The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they ...The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they exhibit dense interconnectivity(Braitenburg and Schüz,1998;Campagnola et al.,2022).The strength and probability of connectivity depend on cell type,inter-neuronal distance,and species.Still,every cortical neuron receives input from thousands of other neurons while transmitting output to a similar number of neurons.Second,communication between neurons occurs primarily via chemical or electrical synapses.展开更多
A new type of composite CVT(continuously variable transmission) systemsfeatured by power flow divergence and dual-mode convergence, capable of improving CVT's efficiencyand power capacity or making AMTs(automated ...A new type of composite CVT(continuously variable transmission) systemsfeatured by power flow divergence and dual-mode convergence, capable of improving CVT's efficiencyand power capacity or making AMTs(automated manual transmissions) become continuously variable, isstudied. With specific mechano-mechanical and electromechanical composite CVT systems as detailedexamples, its basic working principles are expatiated. General methods and key points in designingand realizing such systems are also analyzed and discussed.展开更多
This study numerically examines the heat and mass transfer characteristics of two ternary nanofluids via converging and diverg-ing channels.Furthermore,the study aims to assess two ternary nanofluids combinations to d...This study numerically examines the heat and mass transfer characteristics of two ternary nanofluids via converging and diverg-ing channels.Furthermore,the study aims to assess two ternary nanofluids combinations to determine which configuration can provide better heat and mass transfer and lower entropy production,while ensuring cost efficiency.This work bridges the gap be-tween academic research and industrial feasibility by incorporating cost analysis,entropy generation,and thermal efficiency.To compare the velocity,temperature,and concentration profiles,we examine two ternary nanofluids,i.e.,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O and TiO_(2)+SiO_(2)+Cu/H_(2)O,while considering the shape of nanoparticles.The velocity slip and Soret/Dufour effects are taken into consideration.Furthermore,regression analysis for Nusselt and Sherwood numbers of the model is carried out.The Runge-Kutta fourth-order method with shooting technique is employed to acquire the numerical solution of the governed system of ordinary differential equations.The flow pattern attributes of ternary nanofluids are meticulously examined and simulated with the fluc-tuation of flow-dominating parameters.Additionally,the influence of these parameters is demonstrated in the flow,temperature,and concentration fields.For variation in Eckert and Dufour numbers,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher temperature than TiO_(2)+SiO_(2)+Cu/H_(2)O.The results obtained indicate that the ternary nanofluid TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher heat transfer rate,lesser entropy generation,greater mass transfer rate,and lower cost than that of TiO_(2)+SiO_(2)+Cu/H_(2)O ternary nanofluid.展开更多
In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introduc...In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.展开更多
The harmonic balance method(HBM)has been widely applied to get the periodic solution of nonlinear systems,however,its convergence rate as well as computation efficiency is dramatically degraded when the system is high...The harmonic balance method(HBM)has been widely applied to get the periodic solution of nonlinear systems,however,its convergence rate as well as computation efficiency is dramatically degraded when the system is highly non-smooth,e.g.,discontinuous.In order to accelerate the convergence,an enriched HBM is developed in this paper where the non-smooth Bernoulli bases are additionally introduced to enrich the conventional Fourier bases.The basic idea behind is that the convergence rate of the HB solution,as a truncated Fourier series,can be improved if the smoothness of the solution becomes finer.Along this line,using non-smooth Bernoulli bases can compensate the highly non-smooth part of the solution and then,the smoothness of the residual part for Fourier approximation is improved so as to achieve accelerated convergence.Numerical examples are conducted on systems with non-smooth restoring and/or external forces.The results confirm that the proposed enriched HBM indeed increases the convergence rate and the increase becomes more significant if more non-smooth bases are used.展开更多
Recently,inspired by a modified generalized shift-splitting iteration method for complex symmetric linear systems,we propose two variants of the modified generalized shift-splitting iteration(MGSS)methods for solving ...Recently,inspired by a modified generalized shift-splitting iteration method for complex symmetric linear systems,we propose two variants of the modified generalized shift-splitting iteration(MGSS)methods for solving com-plex symmetric linear systems.One is a parameterized MGSS iteration method and the other is a modified parameterized MGSS iteration method.We prove that the proposed methods are convergent under appropriate constraints on the parameters.In addition,we also give the eigenvalue distributions of differ-ent preconditioned matrices to verify the effectiveness of the preconditioners proposed in this paper.展开更多
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op...In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.展开更多
