The nonlinear dynamic characteristics of a two-peak discrete chaotic system are studied.Through the study of the nonlinear dy‐namic behavior of the system,it is found that with the change of the system parameters,the...The nonlinear dynamic characteristics of a two-peak discrete chaotic system are studied.Through the study of the nonlinear dy‐namic behavior of the system,it is found that with the change of the system parameters,the system starts from a chaotic state,and then goes through intermittent chaos,stable region,period-doubling bifurcation to a chaotic state again.The systems critical conditions and pro‐cess to generate intermittent chaos are analyzed.The feedback control method sets linear and nonlinear controllers for the system to control the chaos.By adjusting the value of control parameters,the intermittent chaos can be delayed or disappear,and the stability region and period-doubling bifurcation process of the system can be expanded.Both linear controllers and nonlinear controllers have the same control effect.The numerical simulation analysis verifies the correctness of the theoretical analysis.展开更多
The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlin...The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlinear flow control by interaction between two flexible flaps is proposed,and their flow control mechanism is studied employing the self-constructed immersed boundary-lattice Boltzmann-finite element method(IB-LB-FEM).The effects of the difference in material properties and flap length between the two flexible flaps on the nonlinear flow control of the airfoil are discussed.It is suggested that the relationship between the deformation of the two flexible flaps and the evolution of the vortex under the fluid-structure interaction(FSI).It is shown that the upstream flexible flap plays a key role in the flow control of the two flexible flaps.The FSI effect of the upstream flexible flap will change the unsteady flow behind it and affect the deformation of the downstream flexible flap.Two flexible flaps with different material properties and different lengths will change their own FSI characteristics by the induced vortex,effectively suppressing the flow separation on the airfoil’s upper surface.The interaction of two flexible flaps plays an extremely important role in improving the autonomy and adjustability of flow control.The numerical results will provide a theoretical basis and technical guidance for the development and application of a new flap passive control technology.展开更多
In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that globa...In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that global state asymptotic regulation can be ensured by introducing a single dynamic gain;furthermore,global asymptotic stabilization can be achieved by choosing a sufficiently large static scaling gain when the upper bounds of all system parameters are known.Especially,the output coefficient is allowed to be non-differentiable with unknown upper bound.This paper proposes a generalized Lyapunov matrix inequality based dynamic-gain scaling method,which significantly simplifies the design computational complexity by comparing with the classic backstepping method.展开更多
This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working...This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships.展开更多
An enhanced least mean square(LMS)error identification algorithm integrated with Kalman filtering is proposed to resolve accuracy degradation induced by nonlinear dynamics and parameter uncertainties in continuous rot...An enhanced least mean square(LMS)error identification algorithm integrated with Kalman filtering is proposed to resolve accuracy degradation induced by nonlinear dynamics and parameter uncertainties in continuous rotary electro-hydraulic servo systems.This enhancement accelerates convergence and improves accuracy compared with traditional LMS.A fifth-order identification mod-el is developed based on valve-controlled hydraulic motors,with parameters identified using Kalman filter state estimation and gradient smoothing.The results indicate that the improved LMS effectively enhances parameter identification.An advanced disturbance rejection controller(ADRC)is de-signed,and its performance is compared with an optimal proportional integral derivative(PID)con-troller through Simulink simulations.The results show that the ADRC fulfills the control specifications and expands the system’s operational bandwidth.展开更多
In this paper,a novel adaptive Fault-Tolerant Control(FTC)strategy is proposed for non-minimum phase Hypersonic Vehicles(HSVs)that are affected by actuator faults and parameter uncertainties.The strategy is based on t...In this paper,a novel adaptive Fault-Tolerant Control(FTC)strategy is proposed for non-minimum phase Hypersonic Vehicles(HSVs)that are affected by actuator faults and parameter uncertainties.The strategy is based on the output redefinition method and Adaptive Dynamic Programming(ADP).The intelligent FTC scheme consists of two main parts:a basic fault-tolerant and stable controller and an ADP-based supplementary controller.In the basic FTC part,an output redefinition approach is designed to make zero-dynamics stable with respect to the new output.Then,Ideal Internal Dynamic(IID)is obtained using an optimal bounded inversion approach,and a tracking controller is designed for the new output to realize output tracking of the nonminimum phase HSV system.For the ADP-based compensation control part,an ActionDependent Heuristic Dynamic Programming(ADHDP)adopting an actor-critic learning structure is utilized to further optimize the tracking performance of the HSV control system.Finally,simulation results are provided to verify the effectiveness and efficiency of the proposed FTC algorithm.展开更多
