期刊文献+
共找到25,493篇文章
< 1 2 250 >
每页显示 20 50 100
A control volume based finite element method for simulating incompressible two-phase flow in heterogeneous porous media and its application to reservoir engineering 被引量:4
1
作者 SADRNEJAD S A GHASEMZADEH H +1 位作者 GHOREISHIAN AMIRI S A MONTAZERI G H 《Petroleum Science》 SCIE CAS CSCD 2012年第4期485-497,共13页
Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on e... Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on element faces.Discontinuity of velocity field leads this method not to conserve mass locally.Moreover,the accuracy and stability of a solution is highly affected by a non-conservative method.In this paper,a three dimensional control volume finite element method is developed for twophase fluid flow simulation which overcomes the deficiency of the standard finite element method,and attains high-orders of accuracy at a reasonable computational cost.Moreover,this method is capable of handling heterogeneity in a very rational way.A fully implicit scheme is applied to temporal discretization of the governing equations to achieve an unconditionally stable solution.The accuracy and efficiency of the method are verified by simulating some waterflooding experiments.Some representative examples are presented to illustrate the capability of the method to simulate two-phase fluid flow in heterogeneous porous media. 展开更多
关键词 Finite element method control volume two-phase flow HETEROGENEITY porous media WATERFLOODING
原文传递
Numerical Analysis of Finite Deformation of Overbroken Rock Mass in Gob Area Based on Euler Model of Control Volume 被引量:10
2
作者 LIU Wei-qun MIAO Xie-xing 《Journal of China University of Mining and Technology》 EI 2006年第3期245-248,共4页
The overbroken rock mass of gob areas is made up of broken and accumulated rock blocks compressed to some extent by the overlying strata. The beating pressure of the gob can directly affect the safety of mining fields... The overbroken rock mass of gob areas is made up of broken and accumulated rock blocks compressed to some extent by the overlying strata. The beating pressure of the gob can directly affect the safety of mining fields, formarion of road retained along the next goaf and seepage of water and methane through the gob. In this paper, the software RFPA'2000 is used to construct numerical models. Especially the Euler method of control volume is proposed to solve the simulation difficulty arising from plastically finite deformations. The results show that three characteristic regions occurred in the gob area: (1) a naturally accumulated region, 0-10 m away from unbroken surrounding rock walls, where the beating pressure is nearly zero; (2) an overcompacted region, 10-20 m away from unbroken walls, where the beating pressure results in the maximum value of the gob area; (3) a stable compaction region, more than 20 m away from unbroken walls and occupying absolutely most of the gob area, where the beating pressures show basically no differences. Such a characteristic can exolain the easy-seeoaged “O”-ring phenomena around mining fields very well. 展开更多
关键词 overbroken rock mass plastically finite deformation method of control volume bearing pressure
在线阅读 下载PDF
Probabilistic Control Volume Method for Evaluating the Effects of Notch Size and Loading Type on Fatigue Life 被引量:2
3
作者 Chunming Li Zheng Hu +2 位作者 Chengqi Sun Qingyuan Song Wanhao Zhang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2020年第2期141-149,共9页
The probabilistic control volume method has great prospects in correlating the effects of specimen size,notch and loading type on fatigue life or fatigue strength.In this work,the effects of notch size and loading typ... The probabilistic control volume method has great prospects in correlating the effects of specimen size,notch and loading type on fatigue life or fatigue strength.In this work,the effects of notch size and loading type on fatigue life are investigated by using the probabilistic control volume method.Rotating bending and axial loading fatigue te«t«are at first performed on the hourglass specimen,circumferential V-notch specimen and V-notch plate specimen of 30CrMnSiA steel.Experimental results indicate that the notch reduces the fatigue strength of specimens in terms of nominal stress amplitude while in terms of local stress amplitude,the notch specimen could endure higher fatigue strength.Then,the probabilistic control volume method is used to evaluate the effects of notch size and loading type on fatigue life.It is shown that the probabilistic control volume method correlates well the effects of notch size and loading type on fatigue life,even for the local stress of the notch root exceeding the yield stress of the material. 展开更多
