6 interfaces is studied by an upwind conservation element and solution element solver.An unperturbed case is first considered,and it is found that the shocked interface undergoes a long-term deceleration after a period of uniform motion.The evolution of single-mode interface at the early stage exhibits an evident nonlinearity,which can be reasonably predicted by the nonlinear model of Wang et al.(Phys Plasmas 22:082702,2015).During the deceleration stage,the perturbation amplitude drops quickly and even becomes a negative(phase inversion)before the reshock due to the Rayleigh-Taylor(RT)stabilization.After the reshock,the interface experiences a phase inversion again or does not,depending on the reshock time.The growth of the second-order harmonic in the deceleration stage clearly reveals the competition between the RT effect and the nonlinearity.For dual-mode interfaces,the growth of the first mode(wavenumber k1)relies heavily on the second mode(wavenumber k2)due to the mode coupling effect.Specifically,for cases where k2 is an even or odd multiple of k1,the growth of the first mode is inhibited or promoted depending on its initial amplitude sign and the phase difference between two basic waves,while for cases where k2 is a non-integer multiple of k1,the second mode has negligible influence on the first mode.Through a systematic study,signs of perturbation amplitudes of the generated k2−k1 and k2+k1 waves are obtained for all possible dual-mode configurations,which are reasonably predicted by a modified Haan model(Phys Fluids B 3:2349-2355,1991).
文摘Riemann zeta function has a key role in number theory and in its applications. In this paper we present a new fast converging series for . Applications of the series include the computation of the and recursive computation of , and generally . We discuss on the production of irrational number sequences e.g. for encryption coding and zeta function maps for analysis and synthesis of log-time sampled signals.
文摘By thoroughly reviewing international studies on technology convergence and divergence, four kinds of hypothesis are proposed based on patent data Herfindhal index (HI) measurement. The main fmding is that technology convergence does exist, based on patent technology records in China, primarily driven by overseas companies' strategic behavior, such as field intensiveness, competition during technology maturity session, and patent technology growth.
基金Contribution No.2110 from the Institute of Oceanology,Academia SinicaProject supported by the National Natural Science Foundation of China
文摘The action of the wind field and the influence of topography can cause divergence or convergence of surface current. The existence of the divergence-convergence effect is proved and the dynamical significance of the divergent or convergent state and its link with many marine phenomena are pointed out. Divergence fields of surface current in the Bohai Sea in winter and summer are obtained by numerical modelling describing the divergence-convergence character of seasonally wind-driven current. The relation between the effect and seasonal marine phenomena is discussed. Study on the divergence-convergence effect of surface current (DCESC)can be an indirect method for testing the calculated results.
基金Project(51276090) supported by the National Natural Science Foundation of ChinaProject(CXLX13_166) supported by Funding of Jiangsu Innovation Program for Graduate EducationProject supported by the Fundamental Research Funds for the Central Universities,China
文摘Numerical research on the dilute particles movement and deposition characteristics in the vicinity of converging slot-hole(console) was carried out, and the effect of hole shape on the particle deposition characteristics was investigated. The EI-Batsh deposition model was used to predict the particle deposition characteristics. The results show that the console hole has an obvious advantage in reducing particle deposition in comparison with cylindrical hole, especially under higher blowing ratio. The coolant jet from console holes can cover the wall well. Furthermore, the rotation direction of vortices near console hole is contrary to that near cylindrical hole. For console holes, particle deposition mainly takes place in the upstream area of the holes.
基金Supported by the National Natural Science Foundation of China(No.29576251)
文摘It is found analytically that the parabolic radial profile of liquid velocity in cylindrical liquid-solid fluidized bed (LSFB) causes particles to circulate around some radial position. This is the main reason for liquid-phase axial dispersions. The liquid-phase axial dispersion is depressed as the liquid velocity presents a flatter Bessel radial profile in a converging taper LSFB. The void fraction increases with axial distance in converging taper LSFB. The behavior produces less liquid-phase axial dispersion. Experimental results show good coincidence.
文摘Converging spherical and cylindrical elastic-plastic waves in an isotropic work-hardening medium is investigated on the basis of a finite difference method. The small amplitude pressure is applied instantaneously and maintained on the outer surface of a spherical or a cylindrical medium. It is found that for undercritical loading, the induced wave structure is an elastic front followed in turn by an expanding plastic region and an expanding elastic region. For supercritical loading, the elastic front is followed in turn by an expanding plastic region, a narrowing elastic region and an expanding plastic region. After yielding is initiated, the strength of the elastic front is constant and equal to the critical loading pressure. The motion of the continuous elastic-plastic interface is discussed in detail. Spatial distributions of pressure near the axis show the strength of the converging wave is nearly doubled in the reflecting stage.
基金support by the National Natural Science Foundation of China(No.21307053)China Postdoctoral Science Foundation Funded Project(No.2013M541911)+1 种基金Promotive Research Fund for Excellent Young and Middle-Aged Scientists of Shandong Province(No.BS2013CL044)Natural Science Foundation of Ludong University(No.LY2011004)
文摘A series of novel ester-capped carbosilane dendrimers(G0-COOCH3–G2-COOCH3) were designed and successfully synthesized via a hybrid divergent–convergent method through a facile hydrosilylation reaction. The structures of these dendrimers were confirmed by FTIR,1H NMR, and HRMS analyses.