期刊文献+
共找到1,723篇文章
< 1 2 87 >
每页显示 20 50 100
Thermal-solutal convection-induced low-angle grain boundaries in single-crystal nickel-based superalloy solidification 被引量:3
1
作者 Luwei Yang Neng Ren +5 位作者 Jun Li Chinnapat Panwisawas Yancheng Zhang Mingxu Xia Hongbiao Dong Jianguo Li 《Journal of Materials Science & Technology》 2025年第5期214-229,共16页
Low-angle grain boundaries(LAGBs)are one of the solidification defects in single-crystal nickel-based superalloys and are detrimental to the mechanical properties.The formation of LAGBs is related to dendrite deformat... Low-angle grain boundaries(LAGBs)are one of the solidification defects in single-crystal nickel-based superalloys and are detrimental to the mechanical properties.The formation of LAGBs is related to dendrite deformation,while the mechanism has not been fully understood at the mesoscale.In this work,a model coupling dendrite growth,thermal-solutal-fluid flow,thermal stress and flow-induced dendrite deformation via cellular automaton-finite volume method and finite element method is developed to study the formation of LAGBs in single crystal superalloys.Results reveal that the bending of dendrites is primarily attributed to the thermal-solutal convection-induced dendrite deformation.The mechanical stress of dendrite deformation develops and stabilises as solidification proceeds.As the width of the mushy zone gets stable,stresses are built up and then dendritic elastoplastic bending occurs at some thin primary dendrites with the wider inter-dendritic space.There are three characteristic zones of stress distribution along the solidification direction:(i)no stress concentration in the fully solidified regions;(ii)stress developing in the primary dendrite bridging region,and(iii)stress decrease in the inter-dendritic uncontacted zone.The stresses reach maximum near the initial dendrite bridging position.The lower temperature gradients,the finer primary dendritic trunks and sudden reductions in local dendritic trunk radius jointly promote the elastoplastic deformation of the dendrites.Corresponding measures are suggested to reduce LAGBs. 展开更多
关键词 Dendrite deformation Low-angle grain boundary MISORIENTATION Thermal-solutal convection SUPERALLOYS
原文传递
Massive Outbreak of Red Sprites in South Asia Observed from the Tibetan Plateau 被引量:1
2
作者 Hailiang HUANG Gaopeng LU +5 位作者 Angel AN Di XU Zhengwei CHENG Yongping WANG Yazhou CHEN Xin HUANG 《Advances in Atmospheric Sciences》 2025年第6期1247-1260,共14页
On 19 May 2022, an outbreak of 105 red sprites that occurred over South Asia was fortuitously recorded by two amateurs from a site in the southern Tibetan Plateau(TP), marking the highest number captured over a single... On 19 May 2022, an outbreak of 105 red sprites that occurred over South Asia was fortuitously recorded by two amateurs from a site in the southern Tibetan Plateau(TP), marking the highest number captured over a single thunderstorm in South Asia. Nearly half of these events involved dancing sprites, with an additional 16 uncommon secondary jets and at least four extremely rare green emissions called “ghosts” observed following the associated sprites. Due to the absence of the precise timing needed to identify parent lightning, a method based on satellite motion trajectories and star fields is proposed to infer video frame timestamps within an error of less than one second. After verifying 95 sprites from two videos, our method identified the parent lightning for 66 sprites(~70%). The sprite-producing strokes, mainly of positive polarity with peak currents exceeding +50 k A, occurred in the stratiform region of a mesoscale convective complex(MCC)that spanned the Ganges Plain to the southern TP, with a cloud area over 200 000 km2 and a minimum cloud-top black body temperature near 180 K. This observation confirms that thunderstorms in South Asia, akin to mesoscale convective systems(MCSs) in the Great Plains of the United States or coastal thunderstorms in Europe, can produce numerous sprites,including complex species. Our analysis bears important implications for characterizing thunderstorms above the southern TP and examining their physical and chemical effects on the adjacent regions, as well as the nature of the coupling between the troposphere and middle-upper atmosphere in this region. 展开更多
关键词 red sprites Tibetan Plateau South Asia parent lightning strokes satellite trajectory mesoscale convective complex
在线阅读 下载PDF
New quantitative characterizations of flow and heat transfer in hot dry rock fracture 被引量:1
3
作者 Tiancheng Zhang Bing Bai +3 位作者 Hongwu Lei Yan Zou Lu Shi Huiling Ci 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2181-2193,共13页