关键词 30CrMnSiA steel Notch size Loading type Fatigue life control volume method
原文传递
Application of control volume based finite element method for solving the black-oil fluid equations 被引量:1
4
作者 GHOREISHIAN AMIRI S A SADRNEJAD S A +1 位作者 GHASEMZADEH H MONTAZERI G H 《Petroleum Science》 SCIE CAS CSCD 2013年第3期361-372,共12页
This is the second paper of a series where we introduce a control volume based finite element method (CVFEM) to simulate multiphase flow in porous media. This is a fully conservative method able to deal with unstruc... This is the second paper of a series where we introduce a control volume based finite element method (CVFEM) to simulate multiphase flow in porous media. This is a fully conservative method able to deal with unstructured grids which can be used for representing any complexity of reservoir geometry and its geological objects in an accurate and efficient manner. In order to deal with the inherent heterogeneity of the reservoirs, all operations related to discretization are performed at the element level in a manner similar to classical finite element method (FEM). Moreover, the proposed method can effectively reduce the so-called grid orientation effects. In the first paper of this series, we presented this method and its application for incompressible and immiscible two-phase flow simulation in homogeneous and heterogeneous porous media. In this paper, we evaluate the capability of the method in the solution of highly nonlinear and coupled partial differential equations by simulating hydrocarbon reservoirs using the black-oil model. Furthermore, the effect of grid orientation is investigated by simulating a benchmark waterflooding problem. The numerical results show that the formulation presented here is efficient and accurate for solving the bubble point and three-phase coning problems. 展开更多
关键词 control volume based finite element black-oil model grid orientation porous media
原文传递
A ROBUST FLOW CALCULATION TECHNIQUE WITH MULTIPLE FINITE CONTROL VOLUMES
5
作者 E.Morishita 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1991年第2期121-125,共5页
The control volume method gives the forces which act on the system, but not necessarily the wall pressure of the system. The author has made an attempt to develop a control volume method which makes it possible to obt... The control volume method gives the forces which act on the system, but not necessarily the wall pressure of the system. The author has made an attempt to develop a control volume method which makes it possible to obtain the wall pressure of the control volume. The 2-D inviscid incompressible steady duct flow is considered. The conservation equations in integral form are discretized for a control volume. The circulation along the control surface is expressed as a nonlinear function of the vertical velocity component at the inlet and is set equal to zero for the inviscid flow. The equation is solved by the Newton method, and the other aerodynamic properties can be obtained. The calculated results have been compared to the experiment and the agreement has been found fairly satisfactory. 展开更多
关键词 A ROBUST FLOW CALCULATION TECHNIQUE WITH MULTIPLE FINITE control volumeS
在线阅读 下载PDF
NUMERICAL SOLUTION OF VISCOUS FLOW PAST A SOLID SPHERE WITH THE CONTROL VOLUME FORMULATION 被引量:4
6
作者 毛在砂 陈家镛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1997年第2期13-24,共12页
The control volume formulation with the QUICK finite difference scheme is used to solveincompressible liquid flow past a solid sphere in terms of stream function and vorticity.Several tech-nical points are addressed o... The control volume formulation with the QUICK finite difference scheme is used to solveincompressible liquid flow past a solid sphere in terms of stream function and vorticity.Several tech-nical points are addressed on improving the accuracy and efficiency of numerical simulation of similarproblems of fluid flow.In particular,the importance of suitable specification of the distortion func-tion to enforcing the far field boundarv conditions is emphasized. 展开更多