This paper proposes a finite-time robust flight controller, targeting for a reentry vehicle with blended aerodynamic surfaces and a reaction control system(RCS). Firstly, a novel finite-time attitude controller is p...This paper proposes a finite-time robust flight controller, targeting for a reentry vehicle with blended aerodynamic surfaces and a reaction control system(RCS). Firstly, a novel finite-time attitude controller is pointed out with the introduction of a nonsingular finite-time sliding mode manifold. The attitude tracking errors are mathematically proved to converge to zero within finite time which can be estimated. In order to improve the performance, a second-order finite-time sliding mode controller is further developed to effectively alleviate chattering without any deterioration of robustness and accuracy. Moreover, an optimization control allocation algorithm, using linear programming and a pulse-width pulse-frequency(PWPF) modulator, is designed to allocate torque commands for all the aerodynamic surface deflections and on–off switching-states of RCS thrusters.Simulations are provided for the reentry vehicle considering uncertain parameters and external disturbances for practical purposes, and the results demonstrate the effectiveness and robustness of the attitude control system.展开更多
The bipolar Navier-Stokes-Poisson system (BNSP) has been used to simulate the transport of charged particles (ions and electrons for instance) under the influence of electrostatic force governed by the self-consis...The bipolar Navier-Stokes-Poisson system (BNSP) has been used to simulate the transport of charged particles (ions and electrons for instance) under the influence of electrostatic force governed by the self-consistent Poisson equation. The optimal L^2 time convergence rate for the global classical solution is obtained for a small initial perturbation of the constant equilibrium state. It is shown that due to the electric field, the difference of the charge densities tend to the equilibrium states at the optimal rate (1 + t)^-3/4 in L^2-norm, while the individual momentum of the charged particles converges at the optimal rate (1 + t)^-1/4 which is slower than the rate (1 + t)^-3/4 for the compressible Navier-Stokes equations (NS). In addition, a new phenomenon on the charge transport is observed regarding the interplay between the two carriers that almost counteracts the influence of the electric field so that the total density and momentum of the two carriers converges at a faster rate (1 + t)^-3/4+ε for any small constant ε 〉 0. The above estimates reveal the essential difference between the unipolar and the bipolar Navier-Stokes-Poisson systems.展开更多
The conventional and intensive observational data of the China Heavy Rain Experiment and Study (CHeRES) are used to specially analyze the heavy rainfall process in the mei-yu front that occurred during 20-21 June 2002...The conventional and intensive observational data of the China Heavy Rain Experiment and Study (CHeRES) are used to specially analyze the heavy rainfall process in the mei-yu front that occurred during 20-21 June 2002, focusing on the meso-β system. A mesoscale convective system (MCS) formed in the warm-moist southwesterly to the south of the shear line over the Dabie Mountains and over the gorge between the Dabie and Jiuhua Mountains. The mei-yu front and shear line provide a favorable synoptic condition for the development of convection. The GPS observation indicates that the precipitable water increased obviously about 2-3 h earlier than the occurrence of rainfall and decreased after that. The abundant moisture transportation by southwesterly wind was favorable to the maintenance of convective instability and the accumulation of convective available potential energy (CAPE). Radar detection reveals that meso-β and -γ systems were very active in the MaCS. Several convection lines developed during the evolution of the MaCS, and these are associated with surface convergence lines. The boundary outflow of the convection line may have triggered another convection line. The convection line moved with the mesoscale surface convergence line, but the convective cells embedded in the convergence line propagated along the line. On the basis of the analyses of the intensive observation data, a multi-scale conceptual model of heavy rainfall in the mei-yu front for this particular case is proposed.展开更多
The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the trackin...The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the tracking error are derived. It is shown that the system outputs can be guaranteed to converge to desired trajectories in the absence of external disturbances and output measurement noises. And in the presence of state disturbances and measurement noises, the tracking error will be bounded uniformly. A numerical simulation example is presented to validate the effectiveness of the proposed scheme.展开更多
Consensus problems of first-order multi-agent systems with multiple time delays are investigated in this paper. We discuss three cases: 1) continuous, 2) discrete, and 3) a continuous system with a proportional pl...Consensus problems of first-order multi-agent systems with multiple time delays are investigated in this paper. We discuss three cases: 1) continuous, 2) discrete, and 3) a continuous system with a proportional plus derivative controller. In each case, the system contains simultaneous communication and input time delays. Supposing a dynamic multi-agent system with directed topology that contains a globally reachable node, the sufficient convergence condition of the system is discussed with respect to each of the three cases based on the generalized Nyquist criterion and the frequency-domain analysis approach, yielding conclusions that are either less conservative than or agree with previously published results. We know that the convergence condition of the system depends mainly on each agent’s input time delay and the adjacent weights but is independent of the communication delay between agents, whether the system is continuous or discrete. Finally, simulation examples are given to verify the theoretical analysis.展开更多