The overall heat transfer coefficient(OHTC)of rock fractures is a fundamental parameter for characterizing the heat transfer behavior of rock fractures in hot dry rock(HDR)geothermal mining.Although a number of practi... The overall heat transfer coefficient(OHTC)of rock fractures is a fundamental parameter for characterizing the heat transfer behavior of rock fractures in hot dry rock(HDR)geothermal mining.Although a number of practical formulae for heat transfer coefficients have been developed in the literature,there is still no widely accepted analytical solution.This paper constructs highly accurate analytical solutions for the temperatures of the inner fracture wall and the fluid.Then they are employed to develop new definition-based formulae(formula A and its simplification formula B)of the OHTC,which are well validated by the experimental and numerical simulation results.An empirical correlation formula of heat transfer coefficient is proposed based on the definition-based formulae which can be directly used in the numerical simulations of heat transfer in rock fractures.A site-scale application example of numerical simulation also demonstrates the effectiveness of the empirical correlation formula. 展开更多
关键词 Hot dry rock fractures Temperature distribution Convective heat transfer coefficient Empirical correlation formula
在线阅读 下载PDF
Effect of Direct Current on Wetting of Cu Substrate in Liquid Sn Solder
4
作者 Sun Xuemin Zhu Weiwei +1 位作者 Yu Weiyuan Wu Baolei 《稀有金属材料与工程》 北大核心 2025年第6期1445-1450,共6页
The wetting behavior of liquid tin(Sn)solder on copper(Cu)substrate at 250℃was investigated by the wetting balance method under the action of direct current(DC).The curves of wetting balance were measured and the mor... The wetting behavior of liquid tin(Sn)solder on copper(Cu)substrate at 250℃was investigated by the wetting balance method under the action of direct current(DC).The curves of wetting balance were measured and the morphology of the intermetallic compound(IMC)precipitated at the interface were observed.Results show that DC has a significant effect on the wettability and IMC.As the current increases,the balance wetting force and the thickness of the IMC layer increase.The direction of the DC also has a certain effect on the balance wetting force and IMC layer.When the current is negative,the final balance wetting force and the thickness of the Cu_(6)Sn_(5) layer are significantly higher than those in the positive current case,which is attributed to electromigration.The IMC precipitation at the interface provides a chemical driving force for the movement of the triple junction.The interaction of the interface atoms and the chemical reaction are enhanced by DC,thereby improving wettability.Meanwhile,the Marangoni convection caused by DC inside liquid Sn solder changes the structure of triple junction,which provides a physical driving force for the spread of the liquid Sn solder on the Cu substrate. 展开更多
关键词 wetting balance method DC interfacial reaction IMC Marangoni convection
原文传递
Effect of Withdrawal Rate on Non-uniform Distribution of Eutectic in Ni-based Single Crystal Superalloy Castings
5
作者 Zhao Yunxing Yu Jingyi +1 位作者 Ma Dexin Huang Zaiwang 《稀有金属材料与工程》 北大核心 2025年第8期1934-1939,共6页
The microstructure of single crystal superalloy is relatively simple,consisting primarily ofγdendrites andγ/γ′eutectics.During the directional solidification process of Ni-based single crystal superalloys,withdraw... The microstructure of single crystal superalloy is relatively simple,consisting primarily ofγdendrites andγ/γ′eutectics.During the directional solidification process of Ni-based single crystal superalloys,withdrawal rate is a critical parameter affecting the spatial distribution ofγ/γ′eutectic along gravity direction.The results show that theγ/γ′eutectic fraction of the upper platform surface is always higher than that of the lower one,regardless of withdrawal rate.As the withdrawal rate decreases,there is a significant increase inγ/γ′eutectic fraction on the upper surface,while it decreases on the lower surface.The upward accumulation ofγ/γ′eutectic becomes more severe as the withdrawal rate decreases.It is also found that the percentage of Al+Ta is positively correlated with theγ/γ′eutectic fraction.Thermo-solute convection of Al and Ta solutes in the solidification front is the prime reason for the non-uniform distribution of eutectic.The non-uniform distribution ofγ/γ′eutectic cannot be eliminated even after subsequent solution heat treatment,resulting in excess eutectic on the upper surface and thus leading to the scrapping of the blade. 展开更多
关键词 Ni-based single crystal superalloy EUTECTICS withdrawal rate thermo-solute convection
原文传递
Inertial Modes in a Rotating Horizontal Annulus with Boundaries of Different Temperatures and Their Effect on the Averaged Convection
6
作者 Alexey Vjatkin Svyatoslav Petukhov Victor Kozlov 《Fluid Dynamics & Materials Processing》 2025年第4期783-798,共16页
