Purpose:This study provides a comprehensive bibliometric analysis of the environmental management control tools literature.It seeks to summarize this body of literature’s growth and identify the most influential auth...Purpose:This study provides a comprehensive bibliometric analysis of the environmental management control tools literature.It seeks to summarize this body of literature’s growth and identify the most influential authors,journals,and articles in this field.The main objective of this article is to determine which tools are most prominent in the literature.Methodology/approach:The study examined 541 articles published in 126 academically indexed journals in the Scopus database.The analyzed timeframe covers the period from 2011 to 2023.We used VOSviewer software for statistical calculations to map the collaborations among authors and journals and to develop a conceptual and intellectual map of the field.Results:Our findings show that the literature on environmental management control tools is flourishing.The authors who dominated this period are mainly Schaltegger,Sala,and Ulgiati.The Journal of Cleaner Production is the primary source of publications,with an astounding 241 documents.The United States attained the leading position in terms of publication with 86 documents,which explains its willingness to collaborate with other countries,followed by China and Australia with 70 and 66 papers,respectively.Finally,bibliometric analysis shows that“life cycle assessment”,“cost-benefit analysis”,and“sustainability reporting”are the most prominent tools in research on this topic.Originality/value:This article provides several starting points for researchers and practitioners investigating environmental management control tools.It contributes to broadening the field’s vision and then offers recommendations for future studies.展开更多
The nonlinear dynamic characteristics of a two-peak discrete chaotic system are studied.Through the study of the nonlinear dy‐namic behavior of the system,it is found that with the change of the system parameters,the...The nonlinear dynamic characteristics of a two-peak discrete chaotic system are studied.Through the study of the nonlinear dy‐namic behavior of the system,it is found that with the change of the system parameters,the system starts from a chaotic state,and then goes through intermittent chaos,stable region,period-doubling bifurcation to a chaotic state again.The systems critical conditions and pro‐cess to generate intermittent chaos are analyzed.The feedback control method sets linear and nonlinear controllers for the system to control the chaos.By adjusting the value of control parameters,the intermittent chaos can be delayed or disappear,and the stability region and period-doubling bifurcation process of the system can be expanded.Both linear controllers and nonlinear controllers have the same control effect.The numerical simulation analysis verifies the correctness of the theoretical analysis.展开更多
Chassis-by-wire technology has gained significant attention,with the scope of chassis domain control expanding from traditional two-dimensional plane motion control to encompass three-dimensional space motion control....Chassis-by-wire technology has gained significant attention,with the scope of chassis domain control expanding from traditional two-dimensional plane motion control to encompass three-dimensional space motion control.Modern chassis-by-wire systems manage an increasing number of heterogeneous chassis execution systems,including distributed drive,all-wheel drive(AWD),brake-by-wire(BBW),steer-by-wire(SBW),rear-wheel steering(RWS),active stabilizer bar(ASB)and active suspension system(ASS),greatly enhancing the controllable degrees of freedom compared to conventional chassis configurations.To advance research in chassis domain control,it is essential to understand how these heterogeneous execution systems influence vehicle dynamics.This paper focuses on the modeling and analysis of the lateral,longitudinal,and vertical chassis control and execution systems,-as well as their impact on vehicle lateral motion.Using a vehicle simulation platform,both the vehicle dynamics model and the individual dynamics models of each execution system were developed to analyze the influence of these systems on lateral dynamics.Additionally,a hierarchical control architecture was designed to control the vehicle’s lateral stability.The effectiveness of the proposed control scheme was demonstrated and validated through hardware-in-the-loop(HIL)tests and real-world vehicle testing.展开更多
Recent years have witnessed unprecedented development in humanoid robotics,with dexterous hand grasping emerging as a focal research area across industrial and academic sectors.To track the state-of-the-art dexterous ...Recent years have witnessed unprecedented development in humanoid robotics,with dexterous hand grasping emerging as a focal research area across industrial and academic sectors.To track the state-of-the-art dexterous hand grasp,a review of dexterous hand grasp based on bibliometric analysis is executed.The related studies on dexterous hand grasp are collected from the Web of Science for analysis,where the publication details and cooperation situations from the perspectives of country,institute,etc.are discussed.The keywords cluster is adopted to find the hot research topic of dexterous hand grasp.The development trend of dexterous hand grasp is explored based on the top 25 keywords with the strongest citation bursts.The review findings indicate that precision control via multimodal fusion,autonomous task understanding and intelligent decision,and in-hand dexterous manipulation are top three hotspots in future.展开更多
Compared to other energy sources,nuclear reactors offer several advantages as a spacecraft power source,including compact size,high power density,and long operating life.These qualities make nuclear power an ideal ene...Compared to other energy sources,nuclear reactors offer several advantages as a spacecraft power source,including compact size,high power density,and long operating life.These qualities make nuclear power an ideal energy source for future deep space exploration.A whole system model of the space nuclear reactor consisting of the reactor neutron kinetics,reactivity control,reactor heat transfer,heat exchanger,and thermoelectric converter was developed.In addition,an electrical power control system was designed based on the developed dynamic model.The GRS method was used to quantitatively calculate the uncertainty of coupling parameters of the neutronics,thermal-hydraulics,and control system for the space reactor.The Spearman correlation coefficient was applied in the sensitivity analysis of system input parameters to output parameters.The calculation results showed that the uncertainty of the output parameters caused by coupling parameters had the most considerable variation,with a relative standard deviation<2.01%.Effective delayed neutron fraction was most sensitive to electrical power.To obtain optimal control performance,the non-dominated sorting genetic algorithm method was employed to optimize the controller parameters based on the uncertainty quantification calculation.Two typical transient simulations were conducted to test the adaptive ability of the optimized controller in the uncertainty dynamic system,including 100%full power(FP)to 90%FP step load reduction transient and 5%FP/min linear variable load transient.The results showed that,considering the influence of system uncertainty,the optimized controller could improve the response speed and load following accuracy of electrical power control,in which the effectiveness and superiority have been verified.展开更多
