The development characteristics of rice stem border, Chilo suppressalis (Walker) was introduced, and the corresponding control ing measures were put forward, including agricultural control, physical control, biologi...The development characteristics of rice stem border, Chilo suppressalis (Walker) was introduced, and the corresponding control ing measures were put forward, including agricultural control, physical control, biological control, chemical control.展开更多
This paper aims to reveal the multi-optimal mechanisms for dynamic control in drag- onfly wings. By combining the Arnold circulation with such micro/nano structures as the hollow inside constructions of the pterostigm...This paper aims to reveal the multi-optimal mechanisms for dynamic control in drag- onfly wings. By combining the Arnold circulation with such micro/nano structures as the hollow inside constructions of the pterostigma, veins and spikes, dragonfly wings can create variable mass, variable rotating inertia and variable natural frequency. This marvelous ability enables dragonflies to overcome the contradictory requirements of both light-weight-wing and heavy-weight-wing, and displays the multi-optimal mechanisms for the excellent flying ability and dynamic control capac- ity of dragonflies. These results provide new perspectives for understanding the wings' functions and new inspirations for bionic manufactures.展开更多
文摘The development characteristics of rice stem border, Chilo suppressalis (Walker) was introduced, and the corresponding control ing measures were put forward, including agricultural control, physical control, biological control, chemical control.
基金Project supported by the National Natural Science Foundation of China (Nos. 11102138 and 11272175)the Fundamental Research Funds for the Central Universities
文摘This paper aims to reveal the multi-optimal mechanisms for dynamic control in drag- onfly wings. By combining the Arnold circulation with such micro/nano structures as the hollow inside constructions of the pterostigma, veins and spikes, dragonfly wings can create variable mass, variable rotating inertia and variable natural frequency. This marvelous ability enables dragonflies to overcome the contradictory requirements of both light-weight-wing and heavy-weight-wing, and displays the multi-optimal mechanisms for the excellent flying ability and dynamic control capac- ity of dragonflies. These results provide new perspectives for understanding the wings' functions and new inspirations for bionic manufactures.