Time-averaged thermal convection in a rotating horizontal annulus with a higher temperature at its inner boundary is studied.The centrifugal force plays a stabilizing role,while thermal convection is determined by the... Time-averaged thermal convection in a rotating horizontal annulus with a higher temperature at its inner boundary is studied.The centrifugal force plays a stabilizing role,while thermal convection is determined by the“thermovibrational mechanism”.Convective flow is excited due to oscillations of a non-isothermal rotating fluid.Thermal vibrational convectionmanifests in the form of two-dimensional vortices elongated along the axis of rotation,which develop in a threshold manner with an increase in the amplitude of fluid oscillations.The objective of the present study is to clarify the nature of another phenomenon,i.e.,three-dimensional convective vortices observed in the experiments both before the excitation of the convection described above and in the supercritical region.The experimental study of the oscillatory and the time-averaged flow fields by particle image velocimetry is accompanied by the theoretical research of inertial waves.It is found that three-dimensional fluid flows owe their origin to inertial waves.This is confirmed by a high degree of agreement between the experimental and theoretical results.Experiments with cavities of different lengths indicate that the vortices are clearly seen in cavities thatmeet the conditions of resonant excitation of inertial modes.Furthermore,the length of the cavity has no effect on heat transfer,which is explained by the comparatively low intensity of the wave-induced flows.The main contribution to heat transfer is due to vortices elongated along the axis of rotation.The novel results are of significant practical importance in various fields. 展开更多
关键词 Thermal convection horizontal annulus ROTATION time-averaged convection inertial modes steady flows
在线阅读 下载PDF
Thermal and solutal Marangoni convection in three-layered viscous flows:Insights for liquid metal battery optimization
7
作者 SHAHEEN Sidra HUANG Hu-lin +2 位作者 ARAIN Muhammad Bilal BHATTI Muhammad Mubashir KHALIQUE Chaudry Masood 《Journal of Central South University》 2025年第6期2087-2100,共14页
This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This researc... This study examines the intricate occurrences of thermal and solutal Marangoni convection in three-layered flows of viscous fluids,with a particular emphasis on their relevance to renewable energy systems.This research examines the flow of a three-layered viscous fluid,considering the combined influence of heat and solutal buoyancy driven Rayleigh-Bénard convection,as well as thermal and solutal Marangoni convection.The homotopy perturbation method is used to examine and simulate complex fluid flow and transport phenomena,providing important understanding of the fundamental physics and assisting in the optimization of various battery configurations.The inquiry examines the primary elements that influence Marangoni convection and its impact on battery performance,providing insights on possible enhancements in energy storage devices.The findings indicate that the velocity profiles shown graphically exhibit a prominent core zone characterized by the maximum speed,which progressively decreases as it approaches the walls of the channel.This study enhances our comprehension of fluid dynamics and the transmission of heat and mass in intricate systems,which has substantial ramifications for the advancement of sustainable energy solutions. 展开更多
关键词 viscous fluid three-layered closed geometries electrical conductivity thermal convection solutal convection mass diffusivity homotopy perturbation methods
在线阅读 下载PDF
Sensitivity of a Kilometer-Scale Variable-Resolution Global Nonhydrostatic Model to Microphysics Schemes in Simulating a Mesoscale Convective System
8
作者 Yihui ZHOU Rucong YU +2 位作者 Yi ZHANG Jian LI Haoming CHEN 《Advances in Atmospheric Sciences》 2025年第7期1333-1348,共16页
Accurately simulating mesoscale convective systems(MCSs)is essential for predicting global precipitation patterns and extreme weather events.Despite the ability of advanced models to reproduce MCS climate statistics,c... Accurately simulating mesoscale convective systems(MCSs)is essential for predicting global precipitation patterns and extreme weather events.Despite the ability of advanced models to reproduce MCS climate statistics,capturing extreme storm cases over complex terrain remains challenging.This study utilizes the Global–Regional Integrated Forecast System(GRIST)with variable resolution to simulate an eastward-propagating MCS event.The impact of three microphysics schemes,including two single-moment schemes(WSM6,Lin)and one double-moment scheme(Morrison),on the model sensitivity of MCS precipitation simulations is investigated.The results demonstrate that while all the schemes capture the spatial distribution and temporal variation of MCS precipitation,the Morrison scheme alleviates overestimated precipitation compared to the Lin and WSM6 schemes.The ascending motion gradually becomes weaker in the Morrison scheme during the MCS movement process.Compared to the runs with convection parameterization,the explicit-convection setup at 3.5-km resolution reduces disparities in atmospheric dynamics due to microphysics sensitivity in terms of vertical motions and horizontal kinetic energy at the high-wavenumber regimes.The explicit-convection setup more accurately captures the propagation of both main and secondary precipitation centers during the MCS development,diminishing the differences in both precipitation intensity and propagation features between the Morrison and two single-moment schemes.These findings underscore the importance of microphysics schemes for global nonhydrostatic modeling at the kilometer scale.The role of explicit convection for reducing model uncertainty is also outlined. 展开更多