This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is design...This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative(NPD)controller and a genetic algorithm,in which the proportional-derivative(PD)parameters are updated online based on the tracking error and the preset error threshold.In addition,the genetic algorithm is employed to adaptively select initial controller parameters,contributing to system stability and improved control accuracy.The proposed controller is basic in design yet simple to implement.The ANPD controller has the advantage of being computationally lightweight and providing high robustness against external forces.The stability of the closed-loop system is rigorously analyzed and verified using Lyapunov theory,providing theoretical assurance of its robustness.Simulations and experimental results show that the TWSB robot with the proposed ANPD controller achieves quick balance and tracks target values with very small errors,demonstrating the effectiveness and performance of the proposed controller.The proposed ANPD controller demonstrates significant improvements in balancing and tracking performance for two-wheeled self-balancing robots,which has great applicability in the field of robot control systems.This represents a promising solution for applications requiring precise and stable motion control under varying external conditions.展开更多
Proton exchange membrane(PEM)electrolyzer have attracted increasing attention from the industrial and researchers in recent years due to its excellent hydrogen production performance.Developing accurate models to pred...Proton exchange membrane(PEM)electrolyzer have attracted increasing attention from the industrial and researchers in recent years due to its excellent hydrogen production performance.Developing accurate models to predict their performance is crucial for promoting and accelerating the design and optimization of electrolysis systems.This work developed a Koopman model predictive control(MPC)method incorporating fuzzy compensation for regulating the anode and cathode pressures in a PEM electrolyzer.A PEM electrolyzer is then built to study pressure control and provide experimental data for the identification of the Koopman linear predictor.The identified linear predictors are used to design the Koopman MPC.In addition,the developed fuzzy compensator can effectively solve the Koopman MPC model mismatch problem.The effectiveness of the proposed method is verified through the hydrogen production process in PEM simulation.展开更多
The current study focuses on the motion-pressure coupled control for a multicapsule stratospheric airship and transforms the path-tracking and heading-hold control of airships into guidance tracking with a time-varyin...The current study focuses on the motion-pressure coupled control for a multicapsule stratospheric airship and transforms the path-tracking and heading-hold control of airships into guidance tracking with a time-varying weighted sum of longitudinal and lateral velocities by the definition of compound speed.Herein,an improved nonlinear predictive control method is provided to reduce the control energy consumption by the rolling optimization of controller parameters based on finite time intervals,ensuring infinite-time path-tracking tasks.Simultaneously,combined with the proposed cyclic regulation process of safe pressure between internal and external capsules,this study can fully reflect the force-thermal coupled rule of airships under the actions of atmospheric environment and maneuvering force,while evaluating the long-endurance capability of airships under the conditions of safe superheating and overpressure.The effectiveness of the motionpressure coupled controller was verified through numerical simulations,which can overcome the influence of environmental wind and achieve a tracking effect for the desired cruise path and compound speed.The airspeed provided during the cyclic circadian time caused the maximum superheating of the helium controlled within 30C.The helium in the internal and external capsules achieved circadian regulation.The equivalent micropore diameter of the capsule of 5 mm can achieve 55 days of long-endurance flight.The controller satisfies the requirements of cruise-flight application modes for multicapsule stratospheric airships with important engineering value.展开更多
Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking acc...Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.展开更多
This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication...This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.展开更多