With the advancement of more electric aircraft(MEA)technology,the application of electro-hydrostatic actuators(EHAs)in aircraft actuation systems has become increasingly prevalent.This paper focuses on the modeling an...With the advancement of more electric aircraft(MEA)technology,the application of electro-hydrostatic actuators(EHAs)in aircraft actuation systems has become increasingly prevalent.This paper focuses on the modeling and mode switching analysis of EHA used in the primary flight control actuation systems of large aircraft,addressing the challenges associated with mode switching.First,we analyze the functional architecture and operational characteristics of multi-mode EHA,and sumarize the operating modes and implementation methods.Based on the EHA system architecture,we then develop a theoretical mathematical model and a simulation model.Using the simulation model,we analyze the performance of the EHA during normal operation.Finally,the performance of the EHA during mode switching under various functional switching scenarios is investigated.The results indicate that the EHA meets the performance requirements in terms of accuracy,bandwidth,and load capacity.Additionally,the hydraulic cylinder operates smoothly during the EHA mode switching,and the response time for switching between different modes is less than the specified threshold.These findings validate the system performance of multi-mode EHA,which helps to improve the reliability of EHA and the safety of aircraft flight control systems.展开更多
The issue of strong noise has increasingly become a bottleneck restricting the precision and application space of electromagnetic exploration methods.Noise suppression and extraction of effective electromagnetic respo...The issue of strong noise has increasingly become a bottleneck restricting the precision and application space of electromagnetic exploration methods.Noise suppression and extraction of effective electromagnetic response information under a strong noise background is a crucial scientific task to be addressed.To solve the noise suppression problem of the controlled-source electromagnetic method in strong interference areas,we propose an approach based on complex-plane 2D k-means clustering for data processing.Based on the stability of the controlled-source signal response,clustering analysis is applied to classify the spectra of different sources and noises in multiple time segments.By identifying the power spectra with controlled-source characteristics,it helps to improve the quality of the controlled-source response extraction.This paper presents the principle and workflow of the proposed algorithm,and demonstrates feasibility and effectiveness of the new algorithm through synthetic and real data examples.The results show that,compared with the conventional Robust denoising method,the clustering algorithm has a stronger suppression effect on common noise,can identify high-quality signals,and improve the preprocessing data quality of the controlledsource electromagnetic method.展开更多
An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structu...An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structure repetitive control (DMRC) so that it can offer superior steady-state performance and good transient features. Unlike the conventional schemes, the proposed scheme-based APF can compensate both the odd and the even order harmonics in grid. The detailed design criteria and the stability analysis of the proposed hybrid current controller are presented. Moreover, an improved structure which incorporates the proposed hybrid controller and the resonant controller for tracking specific order harmonics is given. The relationships between the resonant controller and different repetitive control schemes are discussed. Experimental results verify the effectiveness and advantages of the proposed hybrid control scheme.展开更多
Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,...Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,nonlinear controllers with robust performance which can cope with these are recommended.The sliding mode control(SMC)is a robust state feedback control method for nonlinear systems that,in addition having a simple design,efficiently overcomes uncertainties and disturbances in the system.It also has a very fast transient response that is desirable when controlling robotic manipulators.The most critical drawback to SMC is chattering in the control input signal.To solve this problem,in this study,SMC is used with a boundary layer(SMCBL)to eliminate the chattering and improve the performance of the system.The proposed SMCBL was compared with inverse dynamic control(IDC),a conventional nonlinear control method.The kinematic and dynamic equations of the IRB-120 robot manipulator were initially extracted completely and accurately,and then the control of the robot manipulator using SMC was evaluated.For validation,the proposed control method was implemented on a 6-DOF IRB-120 robot manipulator in the presence of uncertainties.The results were simulated,tested,and compared in the MATLAB/Simulink environment.To further validate our work,the results were tested and confirmed experimentally on an actual IRB-120 robot manipulator.展开更多