关键词 variable-resolution modeling global nonhydrostatic model microphysics scheme mesoscale convective system explicit convection
在线阅读 下载PDF
Impact of Improving Radar Reflectivity Assimilation Schemes in High-Resolution Models and Their Combined Application with Convective Environment Parameters on Severe Convective Weather Forecast
9
作者 CHEN Wan-yi DAI Guang-feng +1 位作者 WANG Yong-qing XU Guo-qiang 《Journal of Tropical Meteorology》 2025年第2期212-222,共11页
Taking short-duration heavy rainfall and convective wind gusts as examples, the present study examined the characteristics of radar reflectivity and several convective parameters. We analyzed nowcasting techniques by ... Taking short-duration heavy rainfall and convective wind gusts as examples, the present study examined the characteristics of radar reflectivity and several convective parameters. We analyzed nowcasting techniques by integrating a high-resolution numerical weather prediction model with these convective parameters. Based on the CMA-GD 1-km model and its assimilation system, we conducted repeated tests on radar reflectivity data assimilation and analyzed their impact on nowcasting accuracy. Based on these analyses, we proposed a method to improve model forecasts using the useful indicative information provided by high-frequency radar reflectivity data and convective parameters. The improved method was applied to the CMA-GD 1-km model for nowcasting tests. Evaluations from batch tests and case analysis show that the proposed method significantly reduced the model's false alarm rates and improved its nowcasting performance. 展开更多
关键词 NWP severe convection convective parameters NOWCASTING
在线阅读 下载PDF
Evaluating Dying Efficiency and Energy Performance of a Hybrid Solar Dryer with Natural,Forced,and Hybrid Convection Modes for Tomatoes
10
作者 Sadaf Gul Unar Shoaib Ahmed Khatri +3 位作者 Nayyar Hussain Mirjat Muhammad Faraz Arain Syed Rafay Ahmed Zaidi Laveet Kumar 《Frontiers in Heat and Mass Transfer》 2025年第2期479-505,共27页
This research focuses on developing innovative hybrid solar dryers that combine solar Photovoltaic(PV)and solar thermal systems for sustainable food preservation in Pakistan,addressing the country’s pressing issues o... This research focuses on developing innovative hybrid solar dryers that combine solar Photovoltaic(PV)and solar thermal systems for sustainable food preservation in Pakistan,addressing the country’s pressing issues of high post-harvest losses and unreliable energy sources.The proposed active hybrid solar dryer features a drying cabinet,two Direct Current(DC)fans for forced convection,and a resistive heating element powered by a 180 W solar PV panel.An energy-storing battery ensures continuous supply to the auxiliaries during periods of low solar irradiance,poor weather conditions,or nighttime.Tomatoes,a delicate and in-demand crop,were selected for experimentation due to their high perishability.Three experiments were conducted on the same prototype:natural convection direct solar dryer(NCDSD),forced convection direct solar dryer(FCDSD),and forced convection hybrid solar dryer(FCHSD).Each experiment began with 0.2 kg of tomatoes at 94%moisture content,achieving significant reductions:28.57%with NCDSD,16.667%with FCDSD,and 16.667%with FCHSD.The observed drying rates varied:1.161 kg/h for NCDSD,2.062 kg/h for FCDSD,and 2.8642 kg/h for FCHSD.This study presents a comparative analysis of efficiency,drying rate,and cost-effectiveness,alongside the system’s economic and environmental feasibility. 展开更多
关键词 Solar drying natural convection forced convection hybrid solar dryer direct solar dryer
在线阅读 下载PDF
Upscale Convective Growth Prevailing on the Monsoon Coast with Changing Atmospheric Conditions and Local Forcings
11
作者 Sijia ZHANG Guixing CHEN +1 位作者 Lanqiang BAI Lin SU 《Advances in Atmospheric Sciences》 2025年第11期2247-2262,共16页