关键词 SPHERE LAMINAR flow numerical simulation control volume FORMULATION QUICK scheme
在线阅读 下载PDF
Quality Control and Optimization of Computed Tomography Dose Index Volume (CTDIvol) of LightSpeed RT16 Xtra CT Scanner
7
作者 Umme Sadia Binte Kashem Shirin Akter +4 位作者 Afroza Shelley Rajada Khatun Ashrafun Nahar Monika Laila Sharmin Md. Anwarul Islam 《International Journal of Medical Physics, Clinical Engineering and Radiation Oncology》 2025年第1期1-13,共13页
Dose estimation and quality control in computed tomography (CT) scanners are useful in controlling the dose of radiation given to patients while tests are carried out. The study was performed in a 16-slice Computed To... Dose estimation and quality control in computed tomography (CT) scanners are useful in controlling the dose of radiation given to patients while tests are carried out. The study was performed in a 16-slice Computed Tomography (CT) system of LightSpeed RT16 Xtra CT scanner. Quality control was done using a vendor-provided QA Phantom, and the six aspects of image quality were measured. For CT dosimetry, Computed Tomography Dose index volume (CTDIvol) was performed using Computed Tomography Dose Index (CTDI) Phantom. CTDI Phantom consists of three parts: Pediatric Head, Adult Head, and Adult Body Phantom. A 10 cm long pencil ion chamber DCT-10 was used to measure the dose at different positions inside the CTDI Phantom. Data were collected using MagicMax Universal software. For dose estimation of the CTDIvol Report of AAPM Task Group, 96 and 111 formalisms were used. For Pediatric Head, Adult Head, and Adult Body Phantom the measured CIDIvol was 61.04 mGy, 48.11 mGy, and 18.08 mGy respectively. The study has shown deviations of 7%, 15%, and 19% between estimated and console-displayed doses for Pediatric Head, Adult Head, and Adult Body scan techniques respectively. The six aspects of image quality measured by QA Phantom were found to be compatible with the specifications of the machine and CTDIvol measured by CTDI Phantom were found within a tolerance limit of ±20%. Hence, the QC and dosimetry of the mentioned machine are within the limit. 展开更多
关键词 Quality control CTDIvol LightSpeed RT16 Xtra CT Scanner PHANTOM
暂未订购
基于标准ANSI C63.19-2019 Volume Control简化测试技术可行性研究
8
作者 甘悦名 李冬 《信息产业报道》 2025年第6期0017-0019,共3页
在当代电信领域,信号传输的完整性和稳定性至关重要。音量控制测试(Volume Control Testing, VCT)是确保信号强度保持在最佳范围内以防止数据丢失和最小化干扰的关键组成部分。文章深入分析了音量控制测试,并根据美国国家标准学会制定... 在当代电信领域,信号传输的完整性和稳定性至关重要。音量控制测试(Volume Control Testing, VCT)是确保信号强度保持在最佳范围内以防止数据丢失和最小化干扰的关键组成部分。文章深入分析了音量控制测试,并根据美国国家标准学会制定的标准 ANSI C63.19-2019 无线通信设备与助听器之间兼容性的相关要求,总结了一套除 RF Emission,T-Coil 两个核心测项的测试方法以外的另一核心测试项 Volume Control 简化测试方法并探讨其在实验室认证过程中的重要性,同时为客户提供了实施认证的最佳实践建议。音量控制测试对于调整和稳定各种通信介质中的信号强度至关重要,文章主要对新版标准 ANSI C63.19-2019 中新增的测试项目 Volume Control 的相关测试技术进行研究,详细介绍该测项在测试环境、样品、简化测试方法、测试报告等,并说明其简化测试条件。 展开更多
关键词 助听器兼容性(Hearing Aid Compatibility HAC) volume control 认证 简化测试 测试报告
在线阅读 下载PDF
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
9
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
A New Inversion-free Iterative Method for Solving the Nonlinear Matrix Equation and Its Application in Optimal Control
10
作者 GAO Xiangyu XIE Weiwei ZHANG Lina 《应用数学》 北大核心 2026年第1期143-150,共8页
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ... In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method. 展开更多
关键词 Nonlinear matrix equation Maximal positive definite solution Inversion-free iterative method Optimal control
在线阅读 下载PDF
Conceptual design and preliminary feasibility study of fluid‑driven suspended control rods for molten salt reactors
11
作者 Jin‑Tong Cao Gui‑Feng Zhu +4 位作者 Chang‑Qing Yu Ya‑Fen Liu Yang Zou Rui Yan Hong‑Jie Xu 《Nuclear Science and Techniques》 2026年第1期225-243,共19页