In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated...In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.展开更多
This paper proposes a robust control scheme based on the sequential convex programming and learning-based model for nonlinear system subjected to additive uncertainties.For the problem of system nonlinearty and unknow...This paper proposes a robust control scheme based on the sequential convex programming and learning-based model for nonlinear system subjected to additive uncertainties.For the problem of system nonlinearty and unknown uncertainties,we study the tube-based model predictive control scheme that makes use of feedforward neural network.Based on the characteristics of the bounded limit of the average cost function while time approaching infinity,a min-max optimization problem(referred to as min-max OP)is formulated to design the controller.The feasibility of this optimization problem and the practical stability of the controlled system are ensured.To demonstrate the efficacy of the proposed approach,a numerical simulation on a double-tank system is conducted.The results of the simulation serve as verification of the effectualness of the proposed scheme.展开更多
This paper presents a Nonlinear Model Predictive Controller(NMPC)for the path following of autonomous vehicles and an algorithm to adaptively adjust the preview distance.The prediction model includes vehicle dynamics,...This paper presents a Nonlinear Model Predictive Controller(NMPC)for the path following of autonomous vehicles and an algorithm to adaptively adjust the preview distance.The prediction model includes vehicle dynamics,path following dynamics,and system input dynamics.The single-track vehicle model considers the vehicle’s coupled lateral and longitudinal dynamics,as well as nonlinear tire forces.The tracking error dynamics are derived based on the curvilinear coordinates.The cost function is designed to minimize path tracking errors and control effort while considering constraints such as actuator bounds and tire grip limits.An algorithm that utilizes the optimal preview distance vector to query the corresponding reference curvature and reference speed.The length of the preview path is adaptively adjusted based on the vehicle speed,heading error,and path curvature.We validate the controller performance in a simulation environment with the autonomous racing scenario.The simulation results show that the vehicle accurately follows the highly dynamic path with small tracking errors.The maximum preview distance can be prior estimated and guidance the selection of the prediction horizon for NMPC.展开更多
This paper investigates the motion control of the heavy-duty Bionic Caterpillar-like Robot(BCR)for the maintenance of the China Fusion Engineering Test Reactor(CFETR).Initially,a comprehensive nonlinear mathematical m...This paper investigates the motion control of the heavy-duty Bionic Caterpillar-like Robot(BCR)for the maintenance of the China Fusion Engineering Test Reactor(CFETR).Initially,a comprehensive nonlinear mathematical model for the BCR system is formulated using a physics-based approach.The nonlinear components of the model are compensated through nonlinear feedback linearization.Subsequently,a fuzzy-based regulator is employed to enhance the receding horizon opti-mization process for achieving optimal results.A Deep Neural Network(DNN)is trained to address disturbances.Conse-quently,a novel hybrid controller incorporating Nonlinear Model Predictive Control(NMPC),the Fuzzy Regulator(FR),and Deep Neural Network Feedforward(DNNF),named NMPC-FRDNNF is developed.Finally,the efficacy of the control system is validated through simulations and experiments.The results indicate that the Root Mean Square Error(RMSE)of the controller with FR and DNNF decreases by 33.2 and 48.9%,respectively,compared to the controller without these enhancements.This research provides a theoretical foundation and practical insights for ensuring the future highly stable,safe,and efficient maintenance of blankets.展开更多
In this work,we present a data-driven solution for the attitude control of DoubleBee on slopes.DoubleBee is a novel hybrid aerial-ground robot with two rotors and two active wheels.Inspired by the physics modeling of ...In this work,we present a data-driven solution for the attitude control of DoubleBee on slopes.DoubleBee is a novel hybrid aerial-ground robot with two rotors and two active wheels.Inspired by the physics modeling of the system,we add a channel-separated attention head to a deep ReLU neural network to predict disturbances from ground effects,motor torques and rotation axis shift.The proposed neural network is Lipschitz continuous,has fewer parameters and performs better for disturbance estimation than the baseline deep ReLU neural network.Then,we design a sliding mode controller using these predictions and establish its input-to-state stability and error bounds.Experiments show improvements of the proposed neural network in training speed and robustness over a baseline ReLU network,and a 40%reduction in tracking error compared to a baseline PID controller.展开更多