Active atmospheric convection on the monsoon coast is crucial for the Earth’s climate system.In particular,the upscale convective growth(UCG)from ordinary isolated convection to organized convective system is a key p... Active atmospheric convection on the monsoon coast is crucial for the Earth’s climate system.In particular,the upscale convective growth(UCG)from ordinary isolated convection to organized convective system is a key process causing severe weather,but its activities on the monsoon coast are less understood because of the lack of fine-resolution datasets.For the first time,we present the climatology of UCG on a typical monsoon coast using kilometer-mesh radar data from southern China.The UCG undergoes pronounced subseasonal and diurnal variations in the early-summer rainy season.The subseasonal UCG increase is attributed to the onshore flows shifting from easterlies in April to monsoon southwesterlies in June.UCG becomes vigorous following summer monsoon onset,with hotspots near windward coastal mountains.Daytime UCG first peaks near noontime along coastal land,where onshore flows are destabilized by boundary-layer heating and mountains.Afternoon inland peaks and off-coast minimums are recognized due to land–sea thermal contrast and sea-breeze circulation.Nighttime UCG is revived at the coast by nocturnally enhanced southerlies,followed by offshore activity as the convergence of land-breeze northerlies shifts seaward.The UCG thus responds strongly to changing atmospheric conditions,land heating/cooling,and thermally driven local circulations.Our results may help clarify the predictability of monsoon coastal convection. 展开更多
关键词 upscale convective growth monsoon coast CONVECTION diurnal variations
在线阅读 下载PDF
Inertial-Wave Regime of AveragedThermal Convection in a Rotating Vertical Flat Layer
12
作者 Kirill Rysin Alexey Vjatkin Victor Kozlov 《Fluid Dynamics & Materials Processing》 2025年第3期605-621,共17页
Thermal vibrational convection(TVC)refers to the time-averaged convection of a non-isothermal fluid subjected to oscillating force fields.It serves as an effective mechanism for heat transfer control,particularly unde... Thermal vibrational convection(TVC)refers to the time-averaged convection of a non-isothermal fluid subjected to oscillating force fields.It serves as an effective mechanism for heat transfer control,particularly under microgravity conditions.A key challenge in this field is understanding the effect of rotation on TVC,as fluid oscillations in rotating systems exhibit unique and specific characteristics.In this study,we examine TVC in a vertical flat layer with boundaries at different temperatures,rotating around a horizontal axis.The distinctive feature of this study is that the fluid oscillations within the cavity are not induced by vibrations of the cavity itself,but rather by the gravity field,giving them a tidal nature.Our findings reveal that inertial waves generated in the rotating layer qualitatively alter the TVC structure,producing time-averaged flows in the form of toroidal vortices.Experimental investigations of the structure of oscillatory and time-averaged flows,conducted using Particle Image Velocimetry(PIV)for flow velocity visualization,are complemented by theoretical calculations of inertial modes in a cavity with this geometry.To the best of our knowledge,this study represents the first of its kind.The agreement between experimental results and theoretical predictions confirms that the formation of convective structures in the form of toroidal vortices is driven by inertial waves induced by the gravity field.A decrease in the rotational velocity leads to a transformation of the convective structures,shifting from toroidal vortices of inertial-wave origin to classical cellular TVC.We present dimensionless parameters that define the excitation thresholds for both cellular convection and toroidal structures. 展开更多
关键词 Rotation inertial modes OSCILLATIONS heat transfer stability averaged convection
在线阅读 下载PDF
GF-4 high-resolution texture and FY-4A multispectral data fusion:Two case studies for enhancing early convective cloud detection
13
作者 Yang Gao Xin Wang Jun Yang 《Atmospheric and Oceanic Science Letters》 2025年第4期21-26,共6页
Early detection of convective clouds is vital for minimizing hazardous impacts.Forecasting convective initiation(CI)using current multispectral geostationary meteorological satellites is often challenged by high false... Early detection of convective clouds is vital for minimizing hazardous impacts.Forecasting convective initiation(CI)using current multispectral geostationary meteorological satellites is often challenged by high false-alarm rates and missed detections caused by limited resolution.In contrast,high-resolution earth observation satellites offer more detailed texture information,improving early detection capabilities.The authors propose a novel methodology that integrates the advanced features of China’s latest-generation satellites,Gaofen-4(GF-4)and Fengyun-4A(FY-4A).This fusion method retains GF’s high-resolution details and FY-4A’s multispectral information.Two cases from different observational scenarios and weather conditions under GF-4’s staring mode were carried out to compare the CI forecast results based on fused data and solely on FY-4A data.The fused data demonstrated superior performance in detecting smaller-scale convective clouds,enabling earlier forecasting with a lead time of 15–30 minutes,and more accurate location identification.Integrating high-resolution earth observation satellites into early convective cloud detection provides valuable insights for forecasters and decision-makers,particularly given the current resolution limitations of geostationary meteorological satellites. 展开更多