Concept-based orogenic gold exploration requires a scale-integrated approach using a robust mineral system model.Most genetic hypotheses for orogenic gold deposits that involve near-surface or magmatic-hydrothermal fl...Concept-based orogenic gold exploration requires a scale-integrated approach using a robust mineral system model.Most genetic hypotheses for orogenic gold deposits that involve near-surface or magmatic-hydrothermal fluids are now negated in terms of a global mineral system model.Plausible models involve metamorphic fluids,but the fluid source has been equivocal.Crustal metamorphic-fluid models are most widely-accepted but there are serious problems for Archean deposits,and numerous Chinese provinces,including Jiaodong,where the only feasible fluid source is sub-crustal.If all orogenic gold deposits define a coherent mineral system,there are only two realistic sources of fluid and gold,based on their syn-mineralization geodynamic settings.These are from devolatilization of a subducted oceanic slab with its overlying gold-bearing sulfide-rich sedimentary package,or release from mantle lithosphere that was metasomatized and fertilized during a subduction event,particularly adjacent to craton margins.In this model,CO_2 is generated during decarbonation and S and ore-related elements released from transformation of pyrite to pyrrhotite at about 500 ℃.This orogenic gold mineral system can be applied to conceptual exploration by first identifying the required settings at geodynamic to deposit scales.Within these settings,it is then possible to define the critical gold mineralization processes in the system:fertility,architecture,and preservation.The geological parameters that define these processes,and the geological,geophysical and geochemical proxies and responses for these critical parameters can then be identified.At the geodynamic to province scales,critical processes include a tectonic thermal engine and deep,effective,fluid plumbing system driven by seismic swarms up lithosphere-scale faults in an oblique-slip regime during uplift late in the orogenic cycle of a convergent margin.At the district to deposit scale,the important processes are fluid focussing into regions of complex structural geometry adjacent to crustal-scale plumbing systems,with gold deposition in trap sites involving complex conjugations of competent and/or reactive rock sequences and structural or lithological fluid caps.Critical indirect responses to defined parameters change from those generated by geophysics to those generated by geochemistry with reduction in scale of the mineral system-driven conceptual exploration.展开更多
With the completion of Chinese BeiDou Navigation Satellite System(BDS),the world has begun to enjoy the Positioning,Navigation,and Timing(PNT)services of four Global Navigation Satellite Systems(GNSS).In order to impr...With the completion of Chinese BeiDou Navigation Satellite System(BDS),the world has begun to enjoy the Positioning,Navigation,and Timing(PNT)services of four Global Navigation Satellite Systems(GNSS).In order to improve the GNSS performance and expand its applications,Low Earth Orbit(LEO)Enhanced Global Navigation Satellite System(LeGNSS)is being vigorously advocated.Combined with high-,medium-,and low-earth orbit satellites,it can improve GNSS performance in terms of orbit determination,Precise Point Positioning(PPP)convergence time,etc.This paper comprehensively reviews the current status of LeGNSS,focusing on analyzing its advantages and challenges for precise orbit and clock determination,PPP convergence,earth rotation parameter estimation,and global ionosphere modeling.Thanks to the fast geometric change brought by LEO satellites,LeGNSS is expected to fundamentally solve the problem of the long convergence time of PPP without any augmentation.The convergence time can be shortened within 1 minute if appropriate LEO constellations are deployed.However,there are still some issues to overcome,such as the optimization of LEO constellation as well as the real time LEO precise orbit and clock determination.展开更多
The structural features of fiber suspensions are dependent on the fiber alignment in the flows. In this work the orientation distribution function and orientation tensors for semi-concentrated fiber suspensions in ...The structural features of fiber suspensions are dependent on the fiber alignment in the flows. In this work the orientation distribution function and orientation tensors for semi-concentrated fiber suspensions in converging channel flow were calculated, and the evolutions of the fiber alignment and the bulk effective vis-cosity were analyzed. The results showed that the bulk stress and the effective viscosity were functions of therate-of-strain tensor and the fiber orientation state ; and that the fiber suspensions evolved to steady alignment and tended to concentrate to some preferred directions close to but not same as the directions of local stream-lines. The bulk effective viscosity depended on the product of Reynolds number and time. The decrease of ef-fective viscosity near the boundary benefited the increase of the rate of flow. Finally when the fiber alignment went into steady state, the structural features of fiber suspensions were not dependent on the Reynolds numberbut on the converging channel angle.展开更多
The posterior gut of the Drosophila embryo, consisting of hindgut and Malpighian tubules, provides a simple,well-defined system where it is possible to use a genetic approach to define components essential for epithel...The posterior gut of the Drosophila embryo, consisting of hindgut and Malpighian tubules, provides a simple,well-defined system where it is possible to use a genetic approach to define components essential for epithelial morphogenesis.We review here the advantages of Drosophila as a model genetic organism, the morphogenesis of the epithelial structures of the posterior gut, and what is known about the genetic requirements to form these structures.In overview, primordia are patterned by expression of hierarchies of transcription factors; this leads to localized expression of cell signaling molecules, and finally, to the least understood step: modulation of cell adhesion and cell shape. We describe approaches to identify additional genes that are required for morphogenesis of these simple epithelia, particularly those that might play a structural role by affecting cell adhesion and cell shape.展开更多
