The dynamic analysis on the ultra-large spatial structure can be simplified drastically by ignoring the flexibility and damping of the structure.However,these simplifications will result in the erroneous estimate on t...The dynamic analysis on the ultra-large spatial structure can be simplified drastically by ignoring the flexibility and damping of the structure.However,these simplifications will result in the erroneous estimate on the dynamic behaviors of the ultra-large spatial structure.Taking the spatial beam as an example,the minimum control energy defined by the difference between the initial total energy and the final total energy in the assumed stable attitude state of the beam is investigated by the structure-preserving method proposed in our previous studies in two cases:the spatial beam considering the flexibility as well as the damping effect,and the spatial beam ignoring both the flexibility and the damping effect.In the numerical experiments,the assumed simulation interval of three months is evaluated on whether or not it is long enough for the spatial flexible damping beam to arrive at the assumed stable attitude state.And then,taking the initial attitude angle and the initial attitude angle velocity as the independent variables,respectively,the minimum control energies of the mentioned two cases are investigated in detail.From the numerical results,the following conclusions can be obtained.With the fixed initial attitude angle velocity,the minimum control energy of the spatial flexible damping beam is higher than that of the spatial rigid beam when the initial attitude angle is close to or far away from the stable attitude state.With the fixed initial attitude angle,ignoring the flexibility and the damping effect will underestimate the minimum control energy of the spatial beam.展开更多
This paper presents the analysis of the control energy consumed in model reference adaptive control(MRAC)schemes using fractional adaptive laws, through simulation studies. The analysis is focused on the energy spent ...This paper presents the analysis of the control energy consumed in model reference adaptive control(MRAC)schemes using fractional adaptive laws, through simulation studies. The analysis is focused on the energy spent in the control signal represented by means of the integral of the squared control input(ISI). Also, the behavior of the integral of the squared control error(ISE) is included in the analysis.The orders of the adaptive laws were selected by particle swarm optimization(PSO), using an objective function including the ISI and the ISE, with different weighting factors. The results show that, when ISI index is taken into account in the optimization process to determine the orders of adaptive laws,the resulting values are fractional, indicating that control energy of the scheme might be better managed if fractional adaptive laws are used.展开更多
This paper has investigated best tracking performance for linear feedback control systems in the case that plant uncertainty and control effort need to be considered simultaneously. Firstly, an average integral square...This paper has investigated best tracking performance for linear feedback control systems in the case that plant uncertainty and control effort need to be considered simultaneously. Firstly, an average integral square criterion of the tracking error and the plant input energy over a class of additive model errors is defined. Then, utilizing spectral factorization to minimize the performance index, we obtain an optimal controller design method, and furthermore study optimal tracking performance under plant uncertainty and control energy constraint. The results can be used to evaluate optimal average tracking performance and control energy in designing practical control systems.展开更多
The nanofluid-based direct absorption solar collector(NDASC)ensures that solar radiation passing through the tube wall is directly absorbed by the nanofluid,reducing thermal resistance in the energy transfer process.H...The nanofluid-based direct absorption solar collector(NDASC)ensures that solar radiation passing through the tube wall is directly absorbed by the nanofluid,reducing thermal resistance in the energy transfer process.However,further exploration is required to suppress the outward thermal losses from the nanofluid at high temperatures.Herein,this paper proposes a novel NDASC in which the outer surface of the collector tube is covered with functional coatings and a three-dimensional computational fluid dynamics model is established to study the energy flow distributions on the collector within the temperature range of 400-600 K.When the nanofluid’s absorption coefficient reaches 80 m^(-1),the NDASC shows the optimal thermal performance,and the NDASC with local Sn-In_(2)O_(3) coating achieves a 7.8% improvement in thermal efficiency at 400 K compared to the original NDASC.Furthermore,hybrid coatings with Sn In_(2)O_(3)/WTi-Al_(2)O_(3) are explored,and the optimal coverage angles are determined.The NDASC with such coatings shows a 10.22%-17.9% increase in thermal efficiency compared to the original NDASC and a 7.6%-19.5% increase compared to the traditional surface-type solar collectors,demonstrating the effectiveness of the proposed energy flow control strategy for DASCs.展开更多
China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe dam...China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe damage to structures, but can also damage non-structural elements on and inside of facilities. This can halt city life, and disrupt hospitals, airports, bridges, power plants, and other infrastructure. Designers need to use new techniques to protect structures and facilities inside. Isolation, energy dissipation and, control systems are more and more widely used in recent years in China. Currently, there are nearly 6,500 structures with isolation and about 3,000 structures with passive energy dissipation or hybrid control in China. The mitigation techniques are applied to structures like residential buildings, large or complex structures, bridges, underwater tunnels, historical or cultural relic sites, and industrial facilities, and are used for retrofitting of existed structures. This paper introduces design rules and some new and innovative devices for seismic isolation, energy dissipation and hybrid control for civil and industrial structures. This paper also discusses the development trends for seismic resistance, seismic isolation, passive and active control techniques for the future in China and in the world.展开更多