The paper presents the research on self-balancing two-wheels mobile robot control system analysis with experimental studies.The research problem in this work is to stabilize the mobile robot with self-control and to c...The paper presents the research on self-balancing two-wheels mobile robot control system analysis with experimental studies.The research problem in this work is to stabilize the mobile robot with self-control and to carry the sensitive things without failing in a long span period.The main objective of this study is to focus on the mathematical modelling of mobile robot from laboratory scale to real world applications.The numerical expression with mathematical modelling is very important to control the mobile robot system with linearization.The fundamental concepts of dynamic system stability were utilized for maintaining the stability of the constructed mobile robot system.The controller design is also important for checking the stability and the appropriate controller design is proportional,integral,and derivative-PID controller and Linear Quadratic Regulator(LQR).The steady state error could be reduced by using such kind of PID controller.The simulation of numerical expression on mathematical modeling was conducted in MATLAB environments.The confirmation results from the simulation techniques were applied to construct the hardware design of mobile robot system for practical study.The results from simulation approaches and experimental approaches are matched in various kinds of analyses.The constructed mobile robot system was designed and analyzed in the control system design laboratory of Yangon Technological University(YTU).展开更多
Background China is seeing a growing demand for rehabilitation treatments for post-stroke upper limb spastic paresis(PSSP-UL).Although acupuncture is known to be effective for PSSP-UL,there is room to enhance its effi...Background China is seeing a growing demand for rehabilitation treatments for post-stroke upper limb spastic paresis(PSSP-UL).Although acupuncture is known to be effective for PSSP-UL,there is room to enhance its efficacy.Objective This study explored a semi-personalized acupuncture approach for PSSP-UL that used three-dimensional kinematic analysis(3DKA)results to select additional acupoints,and investigated the feasibility,efficacy and safety of this approach.Design,setting,participants and interventions This single-blind,single-center,randomized,controlled trial involved 74 participants who experienced a first-ever ischemic or hemorrhagic stroke with spastic upper limb paresis.The participants were then randomly assigned to the intervention group or the control group in a 1:1 ratio.Both groups received conventional treatments and acupuncture treatment 5 days a week for 4 weeks.The main acupoints in both groups were the same,while participants in the intervention group received additional acupoints selected on the basis of 3DKA results.Follow-up assessments were conducted for 8 weeks after the treatment.Main outcome measures The primary outcome was the Fugl-Meyer Assessment for Upper Extremity(FMA-UE)response rate(≥6-point change)at week 4.Secondary outcomes included changes in motor function(FMA-UE),Brunnstrom recovery stage(BRS),manual muscle test(MMT),spasticity(Modified Ashworth Scale,MAS),and activities of daily life(Modified Barthel Index,MBI)at week 4 and week 12.Results Sixty-four participants completed the trial and underwent analyses.Compared with control group,the intervention group exhibited a significantly higher FMA-UE response rate at week 4(χ^(2)=5.479,P=0.019)and greater improvements in FMA-UE at both week 4 and week 12(both P<0.001).The intervention group also showed bigger improvements from baseline in the MMT grades for shoulder adduction and elbow flexion at weeks 4 and 12 as well as thumb adduction at week 4(P=0.007,P=0.049,P=0.019,P=0.008,P=0.029,respectively).The intervention group showed a better change in the MBI at both week 4 and week 12(P=0.004 and P=0.010,respectively).Although the intervention group had a higher BRS for the hand at week 12(P=0.041),no intergroup differences were observed at week 4(all P>0.05).The two groups showed no differences in MAS grades as well as in BRS for the arm at weeks 4 and 12(all P>0.05).Conclusion Semi-personalized acupuncture prescription based on 3DKA results significantly improved motor function,muscle strength,and activities of daily living in patients with PSSP-UL.展开更多
The unmanned aerial vehicles( UAV) has been becoming more and more important in the aviation industry.Despite the superior performance and advanced technology,major accident of UAV happens frequently due to the impact...The unmanned aerial vehicles( UAV) has been becoming more and more important in the aviation industry.Despite the superior performance and advanced technology,major accident of UAV happens frequently due to the impact of their systems,long distance of remote control and skill of manipulator technology.According to the application of engineering application,failure mode effects and criticality analysis( FMECA),failure reporting analysis and corrective action comprehensive analysis systems( FRACAS)and fault tree analysis( FTA)( 3 F) were combined.And also a set of user-friendly,more time,more efficient and accurate reliability analysis system were explored.展开更多
The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked age...The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked agents. A theorem in the form of linear matrix inequalities(LMI) is derived to analyze the system stability. An- other theorem in the form of optimization problem subject to LMI constraints is proposed to design the controller, and then the algorithm is presented. The simulation results verify the validity and the effectiveness of the pro- posed approach.展开更多
This research is focused on the singularity analysis for single-gimbal control moment gyros systems (SCMGs) which include two types, with constant speed (CSCMG) or variable speed (VSCMG) rotors. Through angular ...This research is focused on the singularity analysis for single-gimbal control moment gyros systems (SCMGs) which include two types, with constant speed (CSCMG) or variable speed (VSCMG) rotors. Through angular momentum hypersurfaces of singular states, the passable and impassable singular points are discriminated easily, meanwhile the information about how much the angular momentum workspace as well as the steering capability available is provided directly. It is obvious that the null motions of steering laws are more effective for the five pyramid configuration(FPC) than for the pyramid configuration(PC) from the singular plots. The possible degenerate hyperbolic singular points of the preceding configurations are calculated and the distinctness of them is denoted by the Gaussian curvature. Furthermore, failure problems to steer integrated power and attitude control system (IPACS) are also analyzed. A sufficient condition of choosing configurations of VSCMGs to guarantee the IPACS steering is given. The angular momentum envelops of VSCMGs, in a given energy and a limited range of rotor speeds, are plotted. The connection and distinctness between CSCMGs and VSCMGs are obtained from the point of view of envelops.展开更多