An adaptive terminal sliding mode control (SMC) technique is proposed to deal with the tracking problem for a class of high-order nonlinear dynamic systems. It is shown that a function augmented sliding hyperplane can...An adaptive terminal sliding mode control (SMC) technique is proposed to deal with the tracking problem for a class of high-order nonlinear dynamic systems. It is shown that a function augmented sliding hyperplane can be used to develop a new terminal sliding mode for high-order nonlinear systems. A terminal SMC controller based on Lyapunov theory is designed to force the state variables of the closed-loop system to reach and remain on the terminal sliding mode, so that the output tracking error then converges to zero in finite time which can be set arbitrarily. An adaptive mechanism is introduced to estimate the unknown parameters of the upper bounds of system uncertainties. The estimates are then used as controller parameters so that the effects of uncertain dynamics can be eliminated. It is also shown that the stability of the closed-loop system can be guaranteed with the proposed control strategy. The simulation of a numerical example is provided to show the effectiveness of the new method.展开更多
This article presents an optimal hybrid fuzzy proportion integral derivative (HFPID) controller based on combination of proportion integral derivative (PID) and fuzzy controllers, by which the parameters could be ...This article presents an optimal hybrid fuzzy proportion integral derivative (HFPID) controller based on combination of proportion integral derivative (PID) and fuzzy controllers, by which the parameters could be evaluated by global optimization either in convergence velocity or in convergence reliability. Focusing on the nonlinear factors of hydraulic servo system, this article takes advantage of PID and fuzzy logic controller integrated with scaling factors to acquire precise tracking performances. To further improve the performances, it provides new developed optimization with rapid convergence to attain reliable approach probability. Focusing on the performance indictors of evolutionary algorithm, this article presents a new technique to predict reliability of the optimization algorithm. Statistics authenticates the effectiveness and robustness of the optimization. Further, many simulation and experimental results indicate that the optimal HFPID could acquire perfect immunity against parametric uncertainties with external disturbance.展开更多
This paper studies the consensus control of multiagent systems with binary-valued observations.An algorithm alternating estimation and control is proposed.Each agent estimates the states of its neighbors based on a pr...This paper studies the consensus control of multiagent systems with binary-valued observations.An algorithm alternating estimation and control is proposed.Each agent estimates the states of its neighbors based on a projected empirical measure method for a holding time.Based on the estimates,each agent designs the consensus control with a constant gain at some skipping time.The states of the system are updated by the designed control,and the estimation and control design will be repeated.For the estimation,the projected empirical measure method is proposed for the binary-valued observations.The algorithm can ensure the uniform boundedness of the estimates and the mean square error of the estimation is proved to be at the order of the reciprocal of the holding time(the same order as that in the case of accurate outputs).For the consensus control,a constant gain is designed instead of the stochastic approximation based gain in the existing literature for binary-valued observations.And,there is no need to make modification for control since the uniform boundedness of the estimates ensures the uniform boundedness of the agents’states.Finally,the systems updated by the designed control are proved to achieve consensus and the consensus speed is faster than that in the existing literature.Simulations are given to demonstrate the theoretical results.展开更多
Considering the Neo-Tethyan tectonic process and the resulting environmental changes,a geodynamic model of“one-way train loading”is proposed to analyze the formation and evolution mechanism of the Persian Gulf Super...Considering the Neo-Tethyan tectonic process and the resulting environmental changes,a geodynamic model of“one-way train loading”is proposed to analyze the formation and evolution mechanism of the Persian Gulf Superbasin with the most abundant hydrocarbons in the world.The Persian Gulf Superbasin has long been in a passive continental margin setting since the Late Paleozoic in the process of unidirectional subduction,forming a superior regional space of hydrocarbon accu-mulation.During the Jurassic-Cretaceous,the Persian Gulf Superbasin drifted slowly at low latitudes,and developed multiple superimposed source-reservoir-caprock assemblages as a combined result of several global geological events such as the Hadley Cell,the Equatorial Upwelling Current,and the Jurassic True Polar Wander.The collision during the evolution of the foreland basin since the Cenozoic led to weak destruction,which was conducive to the preservation of oil and gas.Accordingly,it is be-lieved that the slow drifting and long retention in favorable climate zone of the continent are the critical factors for hydrocarbon enrichment.Moreover,the prospects of hydrocarbon potential in other continents in the Neo-Tethyan were proposed.展开更多
基金supported in part by the Rosetrees Trust(#CF-2023-I-2_113)by the Israel Ministry of Innovation,Science,and Technology(#7393)(to ES).
文摘The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they exhibit dense interconnectivity(Braitenburg and Schüz,1998;Campagnola et al.,2022).The strength and probability of connectivity depend on cell type,inter-neuronal distance,and species.Still,every cortical neuron receives input from thousands of other neurons while transmitting output to a similar number of neurons.Second,communication between neurons occurs primarily via chemical or electrical synapses.