Aimed at the relatively lower energy density and complicated coordinating operation between two power sources,a special energy control strategy is required to maximize the fuel saving potential.Then a new type of conf...Aimed at the relatively lower energy density and complicated coordinating operation between two power sources,a special energy control strategy is required to maximize the fuel saving potential.Then a new type of configuration for hydrostatic transmission hybrid vehicles(PHHV) and the selection criterion for important components are proposed.Based on the optimization of planet gear transmission ratio and the analysis of optimal energy distribution for the proposed PHHV on a representative urban driving cycle,a fuzzy torque control strategy and a braking energy regeneration strategy are designed and developed to realize the real-time control of energy for the proposed PHHV.Simulation results demonstrate that the energy control strategy effectively improves the fuel economy of PHHV.展开更多
In order to solve the problems of poor informationflow,low energy utilization rate and energy consumption data reuse in the heavy equipment industrial park,the Internet of Things(IoT)technology is applied to construct...In order to solve the problems of poor informationflow,low energy utilization rate and energy consumption data reuse in the heavy equipment industrial park,the Internet of Things(IoT)technology is applied to construct the intelligent energy management and control system(IEMCS).The application architecture and function module planning are analyzed and designed.Furthermore,the IEMCS scheme is not unique due to the fuzziness of customer demand and the understanding deviation of designer to customer demand in the design stage.Scheme assessment is of great significance for the normal subsequent implementation of the system.A fuzzy assessment method for IEMCS scheme alternatives is proposed to achieve scheme selection.Fuzzy group decision using triangular fuzzy number to express the vague assessment of experts is adopted to determine the index value.TOPSIS is modified by replacing Euclidean distance with contact vector distance in IEMCS scheme alternative assessment.An experiment with eight IEMCS scheme alternatives in a heavy equipment industrial park is given for the validation.The experiment result shows that eight IEMCS scheme alternatives can be assessed.Through the comparisons with other methods,the reliability of the results obtained by the proposed method is discussed.展开更多
This paper presents the design and implementation of an energy management system (EMS) with wavelet transform and fuzzy control for a residential micro-grid. The hybrid system in this paper consists of a wind turbin...This paper presents the design and implementation of an energy management system (EMS) with wavelet transform and fuzzy control for a residential micro-grid. The hybrid system in this paper consists of a wind turbine generator, photovoltaic (PV) panels, an electric vehicle (EV), and a super capacitor (SC), which is able to connect or disconnect to the main grid. The control strategy is responsible for compensating the difference between the generated power by the wind and solar generators and the demanded power by the loads. Wavelet transform decomposes the power difference into a smoothed component and a fast fluctuated component. The command approach used for fuzzy logic rules considers the state of charging (SOC) of EV, renewable production, and the load demand as parameters. Furthermore, the command rules are developed in order to ensure a reliable grid when taking into account the EV battery protection to decide the output power of the EV. The model of the hybrid system is developed in detail under Matlab/Simulink software environment.展开更多
An experimental investigation was carried out to study the energy absorption characteristics of thin-walled square tubes subjected to dynamic crushing by impact loading to develop the optimum structural members. Here,...An experimental investigation was carried out to study the energy absorption characteristics of thin-walled square tubes subjected to dynamic crushing by impact loading to develop the optimum structural members. Here, the controller is introduced to improve and control the absorbed energy of thin-walled square tubes in this paper. When the controller were used, the experimental results of crushing of square tubes controlled by the controller's elements showed a good candidate for a controllable energy absorption capability in impact crushing.展开更多
This paper considers minimization of resistive and frictional power dissipation in a separately excited DC motor based incremental motion drive (IMD). The drive is required to displace a given, fixed load through a ...This paper considers minimization of resistive and frictional power dissipation in a separately excited DC motor based incremental motion drive (IMD). The drive is required to displace a given, fixed load through a definite angle in specified time, with minimum energy dissipation in the motor windings and minimum frictional losses. Accordingly, an energy optimal (EO) control strategy is proposed in which the motor is first accelerated to track a specific speed profile for a pre-determined optimal time period. Thereafter, both armature and field power supplies are disconnected, and the motor decelerates and comes to a halt at the desired displacement point in the desired total displacement time. The optimal time period for the initial acceleration phase is computed so that the motor stores just enough energy to decelerate to the final position at the specified displacement time. The parameters, such as the moment of inertia and coefficient of friction, which depend on the load and other external conditions, have been obtained using system identification method. Comparison with earlier control techniques is included. The results show that the proposed EO control strategy results in significant reduction of energy losses compared to the existing ones.展开更多