Based on the singular value decomposition theory,this paper analyzed the mechanism of escaping/avoiding singularity using generalized and weighted singularity-robust steering laws for a spacecraft that uses single gim...Based on the singular value decomposition theory,this paper analyzed the mechanism of escaping/avoiding singularity using generalized and weighted singularity-robust steering laws for a spacecraft that uses single gimbal control moment gyros (SGCMGs) as the actuator for the attitude control system.The expression of output-torque error is given at the point of singularity,proving the incompatible relationship between the gimbal rate and the output-torque error.The method of establishing a balance between the gimbal rate and the output-torque error is discussed,and a new steering law is designed.Simulation results show that the proposed steering law can effectively drive SGCMGs to escape away from singularities.展开更多
Role based access control is one of the widely used access control models.There are investigations in the literature that use knowledge representation mechanisms such as formal concept analysis(FCA),description logics...Role based access control is one of the widely used access control models.There are investigations in the literature that use knowledge representation mechanisms such as formal concept analysis(FCA),description logics,and Ontology for representing access control mechanism.However,while using FCA,investigations reported in the literature so far work on the logic that transforms the three dimensional access control matrix into dyadic formal contexts.This transformation is mainly to derive the formal concepts,lattice structure and implications to represent role hierarchy and constraints of RBAC.In this work,we propose a methodology that models RBAC using triadic FCA without transforming the triadic access control matrix into dyadic formal contexts.Our discussion is on two lines of inquiry.We present how triadic FCA can provide a suitable representation of RBAC policy and we demonstrate how this representation follows role hierarchy and constraints of RBAC on sample healthcare network available in the literature.展开更多
The chattering characteristic of sliding mode control isanalyzed when it is applied in distributed control systems (DCSs).For a DCS with random time delay and packet dropout, a discreteswitching system model with ti...The chattering characteristic of sliding mode control isanalyzed when it is applied in distributed control systems (DCSs).For a DCS with random time delay and packet dropout, a discreteswitching system model with time varying sampling period isconstructed based on the time delay system method. The reachinglaw based sliding mode controller is applied in the proposedsystem. The exponential stability condition in the form of linearmatrix inequality is figured out based on the multi-Lyaponov functionmethod. Then, the chattering characteristic is analyzed for theswitching system, and a chattering region related with time varyingsampling period and external disturbance is proposed. Finally, numericalexamples are given to illustrate the validity of the analysisresult.展开更多
Impedance control is a well-established technique to control interaction forces in robotics.However,real implementations of impedance control with an inner loop may suffer from several limitations.In particular,the vi...Impedance control is a well-established technique to control interaction forces in robotics.However,real implementations of impedance control with an inner loop may suffer from several limitations.In particular,the viable range of stable stiffness and damping values can be strongly affected by the bandwidth of the inner control loops(e.g.,a torque loop)as well as by the filtering and sampling frequency.This paper provides an extensive analysis on how these aspects influence the stability region of impedance parameters as well as the passivity of the system.This will be supported by both simulations and experimental data.Moreover,a methodology for designing joint impedance controllers based on an inner torque loop and a positive velocity feedback loop will be presented.The goal of the velocity feedback is to increase(given the constraints to preserve stability)the bandwidth of the torque loop without the need of a complex controller.展开更多
To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method...To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.展开更多
In this paper, the iterative learning control problem is considered for a class of remote control system over wireless network communication channel. The control performance of remote iterative learning control (R-IL...In this paper, the iterative learning control problem is considered for a class of remote control system over wireless network communication channel. The control performance of remote iterative learning control (R-ILC) system is analyzed and an error boundary of the stable output of the R-ILC system is obtained for the boundary stochastic noise channel. Finally, we obtain some rules to reduce the fluctuation caused by wireless channel noise through the analysis results for fluctuation boundary. The simulation results prove the proposed rule is correct.展开更多
文摘Purpose:This study provides a comprehensive bibliometric analysis of the environmental management control tools literature.It seeks to summarize this body of literature’s growth and identify the most influential authors,journals,and articles in this field.The main objective of this article is to determine which tools are most prominent in the literature.Methodology/approach:The study examined 541 articles published in 126 academically indexed journals in the Scopus database.The analyzed timeframe covers the period from 2011 to 2023.We used VOSviewer software for statistical calculations to map the collaborations among authors and journals and to develop a conceptual and intellectual map of the field.Results:Our findings show that the literature on environmental management control tools is flourishing.The authors who dominated this period are mainly Schaltegger,Sala,and Ulgiati.The Journal of Cleaner Production is the primary source of publications,with an astounding 241 documents.The United States attained the leading position in terms of publication with 86 documents,which explains its willingness to collaborate with other countries,followed by China and Australia with 70 and 66 papers,respectively.Finally,bibliometric analysis shows that“life cycle assessment”,“cost-benefit analysis”,and“sustainability reporting”are the most prominent tools in research on this topic.Originality/value:This article provides several starting points for researchers and practitioners investigating environmental management control tools.It contributes to broadening the field’s vision and then offers recommendations for future studies.
