Control Flow Graphs(CFGs)are essential for understanding the execution and data flow within software,serving as foundational structures in program analysis.Traditional CFG construction methods,such as bytecode analysi...Control Flow Graphs(CFGs)are essential for understanding the execution and data flow within software,serving as foundational structures in program analysis.Traditional CFG construction methods,such as bytecode analysis and Abstract Syntax Trees(ASTs),often face challenges due to the complex syntax of programming languages like Java and Python.This paper introduces a novel approach that leverages Large Language Models(LLMs)to generate CFGs through a methodical Chain of Thought(CoT)process.By employing CoT,the proposed approach systematically interprets code semantics directly from natural language,enhancing the adaptability across various programming languages and simplifying the CFG construction process.By implementing a modular AI chain strategy that adheres to the single responsibility principle,our approach breaks down CFG generation into distinct,manageable steps handled by separate AI and non-AI units,which can significantly improve the precision and coverage of CFG nodes and edges.The experiments with 245 Java and 281 Python code snippets from Stack Overflow demonstrate that our method achieves efficient performance on different programming languages and exhibits strong robustness.展开更多
Abstract Single event upset (SEU) effect, caused by highly energized particles in aerospace, threatens the reliability and security of small satellites composed of commercialofftheshelves (COTS). SEU induced contr...Abstract Single event upset (SEU) effect, caused by highly energized particles in aerospace, threatens the reliability and security of small satellites composed of commercialofftheshelves (COTS). SEU induced control flow errors (CFEs) may cause unpredictable behavior or crashes of COTSbased small satellites. This paper proposes a generic softwarebased control flow checking technique (CFC) and bipartite graphbased control flow checking (BGCFC). To simplify the types of illegal branches, it transforms the conventional control flow graph into the equivalent bipartite graph. It checks the legal ity of control flow at runtime by comparing a global signature with the expected value and introduces consecutive IDs and bitmaps to reduce the time and memory overhead. Theoretical analysis shows that BGCFC can detect all types of internode CFEs with constant time and memory overhead. Practical tests verify the result of theoretical analysis. Compared with previous techniques, BGCFC achieves the highest error detection rate, lower time and memory overhead; the composite result in evaluation fac tor shows that BGCFC is the most effective one among all these techniques. The results in both theory and practice verify the applicability of BGCFC for COTSbased small satellites.展开更多
It is a challenge to verify integrity of dynamic control flows due to their dynamic and volatile nature. To meet the challenge, existing solutions usually implant an "attachment" in each control transfer. However, t...It is a challenge to verify integrity of dynamic control flows due to their dynamic and volatile nature. To meet the challenge, existing solutions usually implant an "attachment" in each control transfer. However, the attachment introduces additional cost except performance penalty. For example, the attachment must be unique or restrictedly modified. In this paper, we propose a novel approach to detect integrity of dynamic control flows by counting executed branch instructions without involving any attachment. Our solution is based on the following observation. If a control flow is compromised, the number of executed branch instructions will be abnormally increased. The cause is that intruders usually hijack control flows for malicious execution which absolutely introduces additional branch instructions. Inspired by the above observation, in this paper, we devise a novel system named DCFI- Checker, which detect integrity corruption of dynamic control flows with the support of Performance Monitoring Counter (PMC). We have developed a proof-of-concept prototype system of DCFI-Checker on Linux fedora 5. Our experiments with existing kemel rootkits and buffer overflow attack show that DCFI- Checker is effective to detect compromised dynamic control transfer, and performance evaluations indicate that performance penaltyinduced by DCFI-Checker is acceptable.展开更多
With the popularization and rapid development of mobile intelligent terminals(MITs), the number of mobile applications, or apps, has increased exponentially. It is increasingly common for malicious code to be inserted...With the popularization and rapid development of mobile intelligent terminals(MITs), the number of mobile applications, or apps, has increased exponentially. It is increasingly common for malicious code to be inserted into counterfeit apps, which can cause significant economic damage and threaten the security of users. Code obfuscation techniques are a highly efficient group of methods for code security protection. In this paper, we propose a novel control flow obfuscation based method for Android code protection. First, algorithms to insert irrelevant code and flatten the control flow are employed that minimize the cost of obfuscation while ensuring its strength. Second, we improve the traditional methods of control flow flattening to further reduce the costs of obfuscation. Lastly, the use of opaque predicates is strengthened by establishing an access control strategy, which converts the identification of opaque predicates in the entire program into a graph traversal problem, and thereby increases the strength of the code protection. We did some experiments to evaluate our method, and the results show that the proposed method can work well.展开更多
This paper proposes a generic high-performance and low-time-overhead software control flow checking solution, graph-tree-based control flow checking (GTCFC) for space-borne commercial-off-the-shelf (COTS) processo...This paper proposes a generic high-performance and low-time-overhead software control flow checking solution, graph-tree-based control flow checking (GTCFC) for space-borne commercial-off-the-shelf (COTS) processors. A graph tree data structure with a topology similar to common trees is introduced to transform the control flow graphs of target programs. This together with design of IDs and signatures of its vertices and edges allows for an easy check of legality of actual branching during target program execution. As a result, the algorithm not only is capable of detecting all single and multiple branching errors with low latency and time overheads along with a linear-complexity space overhead, but also remains generic among arbitrary instruction sets and independent of any specific hardware. Tests of the algorithm using a COTS-processor-based onboard computer (OBC) of in-service ZDPS-1A pico-satellite products show that GTCFC can detect over 90% of the randomly injected and all-pattern-covering branching errors for different types of target programs, with performance and overheads consistent with the theoretical analysis; and beats well-established preeminent control flow checking algorithms in these dimensions. Furthermore, it is validated that GTCGC not only can be accommodated in pico-satellites conveniently with still sufficient system margins left, but also has the ability to minimize the risk of control flow errors being undetected in their space missions. Therefore, due to its effectiveness, efficiency, and compatibility, the GTCFC solution is ready for applications on COTS processors on pico-satellites in their real space missions.展开更多