This paper examined the impacts of the total energy consumption control policy and energy quota allocation plans on China′s regional economy. This research analyzed the influences of different energy quota allocation...This paper examined the impacts of the total energy consumption control policy and energy quota allocation plans on China′s regional economy. This research analyzed the influences of different energy quota allocation plans with various weights of equity and efficiency, using a dynamic computable general equilibrium(CGE) model for 30 province-level administrative regions. The results show that the efficiency-first allocation plan costs the least but widens regional income gap, whereas the outcomes of equity-first allocation plan and intensity target-based allocation plan are similar and are both opposite to the efficiency-first allocation plan′ outcome. The plan featuring a balance between efficiency and equity is more feasible, which can bring regional economic losses evenly and prevent massive interregional migration of energy-related industries. Furthermore, the effects of possible induced energy technology improvements in different energy quota allocation plans were studied. Induced energy technology improvements can add more feasibility to all allocation plans under the total energy consumption control policy. In the long term, if the policy of the total energy consumption control continues and more market-based tools are implemented to allocate energy quotas, the positive consequences of induced energy technology improvements will become much more obvious.展开更多
I.I NTRODUCTION W ITH the advent of low-carbon economy,there has been a growing interest in harnessing renewable energy resources particularly for electricity generation.Renewable energy resources are advocated for th...I.I NTRODUCTION W ITH the advent of low-carbon economy,there has been a growing interest in harnessing renewable energy resources particularly for electricity generation.Renewable energy resources are advocated for the economic and environ-展开更多
The transition to sustainable energy systems is one of the defining challenges of our time, necessitating innovations in how we generate, distribute, and manage electrical power. Micro-grids, as localized energy hubs,...The transition to sustainable energy systems is one of the defining challenges of our time, necessitating innovations in how we generate, distribute, and manage electrical power. Micro-grids, as localized energy hubs, have emerged as a promising solution to integrate renewable energy sources, ensure energy security, and improve system resilience. The Autonomous multi-factor Energy Flow Controller (AmEFC) introduced in this paper addresses this need by offering a scalable, adaptable, and resilient framework for energy management within an on-grid micro-grid context. The urgency for such a system is predicated on the increasing volatility and unpredictability in energy landscapes, including fluctuating renewable outputs and changing load demands. To tackle these challenges, the AmEFC prototype incorporates a novel hierarchical control structure that leverages Renewable Energy Sources (RES), such as photovoltaic systems, wind turbines, and hydro pumps, alongside a sophisticated Battery Management System (BMS). Its prime objective is to maintain an uninterrupted power supply to critical loads, efficiently balance energy surplus through hydraulic storage, and ensure robust interaction with the main grid. A comprehensive Simulink model is developed to validate the functionality of the AmEFC, simulating real-world conditions and dynamic interactions among the components. The model assesses the system’s reliability in consistently powering critical loads and its efficacy in managing surplus energy. The inclusion of advanced predictive algorithms enables the AmEFC to anticipate energy production and consumption trends, integrating weather forecasting and inter-controller communication to optimize energy flow within and across micro-grids. This study’s significance lies in its potential to facilitate the seamless incorporation of RES into existing power systems, thus propelling the energy sector towards a more sustainable, autonomous, and resilient future. The results underscore the potential of such a system to revolutionize energy management practices and highlight the importance of smart controller systems in the era of smart grids.展开更多
Central air-conditioning system in building includes chiller, water system, air duct system, control system, etc. Among the energy consumption, building energy consumption accounts for a large proportion, and the ener...Central air-conditioning system in building includes chiller, water system, air duct system, control system, etc. Among the energy consumption, building energy consumption accounts for a large proportion, and the energy consumption of air-conditioning system is the main energy consumption source of the whole system. In the scheme design of central air conditioning system, the local load characteristics are usually considered, and the design method of high ratio is adopted. The results show that the building air-conditioning system rarely works under full load condition, mostly under 75% load condition, so it needs to be continuously optimized. Therefore, in order to reduce the energy consumption of central air-conditioning, we must optimize the energy-saving technology of central air-conditioning water system.展开更多
At present, large centrifugal compressors are widely used in domestic petrochemical plants. This paper describes the control status of compressor control system in domestic petrochemical plants, the optimization schem...At present, large centrifugal compressors are widely used in domestic petrochemical plants. This paper describes the control status of compressor control system in domestic petrochemical plants, the optimization scheme to realize energy-saving control and the economic benefits brought to enterprises after control optimization.展开更多