Molten salt reactors,being the only reactor type among Generation Ⅳ advanced nuclear reactors that utilize liquid fuels,offer inherent safety,high-temperature,and low-pressure operation,as well as the capability for ... Molten salt reactors,being the only reactor type among Generation Ⅳ advanced nuclear reactors that utilize liquid fuels,offer inherent safety,high-temperature,and low-pressure operation,as well as the capability for online fuel reprocessing.However,the fuel-salt flow results in the decay of delayed neutron precursors(DNPs)outside the core,causing fluctuations in the effective delayed neutron fraction and consequently impacting the reactor reactivity.Particularly in accident scenarios—such as a combined pump shutdown and the inability to rapidly scram the reactor—the sole reliance on negative temperature feedback may cause a significant increase in core temperature,posing a threat to reactor safety.To address these problems,this paper introduces an innovative design for a passive fluid-driven suspended control rod(SCR)to dynamically compensate for reactivity fluctuations caused by DNPs flowing with the fuel.The control rod operates passively by leveraging the combined effects of gravity,buoyancy,and fluid dynamic forces,thereby eliminating the need for an external drive mechanism and enabling direct integration within the active region of the core.Using a 150 MWt thorium-based molten salt reactor as the reference design,we develop a mathematical model to systematically analyze the effects of key parameters—including the geometric dimensions and density of the SCR—on its performance.We examine its motion characteristics under different core flow conditions and assess its feasibility for the dynamic compensation of reactivity changes caused by fuel flow.The results of this study demonstrate that the SCR can effectively counteract reactivity fluctuations induced by fuel flow within molten salt reactors.A sensitivity analysis reveals that the SCR’s average density exerts a profound impact on its start-up flow threshold,channel flow rate,resistance to fuel density fluctuations,and response characteristics.This underscores the critical need to optimize this parameter.Moreover,by judiciously selecting the SCR’s length,number of deployed units,and the placement we can achieve the necessary reactivity control while maintaining a favorable balance between neutron economy and heat transfer performance.Ultimately,this paper provides an innovative solution for the passive reactivity control in molten salt reactors,offering significant potential for practical engineering applications. 展开更多
关键词 Molten salt reactor DNP flow-induced reactivity Passive control Suspended control rod
在线阅读 下载PDF
Adaptive Grid-Interface Control for Power Coordination in Multi-Microgrid Energy Networks
12
作者 Sk.A.Shezan 《Energy Engineering》 2026年第1期91-114,共24页
Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency devia... Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency deviations,voltage fluctuations,and poor reactive power coordination,posing serious challenges to grid stability.Conventional Interconnection FlowControllers(IFCs)primarily regulate active power flowand fail to effectively handle dynamic frequency variations or reactive power sharing in multi-microgrid networks.To overcome these limitations,this study proposes an enhanced Interconnection Flow Controller(e-IFC)that integrates frequency response balancing and an Interconnection Reactive Power Flow Controller(IRFC)within a unified adaptive control structure.The proposed e-IFC is implemented and analyzed in DIgSILENT PowerFactory to evaluate its performance under various grid disturbances,including frequency drops,load changes,and reactive power fluctuations.Simulation results reveal that the e-IFC achieves 27.4% higher active power sharing accuracy,19.6% lower reactive power deviation,and 18.2% improved frequency stability compared to the conventional IFC.The adaptive controller ensures seamless transitions between grid-connected and islanded modes and maintains stable operation even under communication delays and data noise.Overall,the proposed e-IFCsignificantly enhances active-reactive power coordination and dynamic stability in renewable-integrated multi-microgrid systems.Future research will focus on coupling the e-IFC with tertiary-level optimization frameworks and conducting hardware-in-the-loop validation to enable its application in large-scale smart microgrid environments. 展开更多
关键词 Active power flow control interconnection flow controller(IFC) frequency response micro grid stability reactive power management
在线阅读 下载PDF
Robust Sensor—Less PR Controller Design for 15-PUC Multilevel Inverter Topology with Low Voltage Stress for Renewable Energy Applications
