期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合注意力机制的YOLOv8-TS交通标志检测网络 被引量:1
1
作者 黄智渊 方遒 郭星浩 《现代电子技术》 北大核心 2025年第1期179-186,共8页
道路交通标志识别是自动驾驶、车联网的重要组成部分,为进一步提高交通标志检测的精度和速度,提出一种基于YOLOv8s改进的YOLOv8-TS道路交通标志检测网络。首先,对YOLOv8s进行了整体的轻量化设计,并设计了Conv-G7S和CSP-G7S模块,减少了... 道路交通标志识别是自动驾驶、车联网的重要组成部分,为进一步提高交通标志检测的精度和速度,提出一种基于YOLOv8s改进的YOLOv8-TS道路交通标志检测网络。首先,对YOLOv8s进行了整体的轻量化设计,并设计了Conv-G7S和CSP-G7S模块,减少了网络的参数量;其次,设计了CSP-SwinTransformer模块,强化了模型利用窗口内的特征信息进行上下文感知和建模的能力;然后,在颈部网络融合了卷积注意力机制(CBAM),强化了模型对不同通道、空间权重信息的学习;最后,对损失函数进行了改进,提升了边界框回归性能。实验结果表明,在中国道路交通标志TT100K数据集上,精确率(Precision)、平均精度(mAP@0.5)分别提高了6.9%、3.7%,而改进后模型的参数量下降了75.4%,模型的大小仅为5.8 MB,平均精度(mAP@0.5)达到96.5%,检测速度由126.58 f/s提升至136.99 f/s。 展开更多
关键词 交通标志检测 YOLOv8-Ts 轻量化 注意力机制 conv-g7s WIoU
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部