关键词 GaoFen-4 Fengyun-4A Fusion TEXTURE Convective cloud
在线阅读 下载PDF
Analysis on Mesoscale Characteristics of Severe Convective Weather in Guilin on April 19,2025
14
作者 Ting WANG Fangfang WU 《Meteorological and Environmental Research》 2025年第2期12-15,共4页
Using conventional observation data and Guilin Doppler weather radar data,the atmospheric circulation situation,environmental conditions and mesoscale characteristics of convective storms during the severe convective ... Using conventional observation data and Guilin Doppler weather radar data,the atmospheric circulation situation,environmental conditions and mesoscale characteristics of convective storms during the severe convective weather process in Guilin,Guangxi on April 19,2025 were analyzed in detail.The results showed that the severe convective process was dominated by short-term heavy rainfall,accompanied by thunderstorm and gale.This was a strong convective weather process in the warm region.On the south side of warm shear line,with the south branch fluctuation moving eastward,strong convection occurred near the surface convergence line.With the establishment of low-level jet at night,organized development of convection system was obtained.The environmental conditions showed unstable stratification,inversion layer,small convective effective potential energy,large K value and strong wind shear,and the inverted V-shaped structure was at low level.The convective storm that produced short-term heavy rainfall presented as low centroid precipitation echo.The mixed convection in Xinlong,Baishou,Yongfu was caused by heavy rainfall supercell and presented as high centroid precipitation echo,with weak echo area,bounded weak echo area and medium-intensity mesocyclone. 展开更多
关键词 Severe convective weather Short-term heavy rainfall Convective storm
在线阅读 下载PDF
Analysis of convective-radiative heat transfer in dovetail longitudinal fins with shape-dependent hybrid nanofluids:a study using the Hermite wavelet method
15
作者 C.G.PAVITHRA B.J.GIREESHA +1 位作者 S.SUSHMA K.J.GOWTHAM 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期357-372,共16页
A distinguished category of operational fluids,known as hybrid nanofluids,occupies a prominent role among various fluid types owing to its superior heat transfer properties.By employing a dovetail fin profile,this wor... A distinguished category of operational fluids,known as hybrid nanofluids,occupies a prominent role among various fluid types owing to its superior heat transfer properties.By employing a dovetail fin profile,this work investigates the thermal reaction of a dynamic fin system to a hybrid nanofluid with shape-based properties,flowing uniformly at a velocity U.The analysis focuses on four distinct types of nanoparticles,i.e.,Al2O3,Ag,carbon nanotube(CNT),and graphene.Specifically,two of these particles exhibit a spherical shape,one possesses a cylindrical form,and the final type adopts a platelet morphology.The investigation delves into the pairing of these nanoparticles.The examination employs a combined approach to assess the constructional and thermal exchange characteristics of the hybrid nanofluid.The fin design,under the specified circumstances,gives rise to the derivation of a differential equation.The given equation is then transformed into a dimensionless form.Notably,the Hermite wavelet method is introduced for the first time to address the challenge posed by a moving fin submerged in a hybrid nanofluid with shape-dependent features.To validate the credibility of this research,the results obtained in this study are systematically compared with the numerical simulations.The examination discloses that the highest heat flux is achieved when combining nanoparticles with spherical and platelet shapes. 展开更多
关键词 Hermite wavelet method radiation CONVECTION dovetail fin nanoparticle configuration
在线阅读 下载PDF
Convective Mode of Tornadic Storms in Northeastern China:A Preliminary Study
16
作者 Chao YUAN Ying WANG +3 位作者 Lei YANG Fan PING Jing MIAO Yingcong ZHENG 《Advances in Atmospheric Sciences》 2026年第1期170-190,共21页