13
作者 K.Naga Venkata Siva Damodhar Reddy +3 位作者 P.Krishna Murthy Kiran Kumar Pulamolu M.Dharani T.Venkatakrishnamoorthy 《Energy Engineering》 2026年第1期221-242,共22页
Conventional multilevel inverters often suffer from high harmonic distortion and increased design complexity due to the need for numerous power semiconductor components,particularly at elevated voltage levels.Addressi... Conventional multilevel inverters often suffer from high harmonic distortion and increased design complexity due to the need for numerous power semiconductor components,particularly at elevated voltage levels.Addressing these shortcomings,thiswork presents a robust 15-level PackedUCell(PUC)inverter topology designed for renewable energy and grid-connected applications.The proposed systemintegrates a sensor less proportional-resonant(PR)controller with an advanced carrier-based pulse width modulation scheme.This approach efficiently balances capacitor voltage,minimizes steady-state error,and strongly suppresses both zero and third-order harmonics resulting in reduced total harmonic distortion and enhanced voltage regulation.Additionally,a novel switching algorithm simplifies the design and implementation,further lowering voltage stress across switches.Extensive simulation results validate the performance under various resistive and resistive-inductive load conditions,demonstrating compliance with IEEE-519 THD standards and robust operation under dynamic changes.The proposed sensorless PR-controlled 15-PUC inverter thus offers a compelling,cost-effective solution for efficient power conversion in next-generation renewable energy systems. 展开更多
关键词 PUC packed U cell MLI multilevel inverter SLC sensorless controller PR proportional resonant controller PD phase disposition THD total harmonic distortion
在线阅读 下载PDF
Distributed robust data-driven event-triggered control for QUAVs under stochastic disturbances
14
作者 Chao Song Hao Li +2 位作者 Bo Li Jiacun Wang Chunwei Tian 《Defence Technology(防务技术)》 2026年第1期155-171,共17页
To address the issue of instability or even imbalance in the orientation and attitude control of quadrotor unmanned aerial vehicles(QUAVs)under random disturbances,this paper proposes a distributed antidisturbance dat... To address the issue of instability or even imbalance in the orientation and attitude control of quadrotor unmanned aerial vehicles(QUAVs)under random disturbances,this paper proposes a distributed antidisturbance data-driven event-triggered fusion control method,which achieves efficient fault diagnosis while suppressing random disturbances and mitigating communication conflicts within the QUAV swarm.First,the impact of random disturbances on the UAV swarm is analyzed,and a model for orientation and attitude control of QUAVs under stochastic perturbations is established,with the disturbance gain threshold determined.Second,a fault diagnosis system based on a high-gain observer is designed,constructing a fault gain criterion by integrating orientation and attitude information from QUAVs.Subsequently,a model-free dynamic linearization-based data modeling(MFDLDM)framework is developed using model-free adaptive control,which efficiently fits the nonlinear control model of the QUAV swarm while reducing temporal constraints on control data.On this basis,this paper constructs a distributed data-driven event-triggered controller based on the staggered communication mechanism,which consists of an equivalent QUAV controller and an event-triggered controller,and is able to reduce the communication conflicts while suppressing the influence of random interference.Finally,by incorporating random disturbances into the controller,comparative experiments and physical validations are conducted on the QUAV platforms,fully demonstrating the strong adaptability and robustness of the proposed distributed event-triggered fault-tolerant control system. 展开更多
关键词 DATA-DRIVEN QUAV control Fault diagnosis Event-triggered Non-conflicting communication
在线阅读 下载PDF
A Coordinated Multi-Loop Control Strategy for Fault Ride-Through in Grid-Forming Converters
15
作者 Zhuang Liu Mingwei Ren +1 位作者 Kai Shi Peifeng Xu 《Energy Engineering》 2026年第1期115-135,共21页