The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for cancelin...The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for canceling the effect of backlash. Adaptive nonlinear PID controller together with rule? based backlash compensator was developed and a satisfactory tracking performance was achieved. Simulation results demonstrated the effectiveness of the proposed method.展开更多
This anticle gives a design method of the economical nonlinear controller. The controller is composed of an expert intelligent coordination controller, a fuzzy prediction controller, a fuzzy feedforward controller, a ...This anticle gives a design method of the economical nonlinear controller. The controller is composed of an expert intelligent coordination controller, a fuzzy prediction controller, a fuzzy feedforward controller, a nonlinear controller and so on. The consistence of a distributed control system based on this controller is also shown briefly.展开更多
To reduce the number of the level sets used in algorithm of constrained nonlinear systems via ellipsoidal techniques, according to the analysis of mathematics, searching algorithm is used for choosing the control inpu...To reduce the number of the level sets used in algorithm of constrained nonlinear systems via ellipsoidal techniques, according to the analysis of mathematics, searching algorithm is used for choosing the control input. Simulation shows that the number of level sets used for controlling is almost the same as that used in polytope techniques. Sub time optimal algorithm reduces the number of the level sets used in ellipsoidal techniques.展开更多
基金Supported by the Guiding Project of Science and Technology Research Plan of Hubei Provincial Department of Education(B2022458)。
文摘The nonlinear dynamic characteristics of a two-peak discrete chaotic system are studied.Through the study of the nonlinear dy‐namic behavior of the system,it is found that with the change of the system parameters,the system starts from a chaotic state,and then goes through intermittent chaos,stable region,period-doubling bifurcation to a chaotic state again.The systems critical conditions and pro‐cess to generate intermittent chaos are analyzed.The feedback control method sets linear and nonlinear controllers for the system to control the chaos.By adjusting the value of control parameters,the intermittent chaos can be delayed or disappear,and the stability region and period-doubling bifurcation process of the system can be expanded.Both linear controllers and nonlinear controllers have the same control effect.The numerical simulation analysis verifies the correctness of the theoretical analysis.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.92371201,52192633,11872293,and 92152301)the Natural Science Basic Research Program of Shaanxi(Grant Nos.2024JC-YBQN-0008,and 2022JC-03)+1 种基金Shaanxi Key Research and Development Program(Grant No.2022ZDLGY02-07)the Joint Natural Science Foundation of China with Guangdong Province for TianHe-II Supercomputer Resources,and the Research Start-up Foundation of Xi’an University of Science and Technology for the High-Level Talent.
文摘The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlinear flow control by interaction between two flexible flaps is proposed,and their flow control mechanism is studied employing the self-constructed immersed boundary-lattice Boltzmann-finite element method(IB-LB-FEM).The effects of the difference in material properties and flap length between the two flexible flaps on the nonlinear flow control of the airfoil are discussed.It is suggested that the relationship between the deformation of the two flexible flaps and the evolution of the vortex under the fluid-structure interaction(FSI).It is shown that the upstream flexible flap plays a key role in the flow control of the two flexible flaps.The FSI effect of the upstream flexible flap will change the unsteady flow behind it and affect the deformation of the downstream flexible flap.Two flexible flaps with different material properties and different lengths will change their own FSI characteristics by the induced vortex,effectively suppressing the flow separation on the airfoil’s upper surface.The interaction of two flexible flaps plays an extremely important role in improving the autonomy and adjustability of flow control.The numerical results will provide a theoretical basis and technical guidance for the development and application of a new flap passive control technology.
基金supported by the Zhejiang Provincial Natural Science Foundation(LY24F030011,LY23F030005)the National Natural Science Foundation of China(62373131).
文摘In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that global state asymptotic regulation can be ensured by introducing a single dynamic gain;furthermore,global asymptotic stabilization can be achieved by choosing a sufficiently large static scaling gain when the upper bounds of all system parameters are known.Especially,the output coefficient is allowed to be non-differentiable with unknown upper bound.This paper proposes a generalized Lyapunov matrix inequality based dynamic-gain scaling method,which significantly simplifies the design computational complexity by comparing with the classic backstepping method.