This study presents a comprehensive analysis of 132 tornadic events in northeastern China from 2004 to 2023,utilizing radar and ERA5 reanalysis data to investigate the climatology,environmental drivers,and synoptic li... This study presents a comprehensive analysis of 132 tornadic events in northeastern China from 2004 to 2023,utilizing radar and ERA5 reanalysis data to investigate the climatology,environmental drivers,and synoptic linkages with Northeast China cold vortices(NCCVs)of tornadic storms under different convective modes.Results reveal that discrete storms account for 70%of events,with clustered cells(CC)being the most frequent mode,while significant tornadoes(EF2+)are primarily associated with isolated cells(IC)and broken lines(BL).The storm mode distribution in northeastern China resembles that of the central United States but with a higher proportion of CC and lower IC.In contrast,southern China exhibits a higher frequency of quasi-linear(QL)modes(>50%),similar to European patterns.Although no single parameter clearly differentiates between all tornado modes,distinct morphological characteristics emerge through specific parameter combinations:NL modes are characterized by high 0-1 km storm-relative helicity(SRH1)and humidity but low 0-6 km shear(SR6),whereas IC modes display contrasting features with low SRH1 and high CAPE.Notably,83%of tornadoes are associated with NCCVs,preferentially forming in southeastern/southwestern quadrants.Strong tornadoes favor southeastern quadrants,while NCCV intensity correlates with tornadic distance from vortex centers.Three characteristic synoptic configurations emerge:(T1)strong deep vortices with vertically aligned cold troughs,generating southeast-dominant tornado clusters characterized by a high proportion of BL and QL modes;(T2)weaker vortices featuring sub-synoptic troughs,with southern-distributed events dominated by a predominance of the CC mode;(T3)transverse-trough systems exhibiting CAPE-SRH decoupling and reduced tornadic activity.This study enhances our understanding of tornadoes in northeastern China,informing future research on formation mechanisms,prediction methods,and disaster prevention strategies. 展开更多
关键词 convective storms northeastern China TORNADOES MORPHOLOGY northeastern China cold vortex
在线阅读 下载PDF
Numerical Investigation on Thermal Performance of Single-Phase Immersion Cooling Systems Using Oil Coolant
17
作者 Yiming Rongyang Zhenyue Yu +2 位作者 Ruisheng Liang Wei Su Jianjian Wei 《Frontiers in Heat and Mass Transfer》 2025年第1期279-298,共20页
Data center cooling systems are substantial energy consumers,and managing the heat generated by electronic devices is becoming more complex as chip power levels continue to rise.The single-phase immersion cooling(SPIC... Data center cooling systems are substantial energy consumers,and managing the heat generated by electronic devices is becoming more complex as chip power levels continue to rise.The single-phase immersion cooling(SPIC)server with oil coolant is numerically investigated using the validated Re-Normalization Group(RNG)k-εmodel.For the investigated scenarios where coolant velocity at the tank inlet is 0.004 m/s and the total power is 740 W,the heat transfer between the heat sinks and the coolant is dominated by natural convection,although forced convection mediates the overall heat transfer inside the tank.The maximum velocity of coolant through the heat sink is 0.035 m/s and the average heat transfer coefficient is up to 75.8 W/(m2·K).The geometry of the heat sink is important for the cooling performance.Increasing both the fin thickness and number enhances the natural convection effect of the heat sink,but also increases the flow resistance.The heat sink with a fin thickness of 3 mm performs the best,reducing the average graphics processing unit(GPU)temperature from 71.3℃ to 68.6℃.A heat sink with an optimal fin number of 16 reduces the average GPU temperature to 67.7℃.As for the effect of fin height,increasing it from 15 to 30 mm results in increases in the heat transfer area and flow rate by about 72%and 32%,respectively,which reduces the average GPU temperature to 65.2℃.Therefore,the importance of fin parameters ranks in the following order:fin height,number,and thickness.This study highlights the potential application of oil coolants in SPIC systems and offers theoretical guidance for the efficient design of natural convection cooling solutions. 展开更多
关键词 Oil coolant server natural convection heat sink
在线阅读 下载PDF
Insight into effect of forced convection during slab casting on as-cast solidification structure
18
作者 Hao Geng Yun-he Chang +3 位作者 Zhuang Zhang Peng Lan Pu Wang Jia-quan Zhang 《Journal of Iron and Steel Research International》 2025年第6期1568-1583,共16页
Solidification structure of casting strands significantly impacts the subsequent processing and service properties of the steel products,which correlates closely with the melt flow during the solidification process.Se... Solidification structure of casting strands significantly impacts the subsequent processing and service properties of the steel products,which correlates closely with the melt flow during the solidification process.Several abnormal solidification phenomena and segregation characteristics observed in slab casting are elucidated by referencing to their related flow patterns of molten steel calculated by a multi-field coupling model for actual casting conditions.Eventually,the effect of forced convection on the solidification structure was discussed.The results show that the forced convection generated by electromagnetic stirring and/or nozzle jet will remove the solute-enriched molten steel between the dendrite in front of