Permanent Magnet Synchronous Motors(PMSMs)are widely employed in high-performance drive applications due to their superior efficiency and dynamic capabilities.However,their control remains challenging owing to nonline...Permanent Magnet Synchronous Motors(PMSMs)are widely employed in high-performance drive applications due to their superior efficiency and dynamic capabilities.However,their control remains challenging owing to nonlinear dynamics,parameter variations,and unmeasurable external disturbances,particularly load torquefluctuations.This study proposes an enhanced Interconnection and Damp-ing Assignment Passivity-Based Control(IDA-PBC)scheme,formulated within the port-controlled Hamiltonian(PCH)framework,to address these limitations.A nonlinear disturbance observer is embedded to estimate and compensate,in real time,for lumped mis-matched disturbances arising from parameter uncertainties and external loads.Additionally,aflatness-based control strategy is employed to generate the desired current references within the nonlinear drive system,ensuring accurate tracking of time-varying speed commands.This integrated approach preserves the system’s energy-based structure,enabling systematic stability analysis while enhancing robustness.The proposed control architecture also maintains low complexity with a limited number of tunable parameters,facilitating practical implementation.Simulation and experimental results under various operating conditions demonstrate the effectiveness and robustness of the proposed method.Comparative analysis with conventional proportional-integral(PI)control and standard IDA-PBC strategies confirms its capability to handle disturbances and maintain dynamic performance.展开更多
With the rapid advancement of robotics and Artificial Intelligence(AI),aerobics training companion robots now support eco-friendly fitness by reducing reliance on nonrenewable energy.This study presents a solar-powere...With the rapid advancement of robotics and Artificial Intelligence(AI),aerobics training companion robots now support eco-friendly fitness by reducing reliance on nonrenewable energy.This study presents a solar-powered aerobics training robot featuring an adaptive energy management system designed for sustainability and efficiency.The robot integrates machine vision with an enhanced Dynamic Cheetah Optimizer and Bayesian Neural Network(DynCO-BNN)to enable precise exercise monitoring and real-time feedback.Solar tracking technology ensures optimal energy absorption,while a microcontroller-based regulator manages power distribution and robotic movement.Dual-battery switching ensures uninterrupted operation,aided by light and I/V sensors for energy optimization.Using the INSIGHT-LME IMU dataset,which includes motion data from 76 individuals performing Local Muscular Endurance(LME)exercises,the system detects activities,counts repetitions,and recognizes human movements.To minimize energy use during data processing,Min-Max normalization and two-dimensional Discrete Fourier Transform(2D-DFT)are applied,boosting computational efficiency.The robot accurately identifies upper and lower limb movements,delivering effective exercise guidance.The DynCO-BNN model achieved a high tracking accuracy of 96.8%.Results confirm improved solar utilization,ecological sustainability,and reduced dependence on fossil fuels—positioning the robot as a smart,energy-efficient solution for next-generation fitness technology.展开更多
Longitudinal seismic performance is a critical aspect to be considered during the tunnel design process,in addition to cross-sectional considerations.The present study proposed using a laminated shear energy dissipati...Longitudinal seismic performance is a critical aspect to be considered during the tunnel design process,in addition to cross-sectional considerations.The present study proposed using a laminated shear energy dissipation(LSED)structure to achieve effective longitudinal seismic design.The proposed structure consists of thin steel plates and alternately bonded layers of rubber,which can be installed around the periphery of the secondary lining.This configuration guarantees that the tunnels will exhibit optimal axial deformation capacity and robust rigid resistance to circumferential compression from the surrounding rock.To evaluate the impact of the LSED structure on the longitudinal seismic performance of the tunnel,a fine numerical model of the LSED structureetunnel liningesurrounding rock system was developed using finite element simulation.The evaluation criteria include maximum principal stress and strain energy.The seismic response of the tunnel with the LSED structure exhibited a notable reduction of over 40%in terms of seismic attenuation rate when subjected to the Trinidad seismic wave compared to the tunnel without the LSED structure.Furthermore,the aseismic mechanism of the proposed LSED structure is discussed,considering both internal factors such as the rubber shear modulus,steel plate dimensions,and number and location of structures,and external influencing factors such as seismic wave parameters and surrounding rock quality.Meanwhile,the effectiveness of the tunnel with the LSED structure has been quantitatively demonstrated in terms of seismic fragility curves.展开更多
In this paper, we propose an energy-efficient power control scheme for device-to-device(D2D) communications underlaying cellular networks, where multiple D2D pairs reuse the same resource blocks allocated to one cellu...In this paper, we propose an energy-efficient power control scheme for device-to-device(D2D) communications underlaying cellular networks, where multiple D2D pairs reuse the same resource blocks allocated to one cellular user. Taking the maximum allowed transmit power and the minimum data rate requirement into consideration, we formulate the energy efficiency maximization problem as a non-concave fractional programming(FP) problem and then develop a two-loop iterative algorithm to solve it. In the outer loop, we adopt Dinkelbach method to equivalently transform the FP problem into a series of parametric subtractive-form problems, and in the inner loop we solve the parametric subtractive problems based on successive convex approximation and geometric programming method to obtain the solutions satisfying the KarushKuhn-Tucker conditions. Simulation results demonstrate the validity and efficiency of the proposed scheme, and illustrate the impact of different parameters on system performance.展开更多
基金The research is supported by the National Natural Science Foundation of China(11672241,11972284,11432010)Fund for Distinguished Young Scholars of Shaanxi Province(2019JC-29)Fund of the Youth Innovation Team of Shaanxi Universities,the Seed Foundation of Qian Xuesen Laboratory of Space Technology,and the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment(GZ1605).