基金This project is supported by National Natural Science Foundation of China (No.50275053) and Provincial Natural Science Fundation of Guangdong (No.020857).
文摘A new type of composite CVT(continuously variable transmission) systemsfeatured by power flow divergence and dual-mode convergence, capable of improving CVT's efficiencyand power capacity or making AMTs(automated manual transmissions) become continuously variable, isstudied. With specific mechano-mechanical and electromechanical composite CVT systems as detailedexamples, its basic working principles are expatiated. General methods and key points in designingand realizing such systems are also analyzed and discussed.
基金supported by DST-FIST(Government of India)(Grant No.SR/FIST/MS-1/2017/13)and Seed Money Project(Grant No.DoRDC/733).
文摘This study numerically examines the heat and mass transfer characteristics of two ternary nanofluids via converging and diverg-ing channels.Furthermore,the study aims to assess two ternary nanofluids combinations to determine which configuration can provide better heat and mass transfer and lower entropy production,while ensuring cost efficiency.This work bridges the gap be-tween academic research and industrial feasibility by incorporating cost analysis,entropy generation,and thermal efficiency.To compare the velocity,temperature,and concentration profiles,we examine two ternary nanofluids,i.e.,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O and TiO_(2)+SiO_(2)+Cu/H_(2)O,while considering the shape of nanoparticles.The velocity slip and Soret/Dufour effects are taken into consideration.Furthermore,regression analysis for Nusselt and Sherwood numbers of the model is carried out.The Runge-Kutta fourth-order method with shooting technique is employed to acquire the numerical solution of the governed system of ordinary differential equations.The flow pattern attributes of ternary nanofluids are meticulously examined and simulated with the fluc-tuation of flow-dominating parameters.Additionally,the influence of these parameters is demonstrated in the flow,temperature,and concentration fields.For variation in Eckert and Dufour numbers,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher temperature than TiO_(2)+SiO_(2)+Cu/H_(2)O.The results obtained indicate that the ternary nanofluid TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher heat transfer rate,lesser entropy generation,greater mass transfer rate,and lower cost than that of TiO_(2)+SiO_(2)+Cu/H_(2)O ternary nanofluid.
基金Supported by the National Natural Science Foundation of China(12061048)NSF of Jiangxi Province(20232BAB201026,20232BAB201018)。
文摘In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.
基金supported by the National Natural Science Foundation of China (Grant No. 12372028)the National Key Research and Development Program of China (Grant No. 2020YFC2201101)the Guangdong Basic and Applied Basic Research Foundation (Grant No.2022A1515011809)。
文摘The harmonic balance method(HBM)has been widely applied to get the periodic solution of nonlinear systems,however,its convergence rate as well as computation efficiency is dramatically degraded when the system is highly non-smooth,e.g.,discontinuous.In order to accelerate the convergence,an enriched HBM is developed in this paper where the non-smooth Bernoulli bases are additionally introduced to enrich the conventional Fourier bases.The basic idea behind is that the convergence rate of the HB solution,as a truncated Fourier series,can be improved if the smoothness of the solution becomes finer.Along this line,using non-smooth Bernoulli bases can compensate the highly non-smooth part of the solution and then,the smoothness of the residual part for Fourier approximation is improved so as to achieve accelerated convergence.Numerical examples are conducted on systems with non-smooth restoring and/or external forces.The results confirm that the proposed enriched HBM indeed increases the convergence rate and the increase becomes more significant if more non-smooth bases are used.
基金supported by the National Natural Science Foundation of China(Grant No.12371378)by the Natural Science Foundation of Fujian Province(Grant Nos.2024J01980,2024J08242).
文摘Recently,inspired by a modified generalized shift-splitting iteration method for complex symmetric linear systems,we propose two variants of the modified generalized shift-splitting iteration(MGSS)methods for solving com-plex symmetric linear systems.One is a parameterized MGSS iteration method and the other is a modified parameterized MGSS iteration method.We prove that the proposed methods are convergent under appropriate constraints on the parameters.In addition,we also give the eigenvalue distributions of differ-ent preconditioned matrices to verify the effectiveness of the preconditioners proposed in this paper.
基金Supported by the National Natural Science Foundation of China(12071133)Natural Science Foundation of Henan Province(252300421993)Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110005)。
文摘In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.