基金Supported by the Guiding Project of Science and Technology Research Plan of Hubei Provincial Department of Education(B2022458)。
文摘The nonlinear dynamic characteristics of a two-peak discrete chaotic system are studied.Through the study of the nonlinear dy‐namic behavior of the system,it is found that with the change of the system parameters,the system starts from a chaotic state,and then goes through intermittent chaos,stable region,period-doubling bifurcation to a chaotic state again.The systems critical conditions and pro‐cess to generate intermittent chaos are analyzed.The feedback control method sets linear and nonlinear controllers for the system to control the chaos.By adjusting the value of control parameters,the intermittent chaos can be delayed or disappear,and the stability region and period-doubling bifurcation process of the system can be expanded.Both linear controllers and nonlinear controllers have the same control effect.The numerical simulation analysis verifies the correctness of the theoretical analysis.
基金Supported by National Nature Science Foundation of China(Grant Nos.52325212,52372394)National Key Research and Development Program of China(Grant Nos.2022YFE0117100,2021YFB2501201)+1 种基金Industry-University-Research Innovation Fund for Chinese Universities(Grand No.2024HT010)Fundamental Research Funds for the Central Universities.
文摘Chassis-by-wire technology has gained significant attention,with the scope of chassis domain control expanding from traditional two-dimensional plane motion control to encompass three-dimensional space motion control.Modern chassis-by-wire systems manage an increasing number of heterogeneous chassis execution systems,including distributed drive,all-wheel drive(AWD),brake-by-wire(BBW),steer-by-wire(SBW),rear-wheel steering(RWS),active stabilizer bar(ASB)and active suspension system(ASS),greatly enhancing the controllable degrees of freedom compared to conventional chassis configurations.To advance research in chassis domain control,it is essential to understand how these heterogeneous execution systems influence vehicle dynamics.This paper focuses on the modeling and analysis of the lateral,longitudinal,and vertical chassis control and execution systems,-as well as their impact on vehicle lateral motion.Using a vehicle simulation platform,both the vehicle dynamics model and the individual dynamics models of each execution system were developed to analyze the influence of these systems on lateral dynamics.Additionally,a hierarchical control architecture was designed to control the vehicle’s lateral stability.The effectiveness of the proposed control scheme was demonstrated and validated through hardware-in-the-loop(HIL)tests and real-world vehicle testing.
基金Supported by the National Natural Science Foundation of China(Grant No.52405530)the Beijing Natural Science Foundation(Grant No.L243009)the Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘Recent years have witnessed unprecedented development in humanoid robotics,with dexterous hand grasping emerging as a focal research area across industrial and academic sectors.To track the state-of-the-art dexterous hand grasp,a review of dexterous hand grasp based on bibliometric analysis is executed.The related studies on dexterous hand grasp are collected from the Web of Science for analysis,where the publication details and cooperation situations from the perspectives of country,institute,etc.are discussed.The keywords cluster is adopted to find the hot research topic of dexterous hand grasp.The development trend of dexterous hand grasp is explored based on the top 25 keywords with the strongest citation bursts.The review findings indicate that precision control via multimodal fusion,autonomous task understanding and intelligent decision,and in-hand dexterous manipulation are top three hotspots in future.
基金supported by the National Natural Science Foundation of China(12305185)Natural Science Foundation of Hunan Province,China(No.2023JJ50122)+1 种基金International Cooperative Research Project of the Ministry of Education,China(No.HZKY20220355)Scientific Research Foundation of the Education Department of Hunan Province,China(No.22A0307).