文摘The dynamic analysis on the ultra-large spatial structure can be simplified drastically by ignoring the flexibility and damping of the structure.However,these simplifications will result in the erroneous estimate on the dynamic behaviors of the ultra-large spatial structure.Taking the spatial beam as an example,the minimum control energy defined by the difference between the initial total energy and the final total energy in the assumed stable attitude state of the beam is investigated by the structure-preserving method proposed in our previous studies in two cases:the spatial beam considering the flexibility as well as the damping effect,and the spatial beam ignoring both the flexibility and the damping effect.In the numerical experiments,the assumed simulation interval of three months is evaluated on whether or not it is long enough for the spatial flexible damping beam to arrive at the assumed stable attitude state.And then,taking the initial attitude angle and the initial attitude angle velocity as the independent variables,respectively,the minimum control energies of the mentioned two cases are investigated in detail.From the numerical results,the following conclusions can be obtained.With the fixed initial attitude angle velocity,the minimum control energy of the spatial flexible damping beam is higher than that of the spatial rigid beam when the initial attitude angle is close to or far away from the stable attitude state.With the fixed initial attitude angle,ignoring the flexibility and the damping effect will underestimate the minimum control energy of the spatial beam.
基金supported by CONICYT-Chile,under the Basal Financing Program(FB0809)Advanced Mining Technology Center,FONDECYT Project(1150488)+1 种基金Fractional Error Models in Adaptive Control and Applications,FONDECYT(3150007)Postdoctoral Program 2015
文摘This paper presents the analysis of the control energy consumed in model reference adaptive control(MRAC)schemes using fractional adaptive laws, through simulation studies. The analysis is focused on the energy spent in the control signal represented by means of the integral of the squared control input(ISI). Also, the behavior of the integral of the squared control error(ISE) is included in the analysis.The orders of the adaptive laws were selected by particle swarm optimization(PSO), using an objective function including the ISI and the ISE, with different weighting factors. The results show that, when ISI index is taken into account in the optimization process to determine the orders of adaptive laws,the resulting values are fractional, indicating that control energy of the scheme might be better managed if fractional adaptive laws are used.
基金High Technology Research and Development (863) Program(No.2003AA517020)
文摘This paper has investigated best tracking performance for linear feedback control systems in the case that plant uncertainty and control effort need to be considered simultaneously. Firstly, an average integral square criterion of the tracking error and the plant input energy over a class of additive model errors is defined. Then, utilizing spectral factorization to minimize the performance index, we obtain an optimal controller design method, and furthermore study optimal tracking performance under plant uncertainty and control energy constraint. The results can be used to evaluate optimal average tracking performance and control energy in designing practical control systems.
基金Project(52476095)supported by the National Natural Science Foundation of ChinaProject(kq2506013)supported by Changsha Outstanding Innovative Youth Training Program,China。
文摘The nanofluid-based direct absorption solar collector(NDASC)ensures that solar radiation passing through the tube wall is directly absorbed by the nanofluid,reducing thermal resistance in the energy transfer process.However,further exploration is required to suppress the outward thermal losses from the nanofluid at high temperatures.Herein,this paper proposes a novel NDASC in which the outer surface of the collector tube is covered with functional coatings and a three-dimensional computational fluid dynamics model is established to study the energy flow distributions on the collector within the temperature range of 400-600 K.When the nanofluid’s absorption coefficient reaches 80 m^(-1),the NDASC shows the optimal thermal performance,and the NDASC with local Sn-In_(2)O_(3) coating achieves a 7.8% improvement in thermal efficiency at 400 K compared to the original NDASC.Furthermore,hybrid coatings with Sn In_(2)O_(3)/WTi-Al_(2)O_(3) are explored,and the optimal coverage angles are determined.The NDASC with such coatings shows a 10.22%-17.9% increase in thermal efficiency compared to the original NDASC and a 7.6%-19.5% increase compared to the traditional surface-type solar collectors,demonstrating the effectiveness of the proposed energy flow control strategy for DASCs.