基金co-supported by the National Basic Research Program of China(No.2012CB720000)the National Natural Science Foundation of China(No.61104153)the Research Fund for the Doctoral Program of Higher Education of China(No.20091101110025)
文摘This paper proposes a finite-time robust flight controller, targeting for a reentry vehicle with blended aerodynamic surfaces and a reaction control system(RCS). Firstly, a novel finite-time attitude controller is pointed out with the introduction of a nonsingular finite-time sliding mode manifold. The attitude tracking errors are mathematically proved to converge to zero within finite time which can be estimated. In order to improve the performance, a second-order finite-time sliding mode controller is further developed to effectively alleviate chattering without any deterioration of robustness and accuracy. Moreover, an optimization control allocation algorithm, using linear programming and a pulse-width pulse-frequency(PWPF) modulator, is designed to allocate torque commands for all the aerodynamic surface deflections and on–off switching-states of RCS thrusters.Simulations are provided for the reentry vehicle considering uncertain parameters and external disturbances for practical purposes, and the results demonstrate the effectiveness and robustness of the attitude control system.
基金The research of the first author was partially supported by the NNSFC No.10871134the NCET support of the Ministry of Education of China+4 种基金the Huo Ying Dong Fund No.111033the Chuang Xin Ren Cai Project of Beijing Municipal Commission of Education #PHR201006107the Instituteof Mathematics and Interdisciplinary Science at CNUThe research of the second author was supported by the General Research Fund of Hong Kong (CityU 103109)the National Natural Science Foundation of China,10871082
文摘The bipolar Navier-Stokes-Poisson system (BNSP) has been used to simulate the transport of charged particles (ions and electrons for instance) under the influence of electrostatic force governed by the self-consistent Poisson equation. The optimal L^2 time convergence rate for the global classical solution is obtained for a small initial perturbation of the constant equilibrium state. It is shown that due to the electric field, the difference of the charge densities tend to the equilibrium states at the optimal rate (1 + t)^-3/4 in L^2-norm, while the individual momentum of the charged particles converges at the optimal rate (1 + t)^-1/4 which is slower than the rate (1 + t)^-3/4 for the compressible Navier-Stokes equations (NS). In addition, a new phenomenon on the charge transport is observed regarding the interplay between the two carriers that almost counteracts the influence of the electric field so that the total density and momentum of the two carriers converges at a faster rate (1 + t)^-3/4+ε for any small constant ε 〉 0. The above estimates reveal the essential difference between the unipolar and the bipolar Navier-Stokes-Poisson systems.
基金This project was supported by the National Key Basic Research and Development Project 2004CB418301the National Natural Science Foundation of China under Grant No.40405008.
文摘The conventional and intensive observational data of the China Heavy Rain Experiment and Study (CHeRES) are used to specially analyze the heavy rainfall process in the mei-yu front that occurred during 20-21 June 2002, focusing on the meso-β system. A mesoscale convective system (MCS) formed in the warm-moist southwesterly to the south of the shear line over the Dabie Mountains and over the gorge between the Dabie and Jiuhua Mountains. The mei-yu front and shear line provide a favorable synoptic condition for the development of convection. The GPS observation indicates that the precipitable water increased obviously about 2-3 h earlier than the occurrence of rainfall and decreased after that. The abundant moisture transportation by southwesterly wind was favorable to the maintenance of convective instability and the accumulation of convective available potential energy (CAPE). Radar detection reveals that meso-β and -γ systems were very active in the MaCS. Several convection lines developed during the evolution of the MaCS, and these are associated with surface convergence lines. The boundary outflow of the convection line may have triggered another convection line. The convection line moved with the mesoscale surface convergence line, but the convective cells embedded in the convergence line propagated along the line. On the basis of the analyses of the intensive observation data, a multi-scale conceptual model of heavy rainfall in the mei-yu front for this particular case is proposed.
基金This project was supported by the National Natural Science Foundation of China (60074001) and the Natural ScienceFoundation of Shandong Province (Y2000G02)
文摘The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the tracking error are derived. It is shown that the system outputs can be guaranteed to converge to desired trajectories in the absence of external disturbances and output measurement noises. And in the presence of state disturbances and measurement noises, the tracking error will be bounded uniformly. A numerical simulation example is presented to validate the effectiveness of the proposed scheme.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos. 60973114 and 61170249)in part by the Natural Science Foundation of CQCSTC (Grant Nos. 2009BA2024 and cstc2011jjA1320)in part by the State Key Laboratory of Power Transmission Equipment & System Securityand New Technology, Chongqing University (Grant No. 2007DA10512711206)
文摘Consensus problems of first-order multi-agent systems with multiple time delays are investigated in this paper. We discuss three cases: 1) continuous, 2) discrete, and 3) a continuous system with a proportional plus derivative controller. In each case, the system contains simultaneous communication and input time delays. Supposing a dynamic multi-agent system with directed topology that contains a globally reachable node, the sufficient convergence condition of the system is discussed with respect to each of the three cases based on the generalized Nyquist criterion and the frequency-domain analysis approach, yielding conclusions that are either less conservative than or agree with previously published results. We know that the convergence condition of the system depends mainly on each agent’s input time delay and the adjacent weights but is independent of the communication delay between agents, whether the system is continuous or discrete. Finally, simulation examples are given to verify the theoretical analysis.