the solidifying shell,and change solute distribution at the interface of dendrite tips,leading to the white bands and dendrite deflection.In the white band region,a dense dendrite structure without dendrite segregation appears.Moreover,forced convection results in a higher growth rate on the upstream side than the backflow side of the dendrite tip,promoting the columnar crystal deflection.In addition,dendrite fragmentation upon the forced convection during solidification will increase the equiaxed crystal ratio of the as-cast slab and the number of the spot-like semi-macrosegregation.The carbon extreme range decreased with the change in electromagnetic stirring process,indicating a significant improvement in the composition uniformity of the slab casting.It is suggested that the final quality of rolled products could be improved from the very beginning of casting and solidification through regulating the as-cast solidification structure. 展开更多
关键词 Solidification structure Forced convection Electromagnetic stirring White band Dendrite deflection
原文传递
Hybrid Nanofluids Mixed Convection inside a Partially Heated Square Enclosure with Driven Sidewalls
19
作者 Meriem Bounib Aicha Bouhezza +4 位作者 Abdelkrim Khelifa Mohamed Teggar Hasan Köen Aissa Atia Yassine Cherif 《Frontiers in Heat and Mass Transfer》 2025年第4期1323-1350,共28页
This study investigates laminar convection in three regimes(forced convection,mixed convection,and natural convection)of a bi-nanofluid(Cu-Al_(2)O_(3)-water)/mono-nanofluid(Al_(2)O_(3)-water)inside a square enclosure ... This study investigates laminar convection in three regimes(forced convection,mixed convection,and natural convection)of a bi-nanofluid(Cu-Al_(2)O_(3)-water)/mono-nanofluid(Al_(2)O_(3)-water)inside a square enclosure of sliding vertical walls which are kept at cold temperature and moving up,down,or in opposite directions.The enclosure bottom is heated partially by a central heat source of various sizes while the horizontal walls are considered adiabatic.The thermal conductivity and dynamic viscosity are dependent on temperature and nanoparticle size.The conservation equations are implemented in the solver ANSYS R2(2020).The numerical predictions are successfully validated by comparison with data from the literature.Numerical simulations are carried out for various volume fractions of solid mono/hybrid-nanoparticles(0≤ϕ≤5%),Richardson numbers(0.001≤Ri≤10),and hot source lengths((1/5)H≤ε≤(4/5)H).Isothermal lines,streamlines,and average Nusselt numbers are analyzed.The thermal performance of nanofluids is compared to that of the base heat transfer fluid(water).Outcomes illustrate the flow characteristics significantly affected by the convection regime,hot source size,sidewall motion,and concentration of solid nanoparticles.In the case of sidewalls moving downward,using hybrid nanofluid(Cu-Al_(2)O_(3)-water)shows the highest heat transfer rate in the enclosure at Ri=1,ε=(4/5)H and volume fraction ofφ=5%where a significant increment(25.14%)of Nusselt number is obtained. 展开更多
关键词 Mixed convection heat transfer enhancement hybrid nanofluid nanoparticles Richardson number
在线阅读 下载PDF
Physical characteristics of convective and non-convective cirrus clouds from CALIPSO data over the South China Sea
20
作者 Haorui Weng Yong Han +2 位作者 Ximing Deng Li Dong Yan Liu 《Atmospheric and Oceanic Science Letters》 2025年第3期1-6,共6页
Studying the characteristics and mechanisms of convective and non-convective cirrus clouds over the South China Sea is vital for their impact on regional climate dynamics,and enhancing predictive models for weather an... Studying the characteristics and mechanisms of convective and non-convective cirrus clouds over the South China Sea is vital for their impact on regional climate dynamics,and enhancing predictive models for weather and climate forecasts.This study utilizes eight years of CALIPSO data(from March 2007 to February 2015)to investigate convective and non-convective cirrus clouds.Explicit new insights include the observation that convective cirrus cloud samples are three times more numerous than non-convective cirrus clouds.Convective cirrus clouds are associated with humid conditions and demonstrate higher ice water content(IWC)values ranging from 10^(−3)to 10^(−1)g m^(−3),whereas non-convective cirrus clouds tend to be drier,exhibiting IWC values ranging from 10^(−4)to 10^(−3)g m^(−3).Both cirrus cloud types exhibit a maximum cloud fraction at 10°N.Convective cirrus reach their peak cloud fraction at an altitude of 14 km,while non-convective cirrus typically occur at altitudes between 15 and 16 km.The seasonal variability of the convective cirrus cloud fraction primarily reflects bottom-up positive specific humidity anomalies originating from convective activity,whereas the non-convective cirrus cloud fraction is influenced by top-down negative temperature anomalies. 展开更多
关键词 South China sea Convective cirrus Non-convective cirrus CALIPSO
在线阅读 下载PDF
上一页 1 2 87 下一页 到第
使用帮助 返回顶部