文摘China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe damage to structures, but can also damage non-structural elements on and inside of facilities. This can halt city life, and disrupt hospitals, airports, bridges, power plants, and other infrastructure. Designers need to use new techniques to protect structures and facilities inside. Isolation, energy dissipation and, control systems are more and more widely used in recent years in China. Currently, there are nearly 6,500 structures with isolation and about 3,000 structures with passive energy dissipation or hybrid control in China. The mitigation techniques are applied to structures like residential buildings, large or complex structures, bridges, underwater tunnels, historical or cultural relic sites, and industrial facilities, and are used for retrofitting of existed structures. This paper introduces design rules and some new and innovative devices for seismic isolation, energy dissipation and hybrid control for civil and industrial structures. This paper also discusses the development trends for seismic resistance, seismic isolation, passive and active control techniques for the future in China and in the world.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50375033)the National Key Laboratory of Vehicular Transmission(Grant No.51457050105HT0112)
文摘Aimed at the relatively lower energy density and complicated coordinating operation between two power sources,a special energy control strategy is required to maximize the fuel saving potential.Then a new type of configuration for hydrostatic transmission hybrid vehicles(PHHV) and the selection criterion for important components are proposed.Based on the optimization of planet gear transmission ratio and the analysis of optimal energy distribution for the proposed PHHV on a representative urban driving cycle,a fuzzy torque control strategy and a braking energy regeneration strategy are designed and developed to realize the real-time control of energy for the proposed PHHV.Simulation results demonstrate that the energy control strategy effectively improves the fuel economy of PHHV.
文摘In order to solve the problems of poor informationflow,low energy utilization rate and energy consumption data reuse in the heavy equipment industrial park,the Internet of Things(IoT)technology is applied to construct the intelligent energy management and control system(IEMCS).The application architecture and function module planning are analyzed and designed.Furthermore,the IEMCS scheme is not unique due to the fuzziness of customer demand and the understanding deviation of designer to customer demand in the design stage.Scheme assessment is of great significance for the normal subsequent implementation of the system.A fuzzy assessment method for IEMCS scheme alternatives is proposed to achieve scheme selection.Fuzzy group decision using triangular fuzzy number to express the vague assessment of experts is adopted to determine the index value.TOPSIS is modified by replacing Euclidean distance with contact vector distance in IEMCS scheme alternative assessment.An experiment with eight IEMCS scheme alternatives in a heavy equipment industrial park is given for the validation.The experiment result shows that eight IEMCS scheme alternatives can be assessed.Through the comparisons with other methods,the reliability of the results obtained by the proposed method is discussed.
基金supported by the National Science Foundation of China under Grant No.51205046
文摘This paper presents the design and implementation of an energy management system (EMS) with wavelet transform and fuzzy control for a residential micro-grid. The hybrid system in this paper consists of a wind turbine generator, photovoltaic (PV) panels, an electric vehicle (EV), and a super capacitor (SC), which is able to connect or disconnect to the main grid. The control strategy is responsible for compensating the difference between the generated power by the wind and solar generators and the demanded power by the loads. Wavelet transform decomposes the power difference into a smoothed component and a fast fluctuated component. The command approach used for fuzzy logic rules considers the state of charging (SOC) of EV, renewable production, and the load demand as parameters. Furthermore, the command rules are developed in order to ensure a reliable grid when taking into account the EV battery protection to decide the output power of the EV. The model of the hybrid system is developed in detail under Matlab/Simulink software environment.
文摘An experimental investigation was carried out to study the energy absorption characteristics of thin-walled square tubes subjected to dynamic crushing by impact loading to develop the optimum structural members. Here, the controller is introduced to improve and control the absorbed energy of thin-walled square tubes in this paper. When the controller were used, the experimental results of crushing of square tubes controlled by the controller's elements showed a good candidate for a controllable energy absorption capability in impact crushing.
文摘This paper considers minimization of resistive and frictional power dissipation in a separately excited DC motor based incremental motion drive (IMD). The drive is required to displace a given, fixed load through a definite angle in specified time, with minimum energy dissipation in the motor windings and minimum frictional losses. Accordingly, an energy optimal (EO) control strategy is proposed in which the motor is first accelerated to track a specific speed profile for a pre-determined optimal time period. Thereafter, both armature and field power supplies are disconnected, and the motor decelerates and comes to a halt at the desired displacement point in the desired total displacement time. The optimal time period for the initial acceleration phase is computed so that the motor stores just enough energy to decelerate to the final position at the specified displacement time. The parameters, such as the moment of inertia and coefficient of friction, which depend on the load and other external conditions, have been obtained using system identification method. Comparison with earlier control techniques is included. The results show that the proposed EO control strategy results in significant reduction of energy losses compared to the existing ones.