基金supported by Liaoning Provincial Department of Education 2023 Basic Research Projects for Universities and Colleges(Grant No.JYTQN2023131)Liaoning Provincial Science and Technology Program:Cooperative Control and Recognition of Unmanned Vessels for Fishing Vessel Operation Scenarios(Grant No.600024003)Liaoning Provincial Department of Education Scientific Research Funding Project(Grant No.LJKZ0726).
文摘This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships.
基金Supported by the National Natural Science Foundation of China(No.52375037)the Outstanding Youth of Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture(No.GDRC 20220801)+1 种基金the Graduate Innovation Fund Project of Beijing University of Civil Engineering and Architecture(No.PG2025160)the Special Fund for Cultivation Projects of Beijing University of Civil Engineering and Architecture(No.X24026).
文摘An enhanced least mean square(LMS)error identification algorithm integrated with Kalman filtering is proposed to resolve accuracy degradation induced by nonlinear dynamics and parameter uncertainties in continuous rotary electro-hydraulic servo systems.This enhancement accelerates convergence and improves accuracy compared with traditional LMS.A fifth-order identification mod-el is developed based on valve-controlled hydraulic motors,with parameters identified using Kalman filter state estimation and gradient smoothing.The results indicate that the improved LMS effectively enhances parameter identification.An advanced disturbance rejection controller(ADRC)is de-signed,and its performance is compared with an optimal proportional integral derivative(PID)con-troller through Simulink simulations.The results show that the ADRC fulfills the control specifications and expands the system’s operational bandwidth.
基金supported in part by National Natural Science Foundation of China(61573108,61273192,61333013)the Ministry of Education of New Century Excellent Talent(NCET-12-0637)+1 种基金Natural Science Foundation of Guangdong Province through the Science Fund for Distinguished Young Scholars(S20120011437)Doctoral Fund of Ministry of Education of China(20124420130001)
基金supported in part by the Science Center Program of National Natural Science Foundation of China(62373189,62188101,62020106003)the Research Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures,China。
文摘In this paper,a novel adaptive Fault-Tolerant Control(FTC)strategy is proposed for non-minimum phase Hypersonic Vehicles(HSVs)that are affected by actuator faults and parameter uncertainties.The strategy is based on the output redefinition method and Adaptive Dynamic Programming(ADP).The intelligent FTC scheme consists of two main parts:a basic fault-tolerant and stable controller and an ADP-based supplementary controller.In the basic FTC part,an output redefinition approach is designed to make zero-dynamics stable with respect to the new output.Then,Ideal Internal Dynamic(IID)is obtained using an optimal bounded inversion approach,and a tracking controller is designed for the new output to realize output tracking of the nonminimum phase HSV system.For the ADP-based compensation control part,an ActionDependent Heuristic Dynamic Programming(ADHDP)adopting an actor-critic learning structure is utilized to further optimize the tracking performance of the HSV control system.Finally,simulation results are provided to verify the effectiveness and efficiency of the proposed FTC algorithm.
文摘This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative(NPD)controller and a genetic algorithm,in which the proportional-derivative(PD)parameters are updated online based on the tracking error and the preset error threshold.In addition,the genetic algorithm is employed to adaptively select initial controller parameters,contributing to system stability and improved control accuracy.The proposed controller is basic in design yet simple to implement.The ANPD controller has the advantage of being computationally lightweight and providing high robustness against external forces.The stability of the closed-loop system is rigorously analyzed and verified using Lyapunov theory,providing theoretical assurance of its robustness.Simulations and experimental results show that the TWSB robot with the proposed ANPD controller achieves quick balance and tracks target values with very small errors,demonstrating the effectiveness and performance of the proposed controller.The proposed ANPD controller demonstrates significant improvements in balancing and tracking performance for two-wheeled self-balancing robots,which has great applicability in the field of robot control systems.This represents a promising solution for applications requiring precise and stable motion control under varying external conditions.
基金supported by 2022 Zhejiang Provincial Science and Technology Plan Project(2022C01035).