With the rapid development of software technology, software vulnerability has become a major threat to computer security. The timely detection and repair of potential vulnerabilities in software, are of great signific...With the rapid development of software technology, software vulnerability has become a major threat to computer security. The timely detection and repair of potential vulnerabilities in software, are of great significance in reducing system crashes and maintaining system security and integrity. This paper focuses on detecting three common types of vulnerabilities: Unused_Variable, Use_of_Uninitialized_Variable, and Use_After_ Free. We propose a method for software vulnerability detection based on an improved control flow graph(ICFG) and several predicates of vulnerability properties for each type of vulnerability. We also define a set of grammar rules for analyzing and deriving the three mentioned types of vulnerabilities, and design three vulnerability detection algorithms to guide the process of vulnerability detection. In addition, we conduct cases studies of the three mentioned types of vulnerabilities with real vulnerability program segments from Common Weakness Enumeration(CWE). The results of the studies show that the proposed method can detect the vulnerability in the tested program segments. Finally, we conduct manual analysis and experiments on detecting the three types of vulnerability program segments(30 examples for each type) from CWE, to compare the vulnerability detection effectiveness of the proposed method with that of the existing detection tool Cpp Check. The results show that the proposed method performs better. In summary, the method proposed in this paper has certain feasibility and effectiveness in detecting the three mentioned types of vulnerabilities, and it will also have guiding significance for the detection of other common vulnerabilities.展开更多
The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow ...The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract.展开更多
The stability of supersonic inlets faces challenges due to various changes in flight conditions,and flow control methods that address shock wave/boundary layer interactions under only one set of conditions cannot meet...The stability of supersonic inlets faces challenges due to various changes in flight conditions,and flow control methods that address shock wave/boundary layer interactions under only one set of conditions cannot meet developmental requirements.This paper proposes an adaptive bump control scheme and employs dynamic mesh technology for numerical simulation to investigate the unsteady control effects of adaptive bumps.The obtained results indicate that the use of moving bumps to control shock wave/boundary layer interactions is feasible.The adaptive control effects of five different bump speeds are evaluated.Within the range of bump speeds studied,the analysis of the flow field structure reveals the patterns of change in the separation zone area during the control process,as well as the relationship between the bump motion speed and the control effect on the separation zone.It is concluded that the moving bump endows the boundary layer with additional energy.展开更多
The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlin...The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlinear flow control by interaction between two flexible flaps is proposed,and their flow control mechanism is studied employing the self-constructed immersed boundary-lattice Boltzmann-finite element method(IB-LB-FEM).The effects of the difference in material properties and flap length between the two flexible flaps on the nonlinear flow control of the airfoil are discussed.It is suggested that the relationship between the deformation of the two flexible flaps and the evolution of the vortex under the fluid-structure interaction(FSI).It is shown that the upstream flexible flap plays a key role in the flow control of the two flexible flaps.The FSI effect of the upstream flexible flap will change the unsteady flow behind it and affect the deformation of the downstream flexible flap.Two flexible flaps with different material properties and different lengths will change their own FSI characteristics by the induced vortex,effectively suppressing the flow separation on the airfoil’s upper surface.The interaction of two flexible flaps plays an extremely important role in improving the autonomy and adjustability of flow control.The numerical results will provide a theoretical basis and technical guidance for the development and application of a new flap passive control technology.展开更多
With the continuous increase of aeroengine flight ceiling(>20 km),the thin atmosphere at high altitudes and the size effect all cause the compressor component inlet Reynolds number to decrease rapidly to a critical...With the continuous increase of aeroengine flight ceiling(>20 km),the thin atmosphere at high altitudes and the size effect all cause the compressor component inlet Reynolds number to decrease rapidly to a critical value(approximately 2.0×10^(5)),and the significant transition process on the blade/endwall surface leads to the sharp degradation of compressor performance,which seriously affects the engine fuel consumption and working stability at high altitudes.In this paper,the research progress on the internal flow mechanism and flow control methods of axial compressors at low Reynolds numbers is reviewed from the aspects of quantification and prediction of performance variation,flow loss mechanism related to separation and transition,efficient transition control and flow field organization.The development trend of the low-Reynolds-number effect of axial flow compressors is noted,and the difficulties and application prospects of aerodynamic design and efficient flow control methods for compressors under low Reynolds numbers at high altitudes are discussed.展开更多
The conventional Shear Stress Transport(SST)k–ωturbulence model often exhibits substantial inaccu-racies when applied to the prediction of flow behavior in complex regions within axial flow control valves.To enhance...The conventional Shear Stress Transport(SST)k–ωturbulence model often exhibits substantial inaccu-racies when applied to the prediction of flow behavior in complex regions within axial flow control valves.To enhance its predictive fidelity for internal flow fields,this study introduces a novel calibration framework that integrates an artificial neural network(ANN)surrogate model with a particle swarm optimization(PSO)algorithm.In particular,an optimal Latin hypercube sampling strategy was employed to generate representative sample points across the empirical parameter space.For each sample,numerical simulations using ANSYS Fluent were conducted to evaluate the flow characteristics,with empirical turbulence model parameters as inputs and flow rate as the target output.These data were used to construct the high-fidelity ANN surrogate model.The PSO algorithm was then applied to this surrogate to identify the optimal set of empirical parameters tailored specifically to axial flow control valve configurations.A revealed by the presented results,the calibrated SST k–ωmodel significantly improves prediction accuracy:deviations from large eddy simulation(LES)benchmarks at small valve openings were reduced from 7.6%to under 3%.Furthermore,the refined model maintains the computational efficiency characteristic of Reynolds-averaged Navier-Stokes(RANS)simulations while substantially enhancing the accuracy of both pressure and velocity field predictions.Overall,the proposed methodology effectively reconciles the trade-off between computational cost and predictive accuracy,offering a robust and scalable approach for turbulence model calibration in complex internal flow scenarios.展开更多