文摘Compared to other energy sources,nuclear reactors offer several advantages as a spacecraft power source,including compact size,high power density,and long operating life.These qualities make nuclear power an ideal energy source for future deep space exploration.A whole system model of the space nuclear reactor consisting of the reactor neutron kinetics,reactivity control,reactor heat transfer,heat exchanger,and thermoelectric converter was developed.In addition,an electrical power control system was designed based on the developed dynamic model.The GRS method was used to quantitatively calculate the uncertainty of coupling parameters of the neutronics,thermal-hydraulics,and control system for the space reactor.The Spearman correlation coefficient was applied in the sensitivity analysis of system input parameters to output parameters.The calculation results showed that the uncertainty of the output parameters caused by coupling parameters had the most considerable variation,with a relative standard deviation<2.01%.Effective delayed neutron fraction was most sensitive to electrical power.To obtain optimal control performance,the non-dominated sorting genetic algorithm method was employed to optimize the controller parameters based on the uncertainty quantification calculation.Two typical transient simulations were conducted to test the adaptive ability of the optimized controller in the uncertainty dynamic system,including 100%full power(FP)to 90%FP step load reduction transient and 5%FP/min linear variable load transient.The results showed that,considering the influence of system uncertainty,the optimized controller could improve the response speed and load following accuracy of electrical power control,in which the effectiveness and superiority have been verified.
基金supported by the Chinese Civil Aircraft Project(No.MJ-2017-S49).
文摘With the advancement of more electric aircraft(MEA)technology,the application of electro-hydrostatic actuators(EHAs)in aircraft actuation systems has become increasingly prevalent.This paper focuses on the modeling and mode switching analysis of EHA used in the primary flight control actuation systems of large aircraft,addressing the challenges associated with mode switching.First,we analyze the functional architecture and operational characteristics of multi-mode EHA,and sumarize the operating modes and implementation methods.Based on the EHA system architecture,we then develop a theoretical mathematical model and a simulation model.Using the simulation model,we analyze the performance of the EHA during normal operation.Finally,the performance of the EHA during mode switching under various functional switching scenarios is investigated.The results indicate that the EHA meets the performance requirements in terms of accuracy,bandwidth,and load capacity.Additionally,the hydraulic cylinder operates smoothly during the EHA mode switching,and the response time for switching between different modes is less than the specified threshold.These findings validate the system performance of multi-mode EHA,which helps to improve the reliability of EHA and the safety of aircraft flight control systems.
基金supported by the National Key Research and Development Program Project of China(Grant No.2023YFF0718003)the key research and development plan project of Yunnan Province(Grant No.202303AA080006).
文摘The issue of strong noise has increasingly become a bottleneck restricting the precision and application space of electromagnetic exploration methods.Noise suppression and extraction of effective electromagnetic response information under a strong noise background is a crucial scientific task to be addressed.To solve the noise suppression problem of the controlled-source electromagnetic method in strong interference areas,we propose an approach based on complex-plane 2D k-means clustering for data processing.Based on the stability of the controlled-source signal response,clustering analysis is applied to classify the spectra of different sources and noises in multiple time segments.By identifying the power spectra with controlled-source characteristics,it helps to improve the quality of the controlled-source response extraction.This paper presents the principle and workflow of the proposed algorithm,and demonstrates feasibility and effectiveness of the new algorithm through synthetic and real data examples.The results show that,compared with the conventional Robust denoising method,the clustering algorithm has a stronger suppression effect on common noise,can identify high-quality signals,and improve the preprocessing data quality of the controlledsource electromagnetic method.
基金The National Basic Research Program of China(973 Program)(No.2013CB035603)the National Natural Science Foundation of China(No.51007008,51137001)+1 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20100092120043)the Fundamental Research Funds for the Central Universities
文摘An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structure repetitive control (DMRC) so that it can offer superior steady-state performance and good transient features. Unlike the conventional schemes, the proposed scheme-based APF can compensate both the odd and the even order harmonics in grid. The detailed design criteria and the stability analysis of the proposed hybrid current controller are presented. Moreover, an improved structure which incorporates the proposed hybrid controller and the resonant controller for tracking specific order harmonics is given. The relationships between the resonant controller and different repetitive control schemes are discussed. Experimental results verify the effectiveness and advantages of the proposed hybrid control scheme.
文摘Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,nonlinear controllers with robust performance which can cope with these are recommended.The sliding mode control(SMC)is a robust state feedback control method for nonlinear systems that,in addition having a simple design,efficiently overcomes uncertainties and disturbances in the system.It also has a very fast transient response that is desirable when controlling robotic manipulators.The most critical drawback to SMC is chattering in the control input signal.To solve this problem,in this study,SMC is used with a boundary layer(SMCBL)to eliminate the chattering and improve the performance of the system.The proposed SMCBL was compared with inverse dynamic control(IDC),a conventional nonlinear control method.The kinematic and dynamic equations of the IRB-120 robot manipulator were initially extracted completely and accurately,and then the control of the robot manipulator using SMC was evaluated.For validation,the proposed control method was implemented on a 6-DOF IRB-120 robot manipulator in the presence of uncertainties.The results were simulated,tested,and compared in the MATLAB/Simulink environment.To further validate our work,the results were tested and confirmed experimentally on an actual IRB-120 robot manipulator.