Grid-Forming(GFM)converters are prone to fault-induced overcurrent and power angle instability during grid fault-induced voltage sags.To address this,this paper develops a multi-loop coordinated fault ridethrough(FRT)... Grid-Forming(GFM)converters are prone to fault-induced overcurrent and power angle instability during grid fault-induced voltage sags.To address this,this paper develops a multi-loop coordinated fault ridethrough(FRT)control strategy based on a power outer loop and voltage-current inner loops,aiming to enhance the stability and current-limiting capability of GFM converters during grid fault conditions.During voltage sags,the GFM converter’s voltage source behavior is maintained by dynamically adjusting the reactive power reference to provide voltage support,thereby effectively suppressing the steady-state component of the fault current.To address the active power imbalance induced by voltage sags,a dynamic active power reference correction method based on apparent power is designed to mitigate power angle oscillations and limit transient current.Moreover,an adaptive virtual impedance loop is implemented to enhance dynamic transient current-limiting performance during the fault initiation phase.This approach improves the responsiveness of the inner loop and ensures safe system operation under various fault severities.Under asymmetric fault conditions,a negative-sequence reactive current compensation strategy is incorporated to further suppress negative-sequence voltage and improve voltage symmetry.The proposed control scheme enables coordinated operation of multiple control objectives,including voltage support,current suppression,and power angle stability,across different fault scenarios.Finally,MATLAB/Simulink simulation results validate the effectiveness of the proposed strategy,showcasing its superior performance in current limiting and power angle stability,thereby significantly enhancing the system’s fault ride-through capability. 展开更多
关键词 Grid-forming converter multi-loop coordination negative-sequence control fault ride-through
在线阅读 下载PDF
Hydrochemical characteristics,evolution,and controlling factors of a karstic river with reservoirs:Insights from spatial-temporal analysis
16
作者 Jiang Wu Ting Wang +4 位作者 Tang Liu Jia-Ju Liu Nan Xu Hui Zeng Ling-Yan He 《Journal of Environmental Sciences》 2026年第1期108-119,共12页
Understanding water chemistry in karst regions is crucial for improving global water resource management and deepening our knowledge of the biogeochemical cycles shaping these sensitive environments.Despite advance-me... Understanding water chemistry in karst regions is crucial for improving global water resource management and deepening our knowledge of the biogeochemical cycles shaping these sensitive environments.Despite advance-ments in karst hydrology,significant gaps remain in long-term trends,underlying processes,and quantitative effects of environmental changes.This is especially true in areas like the Wujiang River(WJ)in China,where human activities such as reservoir construction and land use/cover changes have accelerated hydrochemical changes.We combined recent and historical monitoring data to provide a detailed analysis of the spatial and temporal characteristics,evolution,and controlling factors of major ions in WJ.These findings are important for local water management and contribute to global efforts to manage similar karst systems facing human-induced pressures.Our research shows clear seasonal differences in solute concentrations,with higher levels during the dry season.WJ’s water is rich in calcium,with Ca-HCO_(3) ion pairs being the most common.Reservoir monitor-ing stations show much higher levels of NO_(3)^(−)and SO_(4)^(2−)compared to river-type stations,likely due to longer hydraulic retention time and increased acid deposition.The study confirms the significant role of pH and water temperature in rock weathering processes.Land use/cover changes were identified as the primary drivers of solute variations(46.37%),followed by lithology(13.92%)and temperature(8.35%).Over the past two decades,in-tense carbonate weathering has been observed,especially during wet seasons.Among karstic provinces,Guizhou Province stands out with the highest ion concentrations,indicative of its extensive karst coverage and heightened weathering processes. 展开更多
关键词 Wujiang river Karst Reservoir Major ion controlling factor
原文传递