The nanofluid-based direct absorption solar collector(NDASC)ensures that solar radiation passing through the tube wall is directly absorbed by the nanofluid,reducing thermal resistance in the energy transfer process.H...The nanofluid-based direct absorption solar collector(NDASC)ensures that solar radiation passing through the tube wall is directly absorbed by the nanofluid,reducing thermal resistance in the energy transfer process.However,further exploration is required to suppress the outward thermal losses from the nanofluid at high temperatures.Herein,this paper proposes a novel NDASC in which the outer surface of the collector tube is covered with functional coatings and a three-dimensional computational fluid dynamics model is established to study the energy flow distributions on the collector within the temperature range of 400-600 K.When the nanofluid’s absorption coefficient reaches 80 m^(-1),the NDASC shows the optimal thermal performance,and the NDASC with local Sn-In_(2)O_(3) coating achieves a 7.8% improvement in thermal efficiency at 400 K compared to the original NDASC.Furthermore,hybrid coatings with Sn In_(2)O_(3)/WTi-Al_(2)O_(3) are explored,and the optimal coverage angles are determined.The NDASC with such coatings shows a 10.22%-17.9% increase in thermal efficiency compared to the original NDASC and a 7.6%-19.5% increase compared to the traditional surface-type solar collectors,demonstrating the effectiveness of the proposed energy flow control strategy for DASCs.展开更多
The current research on the manufacturing of large-scale and complex components focuses mainly on the casting processes.Compared with casting,plastic forming has significant advantages in terms of performance.However,...The current research on the manufacturing of large-scale and complex components focuses mainly on the casting processes.Compared with casting,plastic forming has significant advantages in terms of performance.However,effectively controlling the material flow to achieve a reduced loading force and near-uniformity in the isothermal plastic forming process of large-scale asymmetric magnesium alloy complex housings(LSMACHs)is challenging.This study proposes a material flow control method based on the diffluence upsetting-extrusion forming(DUEF)process by dividing different forging deformation regions,combining these with the principal stress method,and establishing an efficient and accurate design procedure.A rational preformed billet was designed successfully using this method.Subsequently,a finite element simulation was employed to analyze the multiphysics fields of the DUEF process.The results indicated that compared with the traditional closed-die forging(TCDF)process,the DUEF process could control the orderly flow of materials,achieve short-distance filling of materials,and reduce hydrostatic stress.Simultaneously,it improved the deformation uniformity by 20.3%and reduced the loading force by 22.6%.Finally,the rationality of the proposed method was validated through physical experiments.Compared with the TCDF process,the DUEF process exhibited a low loading force and uniform mechanical properties.The proposed material flow control method based on the DUEF process provides a new technological approach for the plastic formation of LSMACH and similar components.展开更多
Activeow control technology is a technique that controls the internaloweld of aircraft engines or theoweld around wings by means of disturbances induced by actuators,and adjusts the aerodynamic force and attitude of t...Activeow control technology is a technique that controls the internaloweld of aircraft engines or theoweld around wings by means of disturbances induced by actuators,and adjusts the aerodynamic force and attitude of the aircraft,so as to achieve the purposes of increasing lift,reducing drag,suppressing vibration and reducing noise.Hailed as an important source of innovative development for aircraft,this technology provides a new technical approach to solve the aerodynamic problems of aircraft,signicantly improve their comprehensive performance,break throughight boundaries,and promote disruptive innovation in the next generation of aircraft.展开更多
The explicit rate flow control mechanisms for ABR service are used to sharethe available bandwidth of a bottleneck link fairly and reasonably among many competitive users andto maintain the buffer queue length of a bo...The explicit rate flow control mechanisms for ABR service are used to sharethe available bandwidth of a bottleneck link fairly and reasonably among many competitive users andto maintain the buffer queue length of a bottleneck switch connected to the link at a desired levelin order to avoid and control congestion in ATM networks. However, designing effective flow controlmechanisms for the service is known to be difficult because of the variety of dynamic parametersinvolved such as available link bandwidth, burst of the traffic, the distances between ABR sourcesand switches. In this paper, we present a fuzzy explicit rate flow control mechanism for ABRservice. The mechanism has a simple structure and is robust in the sense that the mechanism'sstability is not sensitive to the change in the number of active virtual connections (VCs). Manysimulations show that this mechanism can not only effectively avoid network congestion, but alsoensure fair share of the bandwidth for all active VCs regardless of the number of hops theytraverse. Additionally, it has the advantages of fast convergence, low oscillation, and high linkbandwidth utilization.展开更多
The optimization of flow control devices in a single-slab continuous casting tundish was carried out by physical modeling, and the optimized scheme was presented. With the optimal tundish configuration, the minimum re...The optimization of flow control devices in a single-slab continuous casting tundish was carried out by physical modeling, and the optimized scheme was presented. With the optimal tundish configuration, the minimum residence time of liquid steel was increased by 1.4 times, the peak concentration time was increased by 97%, and the dead volume fraction was decreased by 72%. A mathematical model for molten steel in the tundish was established by using the fluid dynamics package Fluent. The velocity field, concentration field, and the resi-dence time distribution (RTD) curves of molten steel flow before and after optimization were obtained. Experimental results showed that the reasonable configuration with flow control devices can improve the fluid flow characteristics in the tundish. The results of industrial applica-tion show that the nonmetallic inclusion area ratio in casting slabs is decreased by 32% with the optimal tundish configuration.展开更多