基金fully supported by Government Research Funds for 2021-2022 Academic Year.
文摘The paper presents the research on self-balancing two-wheels mobile robot control system analysis with experimental studies.The research problem in this work is to stabilize the mobile robot with self-control and to carry the sensitive things without failing in a long span period.The main objective of this study is to focus on the mathematical modelling of mobile robot from laboratory scale to real world applications.The numerical expression with mathematical modelling is very important to control the mobile robot system with linearization.The fundamental concepts of dynamic system stability were utilized for maintaining the stability of the constructed mobile robot system.The controller design is also important for checking the stability and the appropriate controller design is proportional,integral,and derivative-PID controller and Linear Quadratic Regulator(LQR).The steady state error could be reduced by using such kind of PID controller.The simulation of numerical expression on mathematical modeling was conducted in MATLAB environments.The confirmation results from the simulation techniques were applied to construct the hardware design of mobile robot system for practical study.The results from simulation approaches and experimental approaches are matched in various kinds of analyses.The constructed mobile robot system was designed and analyzed in the control system design laboratory of Yangon Technological University(YTU).
基金funded by Science Foundation for Youth supported by Shanghai Municipal Health Commission(No.20204Y0313)Sailing Program with the support of Science and Technology Commission of Shanghai Municipality(No.21YF1443800).
文摘Background China is seeing a growing demand for rehabilitation treatments for post-stroke upper limb spastic paresis(PSSP-UL).Although acupuncture is known to be effective for PSSP-UL,there is room to enhance its efficacy.Objective This study explored a semi-personalized acupuncture approach for PSSP-UL that used three-dimensional kinematic analysis(3DKA)results to select additional acupoints,and investigated the feasibility,efficacy and safety of this approach.Design,setting,participants and interventions This single-blind,single-center,randomized,controlled trial involved 74 participants who experienced a first-ever ischemic or hemorrhagic stroke with spastic upper limb paresis.The participants were then randomly assigned to the intervention group or the control group in a 1:1 ratio.Both groups received conventional treatments and acupuncture treatment 5 days a week for 4 weeks.The main acupoints in both groups were the same,while participants in the intervention group received additional acupoints selected on the basis of 3DKA results.Follow-up assessments were conducted for 8 weeks after the treatment.Main outcome measures The primary outcome was the Fugl-Meyer Assessment for Upper Extremity(FMA-UE)response rate(≥6-point change)at week 4.Secondary outcomes included changes in motor function(FMA-UE),Brunnstrom recovery stage(BRS),manual muscle test(MMT),spasticity(Modified Ashworth Scale,MAS),and activities of daily life(Modified Barthel Index,MBI)at week 4 and week 12.Results Sixty-four participants completed the trial and underwent analyses.Compared with control group,the intervention group exhibited a significantly higher FMA-UE response rate at week 4(χ^(2)=5.479,P=0.019)and greater improvements in FMA-UE at both week 4 and week 12(both P<0.001).The intervention group also showed bigger improvements from baseline in the MMT grades for shoulder adduction and elbow flexion at weeks 4 and 12 as well as thumb adduction at week 4(P=0.007,P=0.049,P=0.019,P=0.008,P=0.029,respectively).The intervention group showed a better change in the MBI at both week 4 and week 12(P=0.004 and P=0.010,respectively).Although the intervention group had a higher BRS for the hand at week 12(P=0.041),no intergroup differences were observed at week 4(all P>0.05).The two groups showed no differences in MAS grades as well as in BRS for the arm at weeks 4 and 12(all P>0.05).Conclusion Semi-personalized acupuncture prescription based on 3DKA results significantly improved motor function,muscle strength,and activities of daily living in patients with PSSP-UL.
基金Naional Natural Science Foundntion of China(No.71761030)
文摘The unmanned aerial vehicles( UAV) has been becoming more and more important in the aviation industry.Despite the superior performance and advanced technology,major accident of UAV happens frequently due to the impact of their systems,long distance of remote control and skill of manipulator technology.According to the application of engineering application,failure mode effects and criticality analysis( FMECA),failure reporting analysis and corrective action comprehensive analysis systems( FRACAS)and fault tree analysis( FTA)( 3 F) were combined.And also a set of user-friendly,more time,more efficient and accurate reliability analysis system were explored.
基金Supported by the National Natural Science Foundation of China(91016017)the National Aviation Found of China(20115868009)~~
文摘The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked agents. A theorem in the form of linear matrix inequalities(LMI) is derived to analyze the system stability. An- other theorem in the form of optimization problem subject to LMI constraints is proposed to design the controller, and then the algorithm is presented. The simulation results verify the validity and the effectiveness of the pro- posed approach.
