Mango farming significantly contributes to the economy,particularly in developing countries.However,mango trees are susceptible to various diseases caused by fungi,viruses,and bacteria,and diagnosing these diseases at...Mango farming significantly contributes to the economy,particularly in developing countries.However,mango trees are susceptible to various diseases caused by fungi,viruses,and bacteria,and diagnosing these diseases at an early stage is crucial to prevent their spread,which can lead to substantial losses.The development of deep learning models for detecting crop diseases is an active area of research in smart agriculture.This study focuses on mango plant diseases and employs the ConvNeXt and Vision Transformer(ViT)architectures.Two datasets were used.The first,MangoLeafBD,contains data for mango leaf diseases such as anthracnose,bacterial canker,gall midge,and powdery mildew.The second,SenMangoFruitDDS,includes data for mango fruit diseases such as Alternaria,Anthracnose,Black Mould Rot,Healthy,and Stem and Rot.Both datasets were obtained from publicly available sources.The proposed model achieved an accuracy of 99.87%on the MangoLeafBD dataset and 98.40%on the MangoFruitDDS dataset.The results demonstrate that ConvNeXt and ViT models can effectively diagnose mango diseases,enabling farmers to identify these conditions more efficiently.The system contributes to increased mango production and minimizes economic losses by reducing the time and effort needed for manual diagnostics.Additionally,the proposed system is integrated into a mobile application that utilizes the model as a backend to detect mango diseases instantly.展开更多
液晶面板喷墨打印表面缺陷检测中存在目标小、样本少、纹理背景干扰等问题,应用传统图像处理算法检测精度低、泛化性差,针对以上问题提出了一种改进RT-DETR(real-time detection transformer)的目标检测算法。改进RT-DETR算法通过将主...液晶面板喷墨打印表面缺陷检测中存在目标小、样本少、纹理背景干扰等问题,应用传统图像处理算法检测精度低、泛化性差,针对以上问题提出了一种改进RT-DETR(real-time detection transformer)的目标检测算法。改进RT-DETR算法通过将主干网络ResNet模型替换为特征提取性能更优的ConvNeXt模型,提高算法整体检测精度。设计了基于通道注意力的增强通道压缩模块,使算法更有效地消除背景干扰专注于定位缺陷目标,加快算法收敛,提高小目标检测精度。在构建的喷墨打印缺陷数据集训练实验上,改进RT-DETR算法检测平均精度mAP(mean average precision)为80.58%,较原始RT-DETR算法提升了2.89%,较原始DETR算法提升了15.88%,检测速度达到20 FPS(frames per second),改进RT-DETR算法的综合检测性能更优。改进RT-DETR算法在小目标检测数据集VisDrone训练实验上表现出良好的通用性,为其他工业场景下的表面小目标缺陷检测提供了参考价值。展开更多
马铃薯叶部病害的准确检测和识别对于精准防治病虫害至关重要,能够有效提高马铃薯产量,但由于马铃薯叶部的早疫病和晚疫病在早期表现上非常相似,很难区分。为了更准确地对马铃薯叶部病害进行检测识别,本文提出了一种基于位置编码和并行...马铃薯叶部病害的准确检测和识别对于精准防治病虫害至关重要,能够有效提高马铃薯产量,但由于马铃薯叶部的早疫病和晚疫病在早期表现上非常相似,很难区分。为了更准确地对马铃薯叶部病害进行检测识别,本文提出了一种基于位置编码和并行注意力机制的Conv Ne Xt模型。首先对数据集进行位置编码预处理,使网络模型无需加载预训练权重即可获取病害部位的位置信息,提高学习能力;其次针对不同病害空间分布位置不同以及形态特征的细微差异,添加并行注意力机制BAM模块增强对病害特征的提取能力。实验结果表明:优化后的ConvNeXt模型能够准确检测并对不同病害进行分类识别,较原ConvNeXt模型Top-1准确率最高提高约5个百分点,能够满足目前马铃薯叶部病害准确识别方面的需求,有良好的鲁棒性,可以泛化在其他植物种类上。展开更多
基金funded by Princess Nourah bint Abdulrahman University and Researchers Supporting Project number(PNURSP2025R346)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Mango farming significantly contributes to the economy,particularly in developing countries.However,mango trees are susceptible to various diseases caused by fungi,viruses,and bacteria,and diagnosing these diseases at an early stage is crucial to prevent their spread,which can lead to substantial losses.The development of deep learning models for detecting crop diseases is an active area of research in smart agriculture.This study focuses on mango plant diseases and employs the ConvNeXt and Vision Transformer(ViT)architectures.Two datasets were used.The first,MangoLeafBD,contains data for mango leaf diseases such as anthracnose,bacterial canker,gall midge,and powdery mildew.The second,SenMangoFruitDDS,includes data for mango fruit diseases such as Alternaria,Anthracnose,Black Mould Rot,Healthy,and Stem and Rot.Both datasets were obtained from publicly available sources.The proposed model achieved an accuracy of 99.87%on the MangoLeafBD dataset and 98.40%on the MangoFruitDDS dataset.The results demonstrate that ConvNeXt and ViT models can effectively diagnose mango diseases,enabling farmers to identify these conditions more efficiently.The system contributes to increased mango production and minimizes economic losses by reducing the time and effort needed for manual diagnostics.Additionally,the proposed system is integrated into a mobile application that utilizes the model as a backend to detect mango diseases instantly.
文摘液晶面板喷墨打印表面缺陷检测中存在目标小、样本少、纹理背景干扰等问题,应用传统图像处理算法检测精度低、泛化性差,针对以上问题提出了一种改进RT-DETR(real-time detection transformer)的目标检测算法。改进RT-DETR算法通过将主干网络ResNet模型替换为特征提取性能更优的ConvNeXt模型,提高算法整体检测精度。设计了基于通道注意力的增强通道压缩模块,使算法更有效地消除背景干扰专注于定位缺陷目标,加快算法收敛,提高小目标检测精度。在构建的喷墨打印缺陷数据集训练实验上,改进RT-DETR算法检测平均精度mAP(mean average precision)为80.58%,较原始RT-DETR算法提升了2.89%,较原始DETR算法提升了15.88%,检测速度达到20 FPS(frames per second),改进RT-DETR算法的综合检测性能更优。改进RT-DETR算法在小目标检测数据集VisDrone训练实验上表现出良好的通用性,为其他工业场景下的表面小目标缺陷检测提供了参考价值。
文摘马铃薯叶部病害的准确检测和识别对于精准防治病虫害至关重要,能够有效提高马铃薯产量,但由于马铃薯叶部的早疫病和晚疫病在早期表现上非常相似,很难区分。为了更准确地对马铃薯叶部病害进行检测识别,本文提出了一种基于位置编码和并行注意力机制的Conv Ne Xt模型。首先对数据集进行位置编码预处理,使网络模型无需加载预训练权重即可获取病害部位的位置信息,提高学习能力;其次针对不同病害空间分布位置不同以及形态特征的细微差异,添加并行注意力机制BAM模块增强对病害特征的提取能力。实验结果表明:优化后的ConvNeXt模型能够准确检测并对不同病害进行分类识别,较原ConvNeXt模型Top-1准确率最高提高约5个百分点,能够满足目前马铃薯叶部病害准确识别方面的需求,有良好的鲁棒性,可以泛化在其他植物种类上。