A 15° swept wing with dielectric barrier discharge plasma actuator is designed. Experimental study of flow separation control with nanosecond pulsed plasma actuation is performed at flow velocity up to 40 m/s. Th...A 15° swept wing with dielectric barrier discharge plasma actuator is designed. Experimental study of flow separation control with nanosecond pulsed plasma actuation is performed at flow velocity up to 40 m/s. The effects of the actuation frequency and voltage on the aerodynamic performance of the swept wing are evaluated by the balanced force and pressure measurements in the wind tunnel. At last, the performances on separation flow control of the three types of actuators with plane and saw-toothed exposed electrodes are compared. The optimal actua- tion frequency for the flow separation control on the swept wing is detected, namely the reduced frequency is 0.775, which is different from 2-D airfoil separation control. There exists a threshold voltage for the low swept wing flow control. Before the threshold voltage, as the actuation voltage increases, the control effects become better. The maximum lift is increased by 23.1% with the drag decreased by 22.4% at 14°, compared with the base line. However, the best effects are obtained on actuator with plane exposed electrode in the low-speed experiment and the abilities of saw-toothed actuators are expected to be verified under high-speed conditions.展开更多
This article is devoted to experimental study on the control of the oblique shock wave around the ramp in a low-temperature supersonic flow by means of the magnetohydrodynamic (MHD) flow control technique. The purpo...This article is devoted to experimental study on the control of the oblique shock wave around the ramp in a low-temperature supersonic flow by means of the magnetohydrodynamic (MHD) flow control technique. The purpose of the experiments is to take advantage of MHD interaction to weaken the oblique shock wave strength by changing the boundary flow characteristics around the ramp. Plasma columns are generated by pulsed direct current ( DC ) discharge, the magnetic fields are generated by Nd-Fe-B rare-earth permanent magnets and the oblique shock waves in supersonic flow are generated by the ramp. The Lorentz body force effect of MHD interaction on the plasma-induced airflow velocity is verified through particle image velocimetry(PIV)measurements. The experimental results from the supersonic wind tunnel indicate that the MHD flow control can drastically change the flow characteristics of the airflow around the ramp and decrease the ratio of the Pitot pressure after shock wave to that before it by up to 19.66% ,which leads to the decline in oblique shock wave strength. The oblique shock waves in front of the ramp move upstream by the action of the Lorentz body force. The discharge characteristics are analyzed and the MHD interaction time and consumed energy are determined with the help of the pulsed DC discharge images. The interaction parameter corresponding to the boundary layer velocity can reach 1.3 from the momentum conservation equation. The velocity of the plasma column in the magnetic field is much faster than that in the absence of magnetic field force. The plasma can strike the neutral gas molecules to transfer momentum and accelerate the flow around the ramp.展开更多
A 1∶2.5 scale tundish model was set up in laboratory for a six-strand billet continuous casting tundish with different configurations to investigate fluid flow characteristics under different operational conditions b...A 1∶2.5 scale tundish model was set up in laboratory for a six-strand billet continuous casting tundish with different configurations to investigate fluid flow characteristics under different operational conditions by measuring residence time distribution curves.It was found that minimum residence time,maximum concentration time and average residence time of the three strands on the same side of the tundish with the former configuration under normal operation,that is,six strands were open,were small and non-uniform and the tundish had large dead volume fraction.Vortexes easily formed on the liquid surface in the pouring zone of the tundish.The fluid flow characteristics in the tundish with the optimal turbulence inhibitor and baffles were improved and became less non-uniform among the strands.Vortexes were not found on the pouring zone surface in the optimal tundish.For non-normal operation,that is,one strand was close,it was important to choose which strand to be closed for maintaining flow characteristics of the rest two strands.It was found from this investigation that fluid flow characteristics in the optimal configuration tundish with closing strand 2 were better than those with closing strand 3 on the same side.展开更多
The studies of asymmetric vortices flow over slender body and its active control at high angles of attack have significant importance for both academic field and engineering area.This paper attempts to provide an upda...The studies of asymmetric vortices flow over slender body and its active control at high angles of attack have significant importance for both academic field and engineering area.This paper attempts to provide an update state of art to the investigations on the fields of forebody asymmetric vortices.This review emphasizes the correlation between micro-perturbation on the model nose and its response and evolution behaviors of the asymmetric vortices.The critical issues are discussed, which include the formation and evolution mechanism of asymmetric multi-vortices;main behaviors of asymmetric vortices flow including its deterministic feature and vortices flow structure;the evolution and development of asymmetric vortices under the perturbation on the model nose;forebody vortex active control especially discussed micro-perturbation active control concept and technique in more detail.However present understanding in this area is still very limited and this paper tries to identify the key unknown problems in the concluding remarks.展开更多
基金Supported by the National Natural Science Foundation of China(62462036,62262031)Jiangxi Provincial Natural Science Foundation(20242BAB26017,20232BAB202010)+1 种基金Distinguished Youth Fund Project of the Natural Science Foundation of Jiangxi Province(20242BAB23011)the Jiangxi Province Graduate Innovation Found Project(YJS2023032)。
文摘Control Flow Graphs(CFGs)are essential for understanding the execution and data flow within software,serving as foundational structures in program analysis.Traditional CFG construction methods,such as bytecode analysis and Abstract Syntax Trees(ASTs),often face challenges due to the complex syntax of programming languages like Java and Python.This paper introduces a novel approach that leverages Large Language Models(LLMs)to generate CFGs through a methodical Chain of Thought(CoT)process.By employing CoT,the proposed approach systematically interprets code semantics directly from natural language,enhancing the adaptability across various programming languages and simplifying the CFG construction process.By implementing a modular AI chain strategy that adheres to the single responsibility principle,our approach breaks down CFG generation into distinct,manageable steps handled by separate AI and non-AI units,which can significantly improve the precision and coverage of CFG nodes and edges.The experiments with 245 Java and 281 Python code snippets from Stack Overflow demonstrate that our method achieves efficient performance on different programming languages and exhibits strong robustness.