文摘This research is focused on the singularity analysis for single-gimbal control moment gyros systems (SCMGs) which include two types, with constant speed (CSCMG) or variable speed (VSCMG) rotors. Through angular momentum hypersurfaces of singular states, the passable and impassable singular points are discriminated easily, meanwhile the information about how much the angular momentum workspace as well as the steering capability available is provided directly. It is obvious that the null motions of steering laws are more effective for the five pyramid configuration(FPC) than for the pyramid configuration(PC) from the singular plots. The possible degenerate hyperbolic singular points of the preceding configurations are calculated and the distinctness of them is denoted by the Gaussian curvature. Furthermore, failure problems to steer integrated power and attitude control system (IPACS) are also analyzed. A sufficient condition of choosing configurations of VSCMGs to guarantee the IPACS steering is given. The angular momentum envelops of VSCMGs, in a given energy and a limited range of rotor speeds, are plotted. The connection and distinctness between CSCMGs and VSCMGs are obtained from the point of view of envelops.
基金supported by the National Natural Science Foundation of China (10872029)the Excellent Young Scholars Research Fund of the Beijing Institute of Technology (2007YS0202)
文摘Based on the singular value decomposition theory,this paper analyzed the mechanism of escaping/avoiding singularity using generalized and weighted singularity-robust steering laws for a spacecraft that uses single gimbal control moment gyros (SGCMGs) as the actuator for the attitude control system.The expression of output-torque error is given at the point of singularity,proving the incompatible relationship between the gimbal rate and the output-torque error.The method of establishing a balance between the gimbal rate and the output-torque error is discussed,and a new steering law is designed.Simulation results show that the proposed steering law can effectively drive SGCMGs to escape away from singularities.
基金the financial support from Department of Science and Technology,Government of India under the grant:SR/CSRI/118/2014
文摘Role based access control is one of the widely used access control models.There are investigations in the literature that use knowledge representation mechanisms such as formal concept analysis(FCA),description logics,and Ontology for representing access control mechanism.However,while using FCA,investigations reported in the literature so far work on the logic that transforms the three dimensional access control matrix into dyadic formal contexts.This transformation is mainly to derive the formal concepts,lattice structure and implications to represent role hierarchy and constraints of RBAC.In this work,we propose a methodology that models RBAC using triadic FCA without transforming the triadic access control matrix into dyadic formal contexts.Our discussion is on two lines of inquiry.We present how triadic FCA can provide a suitable representation of RBAC policy and we demonstrate how this representation follows role hierarchy and constraints of RBAC on sample healthcare network available in the literature.
基金supported by the National Natural Science Fundation of China(5147618751506221)+1 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2015JQ51792015JM5207)
文摘The chattering characteristic of sliding mode control isanalyzed when it is applied in distributed control systems (DCSs).For a DCS with random time delay and packet dropout, a discreteswitching system model with time varying sampling period isconstructed based on the time delay system method. The reachinglaw based sliding mode controller is applied in the proposedsystem. The exponential stability condition in the form of linearmatrix inequality is figured out based on the multi-Lyaponov functionmethod. Then, the chattering characteristic is analyzed for theswitching system, and a chattering region related with time varyingsampling period and external disturbance is proposed. Finally, numericalexamples are given to illustrate the validity of the analysisresult.
基金supported by the Istituto Italiano di Tecnologia,and Dr.J.Buchli was supported by a Swiss National Science Foundation professorship.
文摘Impedance control is a well-established technique to control interaction forces in robotics.However,real implementations of impedance control with an inner loop may suffer from several limitations.In particular,the viable range of stable stiffness and damping values can be strongly affected by the bandwidth of the inner control loops(e.g.,a torque loop)as well as by the filtering and sampling frequency.This paper provides an extensive analysis on how these aspects influence the stability region of impedance parameters as well as the passivity of the system.This will be supported by both simulations and experimental data.Moreover,a methodology for designing joint impedance controllers based on an inner torque loop and a positive velocity feedback loop will be presented.The goal of the velocity feedback is to increase(given the constraints to preserve stability)the bandwidth of the torque loop without the need of a complex controller.
基金financially supported by the National Natural Science Foundation of China(Grant 52175099)the China Postdoctoral Science Foundation(Grant No.2020M671494)+1 种基金the Jiangsu Planned Projects for Postdoctoral Research Funds(Grant No.2020Z179)the Nanjing University of Science and Technology Independent Research Program(Grant No.30920021105)。
文摘To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.
基金Project supported by the Innovation Foundation of the Education Commission of Shanghai Municipality (Grant No.09ZZ89)the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Science and Technology Commission of Shanghai Municipality (Grant No.08DZ223110)
文摘In this paper, the iterative learning control problem is considered for a class of remote control system over wireless network communication channel. The control performance of remote iterative learning control (R-ILC) system is analyzed and an error boundary of the stable output of the R-ILC system is obtained for the boundary stochastic noise channel. Finally, we obtain some rules to reduce the fluctuation caused by wireless channel noise through the analysis results for fluctuation boundary. The simulation results prove the proposed rule is correct.