文摘Proton exchange membrane(PEM)electrolyzer have attracted increasing attention from the industrial and researchers in recent years due to its excellent hydrogen production performance.Developing accurate models to predict their performance is crucial for promoting and accelerating the design and optimization of electrolysis systems.This work developed a Koopman model predictive control(MPC)method incorporating fuzzy compensation for regulating the anode and cathode pressures in a PEM electrolyzer.A PEM electrolyzer is then built to study pressure control and provide experimental data for the identification of the Koopman linear predictor.The identified linear predictors are used to design the Koopman MPC.In addition,the developed fuzzy compensator can effectively solve the Koopman MPC model mismatch problem.The effectiveness of the proposed method is verified through the hydrogen production process in PEM simulation.
基金supported by the National Natural Science Foundation of China(Nos.62073019,62227810).
文摘The current study focuses on the motion-pressure coupled control for a multicapsule stratospheric airship and transforms the path-tracking and heading-hold control of airships into guidance tracking with a time-varying weighted sum of longitudinal and lateral velocities by the definition of compound speed.Herein,an improved nonlinear predictive control method is provided to reduce the control energy consumption by the rolling optimization of controller parameters based on finite time intervals,ensuring infinite-time path-tracking tasks.Simultaneously,combined with the proposed cyclic regulation process of safe pressure between internal and external capsules,this study can fully reflect the force-thermal coupled rule of airships under the actions of atmospheric environment and maneuvering force,while evaluating the long-endurance capability of airships under the conditions of safe superheating and overpressure.The effectiveness of the motionpressure coupled controller was verified through numerical simulations,which can overcome the influence of environmental wind and achieve a tracking effect for the desired cruise path and compound speed.The airspeed provided during the cyclic circadian time caused the maximum superheating of the helium controlled within 30C.The helium in the internal and external capsules achieved circadian regulation.The equivalent micropore diameter of the capsule of 5 mm can achieve 55 days of long-endurance flight.The controller satisfies the requirements of cruise-flight application modes for multicapsule stratospheric airships with important engineering value.
基金Supported by National Key R&D Program of China (Grant No.2021YFB2501800)National Natural Science Foundation of China (Grant No.52172384)+1 种基金Science and Technology Innovation Program of Hunan Province of China (Grant No.2021RC3048)State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle of China (Grant No.72275004)。
文摘Parking difficulties have become a social issue that people have to solve.Automated parking system is practicable for quick par operations without a driver which can also greatly reduces the probability of parking accidents.The paper proposes a Lyapunov-based nonlinear model predictive controller embedding an instructable solution which is generated by the modified rear-wheel feedback method(RF-LNMPC)in order to improve the overall path tracking accuracy in parking conditions.Firstly,A discrete-time RF-LNMPC considering the position and attitude of the parking vehicle is proposed to increase the success rate of automated parking effectively.Secondly,the RF-LNMPC problem with a multi-objective cost function is solved by the Interior-Point Optimization,of which the iterative initial values are described as the instructable solutions calculated by combining modified rear-wheel feedback to improve the performance of local optimal solution.Thirdly,the details on the computation of the terminal constraint and terminal cost for the linear time-varying case is presented.The closed-loop stability is verified via Lyapunov techniques by considering the terminal constraint and terminal cost theoretically.Finally,the proposed RF-LNMPC is implemented on a selfdriving Lincoln MKZ platform and the experiment results have shown improved performance in parallel and vertical parking conditions.The Monte Carlo analysis also demonstrates good stability and repeatability of the proposed method which can be applied in practical use in the near future.
基金supported in part by the National Natural Science Foundation of China (61933007,62273087,U22A2044,61973102,62073180)the Shanghai Pujiang Program of China (22PJ1400400)+1 种基金the Royal Society of the UKthe Alexander von Humboldt Foundation of Germany。
文摘This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.
文摘In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.
文摘This paper proposes a robust control scheme based on the sequential convex programming and learning-based model for nonlinear system subjected to additive uncertainties.For the problem of system nonlinearty and unknown uncertainties,we study the tube-based model predictive control scheme that makes use of feedforward neural network.Based on the characteristics of the bounded limit of the average cost function while time approaching infinity,a min-max optimization problem(referred to as min-max OP)is formulated to design the controller.The feasibility of this optimization problem and the practical stability of the controlled system are ensured.To demonstrate the efficacy of the proposed approach,a numerical simulation on a double-tank system is conducted.The results of the simulation serve as verification of the effectualness of the proposed scheme.