基金support from the National Natural Science Foundation of Chinathe Fundamental Research Funds for the Central Universities of China
文摘Abstract Single event upset (SEU) effect, caused by highly energized particles in aerospace, threatens the reliability and security of small satellites composed of commercialofftheshelves (COTS). SEU induced control flow errors (CFEs) may cause unpredictable behavior or crashes of COTSbased small satellites. This paper proposes a generic softwarebased control flow checking technique (CFC) and bipartite graphbased control flow checking (BGCFC). To simplify the types of illegal branches, it transforms the conventional control flow graph into the equivalent bipartite graph. It checks the legal ity of control flow at runtime by comparing a global signature with the expected value and introduces consecutive IDs and bitmaps to reduce the time and memory overhead. Theoretical analysis shows that BGCFC can detect all types of internode CFEs with constant time and memory overhead. Practical tests verify the result of theoretical analysis. Compared with previous techniques, BGCFC achieves the highest error detection rate, lower time and memory overhead; the composite result in evaluation fac tor shows that BGCFC is the most effective one among all these techniques. The results in both theory and practice verify the applicability of BGCFC for COTSbased small satellites.
基金The work is supported in part by the National Natural Science Foundation of China,Natural Science Foundation of Beijing,National 863 High-Tech Research Development Program of China
文摘It is a challenge to verify integrity of dynamic control flows due to their dynamic and volatile nature. To meet the challenge, existing solutions usually implant an "attachment" in each control transfer. However, the attachment introduces additional cost except performance penalty. For example, the attachment must be unique or restrictedly modified. In this paper, we propose a novel approach to detect integrity of dynamic control flows by counting executed branch instructions without involving any attachment. Our solution is based on the following observation. If a control flow is compromised, the number of executed branch instructions will be abnormally increased. The cause is that intruders usually hijack control flows for malicious execution which absolutely introduces additional branch instructions. Inspired by the above observation, in this paper, we devise a novel system named DCFI- Checker, which detect integrity corruption of dynamic control flows with the support of Performance Monitoring Counter (PMC). We have developed a proof-of-concept prototype system of DCFI-Checker on Linux fedora 5. Our experiments with existing kemel rootkits and buffer overflow attack show that DCFI- Checker is effective to detect compromised dynamic control transfer, and performance evaluations indicate that performance penaltyinduced by DCFI-Checker is acceptable.
基金supported by National Natural Science Foundation of China (CN) Project (U153610079,61401038, 61762086)
文摘With the popularization and rapid development of mobile intelligent terminals(MITs), the number of mobile applications, or apps, has increased exponentially. It is increasingly common for malicious code to be inserted into counterfeit apps, which can cause significant economic damage and threaten the security of users. Code obfuscation techniques are a highly efficient group of methods for code security protection. In this paper, we propose a novel control flow obfuscation based method for Android code protection. First, algorithms to insert irrelevant code and flatten the control flow are employed that minimize the cost of obfuscation while ensuring its strength. Second, we improve the traditional methods of control flow flattening to further reduce the costs of obfuscation. Lastly, the use of opaque predicates is strengthened by establishing an access control strategy, which converts the identification of opaque predicates in the entire program into a graph traversal problem, and thereby increases the strength of the code protection. We did some experiments to evaluate our method, and the results show that the proposed method can work well.
基金supported by National Natural Science Foundation of China (No. 60904090)
文摘This paper proposes a generic high-performance and low-time-overhead software control flow checking solution, graph-tree-based control flow checking (GTCFC) for space-borne commercial-off-the-shelf (COTS) processors. A graph tree data structure with a topology similar to common trees is introduced to transform the control flow graphs of target programs. This together with design of IDs and signatures of its vertices and edges allows for an easy check of legality of actual branching during target program execution. As a result, the algorithm not only is capable of detecting all single and multiple branching errors with low latency and time overheads along with a linear-complexity space overhead, but also remains generic among arbitrary instruction sets and independent of any specific hardware. Tests of the algorithm using a COTS-processor-based onboard computer (OBC) of in-service ZDPS-1A pico-satellite products show that GTCFC can detect over 90% of the randomly injected and all-pattern-covering branching errors for different types of target programs, with performance and overheads consistent with the theoretical analysis; and beats well-established preeminent control flow checking algorithms in these dimensions. Furthermore, it is validated that GTCGC not only can be accommodated in pico-satellites conveniently with still sufficient system margins left, but also has the ability to minimize the risk of control flow errors being undetected in their space missions. Therefore, due to its effectiveness, efficiency, and compatibility, the GTCFC solution is ready for applications on COTS processors on pico-satellites in their real space missions.