基金partly funded by the National Natural Science Foundation of China(Grant Nos.41230311,41572069,41702070)the National Key Research and Development Project of China(2016YFC0600307)+2 种基金the National Key Research Program of China(Grant Nos.2016YFC0600107-4 and 2016YFC0600307)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(Grant No.MSFGPMR201804)the 111 Project of the Ministry of Science and Technology,China(Grant No.BP0719021)。
文摘Concept-based orogenic gold exploration requires a scale-integrated approach using a robust mineral system model.Most genetic hypotheses for orogenic gold deposits that involve near-surface or magmatic-hydrothermal fluids are now negated in terms of a global mineral system model.Plausible models involve metamorphic fluids,but the fluid source has been equivocal.Crustal metamorphic-fluid models are most widely-accepted but there are serious problems for Archean deposits,and numerous Chinese provinces,including Jiaodong,where the only feasible fluid source is sub-crustal.If all orogenic gold deposits define a coherent mineral system,there are only two realistic sources of fluid and gold,based on their syn-mineralization geodynamic settings.These are from devolatilization of a subducted oceanic slab with its overlying gold-bearing sulfide-rich sedimentary package,or release from mantle lithosphere that was metasomatized and fertilized during a subduction event,particularly adjacent to craton margins.In this model,CO_2 is generated during decarbonation and S and ore-related elements released from transformation of pyrite to pyrrhotite at about 500 ℃.This orogenic gold mineral system can be applied to conceptual exploration by first identifying the required settings at geodynamic to deposit scales.Within these settings,it is then possible to define the critical gold mineralization processes in the system:fertility,architecture,and preservation.The geological parameters that define these processes,and the geological,geophysical and geochemical proxies and responses for these critical parameters can then be identified.At the geodynamic to province scales,critical processes include a tectonic thermal engine and deep,effective,fluid plumbing system driven by seismic swarms up lithosphere-scale faults in an oblique-slip regime during uplift late in the orogenic cycle of a convergent margin.At the district to deposit scale,the important processes are fluid focussing into regions of complex structural geometry adjacent to crustal-scale plumbing systems,with gold deposition in trap sites involving complex conjugations of competent and/or reactive rock sequences and structural or lithological fluid caps.Critical indirect responses to defined parameters change from those generated by geophysics to those generated by geochemistry with reduction in scale of the mineral system-driven conceptual exploration.
基金the National Natural Science Funds of China[grant numbers 41874030,42074026]Natural Science Funds of Shanghai[grant number 21ZR1465600]+3 种基金the Program of Shanghai Academic Research Leader[grant number 20XD1423800]the Innovation Program of Shanghai Municipal Education Commission[grant number 2021-01-07-00-07-E00095]the“Shuguang Program”supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission[grant number 20SG18]the Scientific and Technological Innovation Plan from Shanghai Science and Technology Committee[grant numbers 20511103302,20511103402 and 20511103702].
文摘With the completion of Chinese BeiDou Navigation Satellite System(BDS),the world has begun to enjoy the Positioning,Navigation,and Timing(PNT)services of four Global Navigation Satellite Systems(GNSS).In order to improve the GNSS performance and expand its applications,Low Earth Orbit(LEO)Enhanced Global Navigation Satellite System(LeGNSS)is being vigorously advocated.Combined with high-,medium-,and low-earth orbit satellites,it can improve GNSS performance in terms of orbit determination,Precise Point Positioning(PPP)convergence time,etc.This paper comprehensively reviews the current status of LeGNSS,focusing on analyzing its advantages and challenges for precise orbit and clock determination,PPP convergence,earth rotation parameter estimation,and global ionosphere modeling.Thanks to the fast geometric change brought by LEO satellites,LeGNSS is expected to fundamentally solve the problem of the long convergence time of PPP without any augmentation.The convergence time can be shortened within 1 minute if appropriate LEO constellations are deployed.However,there are still some issues to overcome,such as the optimization of LEO constellation as well as the real time LEO precise orbit and clock determination.
文摘The structural features of fiber suspensions are dependent on the fiber alignment in the flows. In this work the orientation distribution function and orientation tensors for semi-concentrated fiber suspensions in converging channel flow were calculated, and the evolutions of the fiber alignment and the bulk effective vis-cosity were analyzed. The results showed that the bulk stress and the effective viscosity were functions of therate-of-strain tensor and the fiber orientation state ; and that the fiber suspensions evolved to steady alignment and tended to concentrate to some preferred directions close to but not same as the directions of local stream-lines. The bulk effective viscosity depended on the product of Reynolds number and time. The decrease of ef-fective viscosity near the boundary benefited the increase of the rate of flow. Finally when the fiber alignment went into steady state, the structural features of fiber suspensions were not dependent on the Reynolds numberbut on the converging channel angle.