Coordinated Source-Network-Storage Inertia Control Strategy Based on Wind Power Transmission via MMC-HVDC System
17
作者 Mengxuan Shi Lintao Li +3 位作者 Dejun Shao Xiaojie Pan Xingyu Shi Yuxun Wang 《Energy Engineering》 2026年第1期493-510,共18页
In wind power transmission via modular multilevel converter based high voltage direct current(MMCHVDC)systems,under traditional control strategies,MMC-HVDCcannot provide inertia support to the receiving-end grid(REG)d... In wind power transmission via modular multilevel converter based high voltage direct current(MMCHVDC)systems,under traditional control strategies,MMC-HVDCcannot provide inertia support to the receiving-end grid(REG)during disturbances.Moreover,due to the frequency decoupling between the two ends of the MMCHVDC,the sending-end wind farm(SEWF)cannot obtain the frequency variation information of the REG to provide inertia response.Therefore,this paper proposes a novel coordinated source-network-storage inertia control strategy based on wind power transmission via MMC-HVDC system.First,the grid-side MMC station(GS-MMC)maps the frequency variations of the REG to direct current(DC)voltage variations through the frequency mapping control,and uses submodule capacitor energy to provide inertial power.Then,the wind farm-side MMC station(WF-MMC)restores the DC voltage variations to frequency variations through the frequency restoration control and power loss compensation,providing real-time frequency information for the wind farm.Finally,based on real-time frequency information,thewind farmutilizes the rotor kinetic energy and energy storage to provide fast and lasting power support through the wind-storage coordinated inertia control strategy.Meanwhile,when the wind turbines withdraw from the inertia response phase,the energy storage can increase the power output to compensate for the power deficit,preventing secondary frequency drops.Furthermore,this paper uses small-signal analysis to determine the appropriate values for the key parameters of the proposed control strategy.A simulation model of the wind power transmission via MMCHVDC system is built in MATLAB/Simulink environment to validate and evaluate the proposed method.The results show that the proposed coordinated control strategy can effectively improve the system inertia level and avoid the secondary frequency drop under the load sudden increase condition. 展开更多
关键词 Wind and storage coordination modular multilevel converter inertia response coordinated control
在线阅读 下载PDF
Virtual Synchronous Generator Control Strategy Based on Parameter Self-Tuning
18
作者 Jin Lin BinYu +3 位作者 Chao Chen Jiezhen Cai Yifan Wu Cunping Wang 《Energy Engineering》 2026年第1期181-203,共23页
With the increasing integration of renewable energy,microgrids are increasingly facing stability challenges,primarily due to the lack of inherent inertia in inverter-dominated systems,which is traditionally provided b... With the increasing integration of renewable energy,microgrids are increasingly facing stability challenges,primarily due to the lack of inherent inertia in inverter-dominated systems,which is traditionally provided by synchronous generators.To address this critical issue,Virtual Synchronous Generator(VSG)technology has emerged as a highly promising solution by emulating the inertia and damping characteristics of conventional synchronous generators.To enhance the operational efficiency of virtual synchronous generators(VSGs),this study employs smallsignal modeling analysis,root locus methods,and synchronous generator power-angle characteristic analysis to comprehensively evaluate how virtual inertia and damping coefficients affect frequency stability and power output during transient processes.Based on these analyses,an adaptive control strategy is proposed:increasing the virtual inertia when the rotor angular velocity undergoes rapid changes,while strengthening the damping coefficient when the speed deviation exceeds a certain threshold to suppress angular velocity oscillations.To validate the effectiveness of the proposed method,a grid-connected VSG simulation platform was developed inMATLAB/Simulink.Comparative simulations demonstrate that the proposed adaptive control strategy outperforms conventional VSGmethods by significantly reducing grid frequency deviations and shortening active power response time during active power command changes and load disturbances.This approach enhances microgrid stability and dynamic performance,confirming its viability for renewable-dominant power systems.Future work should focus on experimental validation and real-world parameter optimization,while further exploring the strategy’s effectiveness in improvingVSG low-voltage ride-through(LVRT)capability and power-sharing applications in multi-parallel configurations. 展开更多