基金Supported by the National Natural Science Foundation of China(61202110 and 61502205)the Project of Jiangsu Provincial Six Talent Peaks(XYDXXJS-016)
文摘With the rapid development of software technology, software vulnerability has become a major threat to computer security. The timely detection and repair of potential vulnerabilities in software, are of great significance in reducing system crashes and maintaining system security and integrity. This paper focuses on detecting three common types of vulnerabilities: Unused_Variable, Use_of_Uninitialized_Variable, and Use_After_ Free. We propose a method for software vulnerability detection based on an improved control flow graph(ICFG) and several predicates of vulnerability properties for each type of vulnerability. We also define a set of grammar rules for analyzing and deriving the three mentioned types of vulnerabilities, and design three vulnerability detection algorithms to guide the process of vulnerability detection. In addition, we conduct cases studies of the three mentioned types of vulnerabilities with real vulnerability program segments from Common Weakness Enumeration(CWE). The results of the studies show that the proposed method can detect the vulnerability in the tested program segments. Finally, we conduct manual analysis and experiments on detecting the three types of vulnerability program segments(30 examples for each type) from CWE, to compare the vulnerability detection effectiveness of the proposed method with that of the existing detection tool Cpp Check. The results show that the proposed method performs better. In summary, the method proposed in this paper has certain feasibility and effectiveness in detecting the three mentioned types of vulnerabilities, and it will also have guiding significance for the detection of other common vulnerabilities.
基金supported in part by Natural Science Foundation of Jiangsu Province under Grant BK20230255Natural Science Foundation of Shandong Province under Grant ZR2023QE281.
文摘The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract.
基金supported by the National Key R&D Program of China(Grant No.2019YFA0405300)the National Natural Science Foundation of China(Grant No.11972368)the Natural Science Foundation of Hunan Province(Grant No.2021JJ10045).
文摘The stability of supersonic inlets faces challenges due to various changes in flight conditions,and flow control methods that address shock wave/boundary layer interactions under only one set of conditions cannot meet developmental requirements.This paper proposes an adaptive bump control scheme and employs dynamic mesh technology for numerical simulation to investigate the unsteady control effects of adaptive bumps.The obtained results indicate that the use of moving bumps to control shock wave/boundary layer interactions is feasible.The adaptive control effects of five different bump speeds are evaluated.Within the range of bump speeds studied,the analysis of the flow field structure reveals the patterns of change in the separation zone area during the control process,as well as the relationship between the bump motion speed and the control effect on the separation zone.It is concluded that the moving bump endows the boundary layer with additional energy.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.92371201,52192633,11872293,and 92152301)the Natural Science Basic Research Program of Shaanxi(Grant Nos.2024JC-YBQN-0008,and 2022JC-03)+1 种基金Shaanxi Key Research and Development Program(Grant No.2022ZDLGY02-07)the Joint Natural Science Foundation of China with Guangdong Province for TianHe-II Supercomputer Resources,and the Research Start-up Foundation of Xi’an University of Science and Technology for the High-Level Talent.
文摘The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlinear flow control by interaction between two flexible flaps is proposed,and their flow control mechanism is studied employing the self-constructed immersed boundary-lattice Boltzmann-finite element method(IB-LB-FEM).The effects of the difference in material properties and flap length between the two flexible flaps on the nonlinear flow control of the airfoil are discussed.It is suggested that the relationship between the deformation of the two flexible flaps and the evolution of the vortex under the fluid-structure interaction(FSI).It is shown that the upstream flexible flap plays a key role in the flow control of the two flexible flaps.The FSI effect of the upstream flexible flap will change the unsteady flow behind it and affect the deformation of the downstream flexible flap.Two flexible flaps with different material properties and different lengths will change their own FSI characteristics by the induced vortex,effectively suppressing the flow separation on the airfoil’s upper surface.The interaction of two flexible flaps plays an extremely important role in improving the autonomy and adjustability of flow control.The numerical results will provide a theoretical basis and technical guidance for the development and application of a new flap passive control technology.
基金co-supported by the National Natural Science Foundation of China(No.52306053)the Science Center for Gas Turbine Project,China(No.P2022-B-Ⅱ-005-001)the National Science and Technology Major Project of China(No.2017-Ⅱ-0010-0024)。
文摘With the continuous increase of aeroengine flight ceiling(>20 km),the thin atmosphere at high altitudes and the size effect all cause the compressor component inlet Reynolds number to decrease rapidly to a critical value(approximately 2.0×10^(5)),and the significant transition process on the blade/endwall surface leads to the sharp degradation of compressor performance,which seriously affects the engine fuel consumption and working stability at high altitudes.In this paper,the research progress on the internal flow mechanism and flow control methods of axial compressors at low Reynolds numbers is reviewed from the aspects of quantification and prediction of performance variation,flow loss mechanism related to separation and transition,efficient transition control and flow field organization.The development trend of the low-Reynolds-number effect of axial flow compressors is noted,and the difficulties and application prospects of aerodynamic design and efficient flow control methods for compressors under low Reynolds numbers at high altitudes are discussed.