基金National Natural Science Foundation of China(No.41101556,71173212,71203215)
文摘This paper examined the impacts of the total energy consumption control policy and energy quota allocation plans on China′s regional economy. This research analyzed the influences of different energy quota allocation plans with various weights of equity and efficiency, using a dynamic computable general equilibrium(CGE) model for 30 province-level administrative regions. The results show that the efficiency-first allocation plan costs the least but widens regional income gap, whereas the outcomes of equity-first allocation plan and intensity target-based allocation plan are similar and are both opposite to the efficiency-first allocation plan′ outcome. The plan featuring a balance between efficiency and equity is more feasible, which can bring regional economic losses evenly and prevent massive interregional migration of energy-related industries. Furthermore, the effects of possible induced energy technology improvements in different energy quota allocation plans were studied. Induced energy technology improvements can add more feasibility to all allocation plans under the total energy consumption control policy. In the long term, if the policy of the total energy consumption control continues and more market-based tools are implemented to allocate energy quotas, the positive consequences of induced energy technology improvements will become much more obvious.
文摘I.I NTRODUCTION W ITH the advent of low-carbon economy,there has been a growing interest in harnessing renewable energy resources particularly for electricity generation.Renewable energy resources are advocated for the economic and environ-
文摘The transition to sustainable energy systems is one of the defining challenges of our time, necessitating innovations in how we generate, distribute, and manage electrical power. Micro-grids, as localized energy hubs, have emerged as a promising solution to integrate renewable energy sources, ensure energy security, and improve system resilience. The Autonomous multi-factor Energy Flow Controller (AmEFC) introduced in this paper addresses this need by offering a scalable, adaptable, and resilient framework for energy management within an on-grid micro-grid context. The urgency for such a system is predicated on the increasing volatility and unpredictability in energy landscapes, including fluctuating renewable outputs and changing load demands. To tackle these challenges, the AmEFC prototype incorporates a novel hierarchical control structure that leverages Renewable Energy Sources (RES), such as photovoltaic systems, wind turbines, and hydro pumps, alongside a sophisticated Battery Management System (BMS). Its prime objective is to maintain an uninterrupted power supply to critical loads, efficiently balance energy surplus through hydraulic storage, and ensure robust interaction with the main grid. A comprehensive Simulink model is developed to validate the functionality of the AmEFC, simulating real-world conditions and dynamic interactions among the components. The model assesses the system’s reliability in consistently powering critical loads and its efficacy in managing surplus energy. The inclusion of advanced predictive algorithms enables the AmEFC to anticipate energy production and consumption trends, integrating weather forecasting and inter-controller communication to optimize energy flow within and across micro-grids. This study’s significance lies in its potential to facilitate the seamless incorporation of RES into existing power systems, thus propelling the energy sector towards a more sustainable, autonomous, and resilient future. The results underscore the potential of such a system to revolutionize energy management practices and highlight the importance of smart controller systems in the era of smart grids.
文摘Central air-conditioning system in building includes chiller, water system, air duct system, control system, etc. Among the energy consumption, building energy consumption accounts for a large proportion, and the energy consumption of air-conditioning system is the main energy consumption source of the whole system. In the scheme design of central air conditioning system, the local load characteristics are usually considered, and the design method of high ratio is adopted. The results show that the building air-conditioning system rarely works under full load condition, mostly under 75% load condition, so it needs to be continuously optimized. Therefore, in order to reduce the energy consumption of central air-conditioning, we must optimize the energy-saving technology of central air-conditioning water system.
文摘At present, large centrifugal compressors are widely used in domestic petrochemical plants. This paper describes the control status of compressor control system in domestic petrochemical plants, the optimization scheme to realize energy-saving control and the economic benefits brought to enterprises after control optimization.
基金supported in part by an International Research Partnership“Electrical Engineering-Thai French Research Center(EE-TFRC)”under the project framework of the Lorraine Universite´d’Excellence(LUE)in cooperation between Universite´de Lorraine(France)and King Mongkut’s University of Technology North Bangkok(year 2021-2024/2025-28)by the National Research Council of Thailand(NRCT)under Research Team Promotion Grant(Senior Research Scholar Program)under Grant No.N42A 680561by the NSRF via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation under Research project Grant No.B41G680025.