基金“National Science and Technology Council”(NSTC 111-2221-E-027-088)。
文摘This paper presents a Nonlinear Model Predictive Controller(NMPC)for the path following of autonomous vehicles and an algorithm to adaptively adjust the preview distance.The prediction model includes vehicle dynamics,path following dynamics,and system input dynamics.The single-track vehicle model considers the vehicle’s coupled lateral and longitudinal dynamics,as well as nonlinear tire forces.The tracking error dynamics are derived based on the curvilinear coordinates.The cost function is designed to minimize path tracking errors and control effort while considering constraints such as actuator bounds and tire grip limits.An algorithm that utilizes the optimal preview distance vector to query the corresponding reference curvature and reference speed.The length of the preview path is adaptively adjusted based on the vehicle speed,heading error,and path curvature.We validate the controller performance in a simulation environment with the autonomous racing scenario.The simulation results show that the vehicle accurately follows the highly dynamic path with small tracking errors.The maximum preview distance can be prior estimated and guidance the selection of the prediction horizon for NMPC.
基金supported by Comprehensive Research Facility for Fusion Technology Program of China under Contract No.2018-000052-73-01-001228the China Scholarship Council with No.202206340050National Natural Science Foundation of China with Grant No.11905147.
文摘This paper investigates the motion control of the heavy-duty Bionic Caterpillar-like Robot(BCR)for the maintenance of the China Fusion Engineering Test Reactor(CFETR).Initially,a comprehensive nonlinear mathematical model for the BCR system is formulated using a physics-based approach.The nonlinear components of the model are compensated through nonlinear feedback linearization.Subsequently,a fuzzy-based regulator is employed to enhance the receding horizon opti-mization process for achieving optimal results.A Deep Neural Network(DNN)is trained to address disturbances.Conse-quently,a novel hybrid controller incorporating Nonlinear Model Predictive Control(NMPC),the Fuzzy Regulator(FR),and Deep Neural Network Feedforward(DNNF),named NMPC-FRDNNF is developed.Finally,the efficacy of the control system is validated through simulations and experiments.The results indicate that the Root Mean Square Error(RMSE)of the controller with FR and DNNF decreases by 33.2 and 48.9%,respectively,compared to the controller without these enhancements.This research provides a theoretical foundation and practical insights for ensuring the future highly stable,safe,and efficient maintenance of blankets.
文摘In this work,we present a data-driven solution for the attitude control of DoubleBee on slopes.DoubleBee is a novel hybrid aerial-ground robot with two rotors and two active wheels.Inspired by the physics modeling of the system,we add a channel-separated attention head to a deep ReLU neural network to predict disturbances from ground effects,motor torques and rotation axis shift.The proposed neural network is Lipschitz continuous,has fewer parameters and performs better for disturbance estimation than the baseline deep ReLU neural network.Then,we design a sliding mode controller using these predictions and establish its input-to-state stability and error bounds.Experiments show improvements of the proposed neural network in training speed and robustness over a baseline ReLU network,and a 40%reduction in tracking error compared to a baseline PID controller.
文摘The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for canceling the effect of backlash. Adaptive nonlinear PID controller together with rule? based backlash compensator was developed and a satisfactory tracking performance was achieved. Simulation results demonstrated the effectiveness of the proposed method.
文摘This anticle gives a design method of the economical nonlinear controller. The controller is composed of an expert intelligent coordination controller, a fuzzy prediction controller, a fuzzy feedforward controller, a nonlinear controller and so on. The consistence of a distributed control system based on this controller is also shown briefly.
文摘To reduce the number of the level sets used in algorithm of constrained nonlinear systems via ellipsoidal techniques, according to the analysis of mathematics, searching algorithm is used for choosing the control input. Simulation shows that the number of level sets used for controlling is almost the same as that used in polytope techniques. Sub time optimal algorithm reduces the number of the level sets used in ellipsoidal techniques.