基金funded by Gansu Provincial Department of Education(Industrial Support Plan Project:2025CYZC-048).
文摘The conventional Shear Stress Transport(SST)k–ωturbulence model often exhibits substantial inaccu-racies when applied to the prediction of flow behavior in complex regions within axial flow control valves.To enhance its predictive fidelity for internal flow fields,this study introduces a novel calibration framework that integrates an artificial neural network(ANN)surrogate model with a particle swarm optimization(PSO)algorithm.In particular,an optimal Latin hypercube sampling strategy was employed to generate representative sample points across the empirical parameter space.For each sample,numerical simulations using ANSYS Fluent were conducted to evaluate the flow characteristics,with empirical turbulence model parameters as inputs and flow rate as the target output.These data were used to construct the high-fidelity ANN surrogate model.The PSO algorithm was then applied to this surrogate to identify the optimal set of empirical parameters tailored specifically to axial flow control valve configurations.A revealed by the presented results,the calibrated SST k–ωmodel significantly improves prediction accuracy:deviations from large eddy simulation(LES)benchmarks at small valve openings were reduced from 7.6%to under 3%.Furthermore,the refined model maintains the computational efficiency characteristic of Reynolds-averaged Navier-Stokes(RANS)simulations while substantially enhancing the accuracy of both pressure and velocity field predictions.Overall,the proposed methodology effectively reconciles the trade-off between computational cost and predictive accuracy,offering a robust and scalable approach for turbulence model calibration in complex internal flow scenarios.
基金Project(52476095)supported by the National Natural Science Foundation of ChinaProject(kq2506013)supported by Changsha Outstanding Innovative Youth Training Program,China。
文摘The nanofluid-based direct absorption solar collector(NDASC)ensures that solar radiation passing through the tube wall is directly absorbed by the nanofluid,reducing thermal resistance in the energy transfer process.However,further exploration is required to suppress the outward thermal losses from the nanofluid at high temperatures.Herein,this paper proposes a novel NDASC in which the outer surface of the collector tube is covered with functional coatings and a three-dimensional computational fluid dynamics model is established to study the energy flow distributions on the collector within the temperature range of 400-600 K.When the nanofluid’s absorption coefficient reaches 80 m^(-1),the NDASC shows the optimal thermal performance,and the NDASC with local Sn-In_(2)O_(3) coating achieves a 7.8% improvement in thermal efficiency at 400 K compared to the original NDASC.Furthermore,hybrid coatings with Sn In_(2)O_(3)/WTi-Al_(2)O_(3) are explored,and the optimal coverage angles are determined.The NDASC with such coatings shows a 10.22%-17.9% increase in thermal efficiency compared to the original NDASC and a 7.6%-19.5% increase compared to the traditional surface-type solar collectors,demonstrating the effectiveness of the proposed energy flow control strategy for DASCs.
基金Supported by National Natural Science Foundation of China(Grant No.52075501).
文摘The current research on the manufacturing of large-scale and complex components focuses mainly on the casting processes.Compared with casting,plastic forming has significant advantages in terms of performance.However,effectively controlling the material flow to achieve a reduced loading force and near-uniformity in the isothermal plastic forming process of large-scale asymmetric magnesium alloy complex housings(LSMACHs)is challenging.This study proposes a material flow control method based on the diffluence upsetting-extrusion forming(DUEF)process by dividing different forging deformation regions,combining these with the principal stress method,and establishing an efficient and accurate design procedure.A rational preformed billet was designed successfully using this method.Subsequently,a finite element simulation was employed to analyze the multiphysics fields of the DUEF process.The results indicated that compared with the traditional closed-die forging(TCDF)process,the DUEF process could control the orderly flow of materials,achieve short-distance filling of materials,and reduce hydrostatic stress.Simultaneously,it improved the deformation uniformity by 20.3%and reduced the loading force by 22.6%.Finally,the rationality of the proposed method was validated through physical experiments.Compared with the TCDF process,the DUEF process exhibited a low loading force and uniform mechanical properties.The proposed material flow control method based on the DUEF process provides a new technological approach for the plastic formation of LSMACH and similar components.
文摘Activeow control technology is a technique that controls the internaloweld of aircraft engines or theoweld around wings by means of disturbances induced by actuators,and adjusts the aerodynamic force and attitude of the aircraft,so as to achieve the purposes of increasing lift,reducing drag,suppressing vibration and reducing noise.Hailed as an important source of innovative development for aircraft,this technology provides a new technical approach to solve the aerodynamic problems of aircraft,signicantly improve their comprehensive performance,break throughight boundaries,and promote disruptive innovation in the next generation of aircraft.
文摘The explicit rate flow control mechanisms for ABR service are used to sharethe available bandwidth of a bottleneck link fairly and reasonably among many competitive users andto maintain the buffer queue length of a bottleneck switch connected to the link at a desired levelin order to avoid and control congestion in ATM networks. However, designing effective flow controlmechanisms for the service is known to be difficult because of the variety of dynamic parametersinvolved such as available link bandwidth, burst of the traffic, the distances between ABR sourcesand switches. In this paper, we present a fuzzy explicit rate flow control mechanism for ABRservice. The mechanism has a simple structure and is robust in the sense that the mechanism'sstability is not sensitive to the change in the number of active virtual connections (VCs). Manysimulations show that this mechanism can not only effectively avoid network congestion, but alsoensure fair share of the bandwidth for all active VCs regardless of the number of hops theytraverse. Additionally, it has the advantages of fast convergence, low oscillation, and high linkbandwidth utilization.