文摘The posterior gut of the Drosophila embryo, consisting of hindgut and Malpighian tubules, provides a simple,well-defined system where it is possible to use a genetic approach to define components essential for epithelial morphogenesis.We review here the advantages of Drosophila as a model genetic organism, the morphogenesis of the epithelial structures of the posterior gut, and what is known about the genetic requirements to form these structures.In overview, primordia are patterned by expression of hierarchies of transcription factors; this leads to localized expression of cell signaling molecules, and finally, to the least understood step: modulation of cell adhesion and cell shape. We describe approaches to identify additional genes that are required for morphogenesis of these simple epithelia, particularly those that might play a structural role by affecting cell adhesion and cell shape.
文摘An adaptive terminal sliding mode control (SMC) technique is proposed to deal with the tracking problem for a class of high-order nonlinear dynamic systems. It is shown that a function augmented sliding hyperplane can be used to develop a new terminal sliding mode for high-order nonlinear systems. A terminal SMC controller based on Lyapunov theory is designed to force the state variables of the closed-loop system to reach and remain on the terminal sliding mode, so that the output tracking error then converges to zero in finite time which can be set arbitrarily. An adaptive mechanism is introduced to estimate the unknown parameters of the upper bounds of system uncertainties. The estimates are then used as controller parameters so that the effects of uncertain dynamics can be eliminated. It is also shown that the stability of the closed-loop system can be guaranteed with the proposed control strategy. The simulation of a numerical example is provided to show the effectiveness of the new method.
基金Hi-tech Research and Development Program of China (2009AA04Z412)Chinese Education Ministry Program 985 Ⅱ+1 种基金Program 111(B07009)Program for New Century Excellent Talents in University and Beijing Teaching Innovation Program (NCET-04-0618)
文摘This article presents an optimal hybrid fuzzy proportion integral derivative (HFPID) controller based on combination of proportion integral derivative (PID) and fuzzy controllers, by which the parameters could be evaluated by global optimization either in convergence velocity or in convergence reliability. Focusing on the nonlinear factors of hydraulic servo system, this article takes advantage of PID and fuzzy logic controller integrated with scaling factors to acquire precise tracking performances. To further improve the performances, it provides new developed optimization with rapid convergence to attain reliable approach probability. Focusing on the performance indictors of evolutionary algorithm, this article presents a new technique to predict reliability of the optimization algorithm. Statistics authenticates the effectiveness and robustness of the optimization. Further, many simulation and experimental results indicate that the optimal HFPID could acquire perfect immunity against parametric uncertainties with external disturbance.
基金supported by the National Natural Science Foundation of China(61803370,61622309)the China Postdoctoral Science Foundation(2018M630216)the National Key Research and Development Program of China(2016YFB0901902)
文摘This paper studies the consensus control of multiagent systems with binary-valued observations.An algorithm alternating estimation and control is proposed.Each agent estimates the states of its neighbors based on a projected empirical measure method for a holding time.Based on the estimates,each agent designs the consensus control with a constant gain at some skipping time.The states of the system are updated by the designed control,and the estimation and control design will be repeated.For the estimation,the projected empirical measure method is proposed for the binary-valued observations.The algorithm can ensure the uniform boundedness of the estimates and the mean square error of the estimation is proved to be at the order of the reciprocal of the holding time(the same order as that in the case of accurate outputs).For the consensus control,a constant gain is designed instead of the stochastic approximation based gain in the existing literature for binary-valued observations.And,there is no need to make modification for control since the uniform boundedness of the estimates ensures the uniform boundedness of the agents’states.Finally,the systems updated by the designed control are proved to achieve consensus and the consensus speed is faster than that in the existing literature.Simulations are given to demonstrate the theoretical results.
基金Supported by the International Cooperation Program of Chinese Academy of Sciences (GJHZ1776)National Natural Science Foundation of China (91855207)
文摘Considering the Neo-Tethyan tectonic process and the resulting environmental changes,a geodynamic model of“one-way train loading”is proposed to analyze the formation and evolution mechanism of the Persian Gulf Superbasin with the most abundant hydrocarbons in the world.The Persian Gulf Superbasin has long been in a passive continental margin setting since the Late Paleozoic in the process of unidirectional subduction,forming a superior regional space of hydrocarbon accu-mulation.During the Jurassic-Cretaceous,the Persian Gulf Superbasin drifted slowly at low latitudes,and developed multiple superimposed source-reservoir-caprock assemblages as a combined result of several global geological events such as the Hadley Cell,the Equatorial Upwelling Current,and the Jurassic True Polar Wander.The collision during the evolution of the foreland basin since the Cenozoic led to weak destruction,which was conducive to the preservation of oil and gas.Accordingly,it is be-lieved that the slow drifting and long retention in favorable climate zone of the continent are the critical factors for hydrocarbon enrichment.Moreover,the prospects of hydrocarbon potential in other continents in the Neo-Tethyan were proposed.