文摘Permanent Magnet Synchronous Motors(PMSMs)are widely employed in high-performance drive applications due to their superior efficiency and dynamic capabilities.However,their control remains challenging owing to nonlinear dynamics,parameter variations,and unmeasurable external disturbances,particularly load torquefluctuations.This study proposes an enhanced Interconnection and Damp-ing Assignment Passivity-Based Control(IDA-PBC)scheme,formulated within the port-controlled Hamiltonian(PCH)framework,to address these limitations.A nonlinear disturbance observer is embedded to estimate and compensate,in real time,for lumped mis-matched disturbances arising from parameter uncertainties and external loads.Additionally,aflatness-based control strategy is employed to generate the desired current references within the nonlinear drive system,ensuring accurate tracking of time-varying speed commands.This integrated approach preserves the system’s energy-based structure,enabling systematic stability analysis while enhancing robustness.The proposed control architecture also maintains low complexity with a limited number of tunable parameters,facilitating practical implementation.Simulation and experimental results under various operating conditions demonstrate the effectiveness and robustness of the proposed method.Comparative analysis with conventional proportional-integral(PI)control and standard IDA-PBC strategies confirms its capability to handle disturbances and maintain dynamic performance.
文摘With the rapid advancement of robotics and Artificial Intelligence(AI),aerobics training companion robots now support eco-friendly fitness by reducing reliance on nonrenewable energy.This study presents a solar-powered aerobics training robot featuring an adaptive energy management system designed for sustainability and efficiency.The robot integrates machine vision with an enhanced Dynamic Cheetah Optimizer and Bayesian Neural Network(DynCO-BNN)to enable precise exercise monitoring and real-time feedback.Solar tracking technology ensures optimal energy absorption,while a microcontroller-based regulator manages power distribution and robotic movement.Dual-battery switching ensures uninterrupted operation,aided by light and I/V sensors for energy optimization.Using the INSIGHT-LME IMU dataset,which includes motion data from 76 individuals performing Local Muscular Endurance(LME)exercises,the system detects activities,counts repetitions,and recognizes human movements.To minimize energy use during data processing,Min-Max normalization and two-dimensional Discrete Fourier Transform(2D-DFT)are applied,boosting computational efficiency.The robot accurately identifies upper and lower limb movements,delivering effective exercise guidance.The DynCO-BNN model achieved a high tracking accuracy of 96.8%.Results confirm improved solar utilization,ecological sustainability,and reduced dependence on fossil fuels—positioning the robot as a smart,energy-efficient solution for next-generation fitness technology.
基金supported by the National Natural Science Foundation of China(Grant No.52109132)the Shandong Provincial Natural Science Foundation(Grant No.ZR2020QE270).
文摘Longitudinal seismic performance is a critical aspect to be considered during the tunnel design process,in addition to cross-sectional considerations.The present study proposed using a laminated shear energy dissipation(LSED)structure to achieve effective longitudinal seismic design.The proposed structure consists of thin steel plates and alternately bonded layers of rubber,which can be installed around the periphery of the secondary lining.This configuration guarantees that the tunnels will exhibit optimal axial deformation capacity and robust rigid resistance to circumferential compression from the surrounding rock.To evaluate the impact of the LSED structure on the longitudinal seismic performance of the tunnel,a fine numerical model of the LSED structureetunnel liningesurrounding rock system was developed using finite element simulation.The evaluation criteria include maximum principal stress and strain energy.The seismic response of the tunnel with the LSED structure exhibited a notable reduction of over 40%in terms of seismic attenuation rate when subjected to the Trinidad seismic wave compared to the tunnel without the LSED structure.Furthermore,the aseismic mechanism of the proposed LSED structure is discussed,considering both internal factors such as the rubber shear modulus,steel plate dimensions,and number and location of structures,and external influencing factors such as seismic wave parameters and surrounding rock quality.Meanwhile,the effectiveness of the tunnel with the LSED structure has been quantitatively demonstrated in terms of seismic fragility curves.
基金supported by National Natural Science Foundation of China (No.61501028)Beijing Institute of Technology Research Fund Program for Young Scholars
文摘In this paper, we propose an energy-efficient power control scheme for device-to-device(D2D) communications underlaying cellular networks, where multiple D2D pairs reuse the same resource blocks allocated to one cellular user. Taking the maximum allowed transmit power and the minimum data rate requirement into consideration, we formulate the energy efficiency maximization problem as a non-concave fractional programming(FP) problem and then develop a two-loop iterative algorithm to solve it. In the outer loop, we adopt Dinkelbach method to equivalently transform the FP problem into a series of parametric subtractive-form problems, and in the inner loop we solve the parametric subtractive problems based on successive convex approximation and geometric programming method to obtain the solutions satisfying the KarushKuhn-Tucker conditions. Simulation results demonstrate the validity and efficiency of the proposed scheme, and illustrate the impact of different parameters on system performance.