文摘The optimization of flow control devices in a single-slab continuous casting tundish was carried out by physical modeling, and the optimized scheme was presented. With the optimal tundish configuration, the minimum residence time of liquid steel was increased by 1.4 times, the peak concentration time was increased by 97%, and the dead volume fraction was decreased by 72%. A mathematical model for molten steel in the tundish was established by using the fluid dynamics package Fluent. The velocity field, concentration field, and the resi-dence time distribution (RTD) curves of molten steel flow before and after optimization were obtained. Experimental results showed that the reasonable configuration with flow control devices can improve the fluid flow characteristics in the tundish. The results of industrial applica-tion show that the nonmetallic inclusion area ratio in casting slabs is decreased by 32% with the optimal tundish configuration.
基金founded by National Natural Science Foundation of China under contract Nos. 51336011, 51276197, and 51207169
文摘A 15° swept wing with dielectric barrier discharge plasma actuator is designed. Experimental study of flow separation control with nanosecond pulsed plasma actuation is performed at flow velocity up to 40 m/s. The effects of the actuation frequency and voltage on the aerodynamic performance of the swept wing are evaluated by the balanced force and pressure measurements in the wind tunnel. At last, the performances on separation flow control of the three types of actuators with plane and saw-toothed exposed electrodes are compared. The optimal actua- tion frequency for the flow separation control on the swept wing is detected, namely the reduced frequency is 0.775, which is different from 2-D airfoil separation control. There exists a threshold voltage for the low swept wing flow control. Before the threshold voltage, as the actuation voltage increases, the control effects become better. The maximum lift is increased by 23.1% with the drag decreased by 22.4% at 14°, compared with the base line. However, the best effects are obtained on actuator with plane exposed electrode in the low-speed experiment and the abilities of saw-toothed actuators are expected to be verified under high-speed conditions.
基金National Natural Science Foundation of China(50776100)
文摘This article is devoted to experimental study on the control of the oblique shock wave around the ramp in a low-temperature supersonic flow by means of the magnetohydrodynamic (MHD) flow control technique. The purpose of the experiments is to take advantage of MHD interaction to weaken the oblique shock wave strength by changing the boundary flow characteristics around the ramp. Plasma columns are generated by pulsed direct current ( DC ) discharge, the magnetic fields are generated by Nd-Fe-B rare-earth permanent magnets and the oblique shock waves in supersonic flow are generated by the ramp. The Lorentz body force effect of MHD interaction on the plasma-induced airflow velocity is verified through particle image velocimetry(PIV)measurements. The experimental results from the supersonic wind tunnel indicate that the MHD flow control can drastically change the flow characteristics of the airflow around the ramp and decrease the ratio of the Pitot pressure after shock wave to that before it by up to 19.66% ,which leads to the decline in oblique shock wave strength. The oblique shock waves in front of the ramp move upstream by the action of the Lorentz body force. The discharge characteristics are analyzed and the MHD interaction time and consumed energy are determined with the help of the pulsed DC discharge images. The interaction parameter corresponding to the boundary layer velocity can reach 1.3 from the momentum conservation equation. The velocity of the plasma column in the magnetic field is much faster than that in the absence of magnetic field force. The plasma can strike the neutral gas molecules to transfer momentum and accelerate the flow around the ramp.
基金Item Sponsored by National High Technology Research and Development Plan of China(2007AA04Z194)
文摘A 1∶2.5 scale tundish model was set up in laboratory for a six-strand billet continuous casting tundish with different configurations to investigate fluid flow characteristics under different operational conditions by measuring residence time distribution curves.It was found that minimum residence time,maximum concentration time and average residence time of the three strands on the same side of the tundish with the former configuration under normal operation,that is,six strands were open,were small and non-uniform and the tundish had large dead volume fraction.Vortexes easily formed on the liquid surface in the pouring zone of the tundish.The fluid flow characteristics in the tundish with the optimal turbulence inhibitor and baffles were improved and became less non-uniform among the strands.Vortexes were not found on the pouring zone surface in the optimal tundish.For non-normal operation,that is,one strand was close,it was important to choose which strand to be closed for maintaining flow characteristics of the rest two strands.It was found from this investigation that fluid flow characteristics in the optimal configuration tundish with closing strand 2 were better than those with closing strand 3 on the same side.
基金The project supported by the National Natural Science Foundation of China(10172017)Aeronautical Science Foundation of China(02A51048)Foundation of National Key Laboratory of Aerodynamic Design and Research(51462020504HK0101)
文摘The studies of asymmetric vortices flow over slender body and its active control at high angles of attack have significant importance for both academic field and engineering area.This paper attempts to provide an update state of art to the investigations on the fields of forebody asymmetric vortices.This review emphasizes the correlation between micro-perturbation on the model nose and its response and evolution behaviors of the asymmetric vortices.The critical issues are discussed, which include the formation and evolution mechanism of asymmetric multi-vortices;main behaviors of asymmetric vortices flow including its deterministic feature and vortices flow structure;the evolution and development of asymmetric vortices under the perturbation on the model nose;forebody vortex active control especially discussed micro-perturbation active control concept and technique in more detail.However present understanding in this area is still very limited and this paper tries to identify the key unknown problems in the concluding remarks.