关键词 New power system grid-connected inverter virtual synchronous generator(VSG) virtual inertia damping coefficient adaptive control
在线阅读 下载PDF
Diverse methods and practical aspects in controlling single semiconductor qubits:a review
19
作者 Jia-Ao Peng Chu-Dan Qiu +1 位作者 Wen-Long Ma Jun-Wei Luo 《Journal of Semiconductors》 2026年第1期6-22,共17页
Quantum control allows a wide range of quantum operations employed in molecular physics,nuclear magnetic resonance and quantum information processing.Thanks to the existing microelectronics industry,semiconducting qub... Quantum control allows a wide range of quantum operations employed in molecular physics,nuclear magnetic resonance and quantum information processing.Thanks to the existing microelectronics industry,semiconducting qubits,where quantum information is encoded in spin or charge degree freedom of electrons or nuclei in semiconductor quantum dots,constitute a highly competitive candidate for scalable solid-state quantum technologies.In quantum information processing,advanced control techniques are needed to realize quantum manipulations with both high precision and noise resilience.In this review,we first introduce the basics of various widely-used control methods,including resonant excitation,adabatic passage,shortcuts to adiabaticity,composite pulses,and quantum optimal control.Then we review the practical aspects in applying these methods to realize accurate and robust quantum gates for single semiconductor qubits,such as Loss–DiVincenzo spin qubit,spinglet-triplet qubit,exchange-only qubit and charge qubit. 展开更多
关键词 quantum information with solid state qubits quantum control quantum dots quantum gate
在线阅读 下载PDF
Coordination Thermodynamic Control of Magnetic Domain Configuration Evolution toward Low‑Frequency Electromagnetic Attenuation
20
作者 Tong Huang Dan Wang +9 位作者 Xue He Zhaobo Feng Zhiqiang Xiong Yuqi Luo Yuhui Peng Guangsheng Luo Xuliang Nie Mingyue Yuan Chongbo Liu Renchao Che 《Nano-Micro Letters》 2026年第3期860-875,共16页
The precise tuning of magnetic nanoparticle size and magnetic domains,thereby shaping magnetic properties.However,the dynamic evolution mechanisms of magnetic domain configurations in relation to electromagnetic(EM)at... The precise tuning of magnetic nanoparticle size and magnetic domains,thereby shaping magnetic properties.However,the dynamic evolution mechanisms of magnetic domain configurations in relation to electromagnetic(EM)attenuation behavior remain poorly understood.To address this gap,a thermodynamically controlled periodic coordination strategy is proposed to achieve precise modulation of magnetic nanoparticle spacing.This approach unveils the evolution of magnetic domain configurations,progressing from individual to coupled and ultimately to crosslinked domain configurations.A unique magnetic coupling phenomenon surpasses the Snoek limit in low-frequency range,which is observed through micromagnetic simulation.The crosslinked magnetic configuration achieves effective low-frequency EM wave absorption at 3.68 GHz,encompassing nearly the entire C-band.This exceptional magnetic interaction significantly enhances radar camouflage and thermal insulation properties.Additionally,a robust gradient metamaterial design extends coverage across the full band(2–40 GHz),effectively mitigating the impact of EM pollution on human health and environment.This comprehensive study elucidates the evolution mechanisms of magnetic domain configurations,addresses gaps in dynamic magnetic modulation,and provides novel insights for the development of high-performance,low-frequency EM wave absorption materials. 展开更多
关键词 Thermodynamically controlled coordination strategy Magnetic domain configuration Low-frequency electromagnetic wave absorption Electrical/magnetic coupling MULTIFUNCTION
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部