This study presents an innovative development of the exponentially weighted moving average(EWMA)control chart,explicitly adapted for the examination of time series data distinguished by seasonal autoregressive moving ...This study presents an innovative development of the exponentially weighted moving average(EWMA)control chart,explicitly adapted for the examination of time series data distinguished by seasonal autoregressive moving average behavior—SARMA(1,1)L under exponential white noise.Unlike previous works that rely on simplified models such as AR(1)or assume independence,this research derives for the first time an exact two-sided Average Run Length(ARL)formula for theModified EWMAchart under SARMA(1,1)L conditions,using a mathematically rigorous Fredholm integral approach.The derived formulas are validated against numerical integral equation(NIE)solutions,showing strong agreement and significantly reduced computational burden.Additionally,a performance comparison index(PCI)is introduced to assess the chart’s detection capability.Results demonstrate that the proposed method exhibits superior sensitivity to mean shifts in autocorrelated environments,outperforming existing approaches.The findings offer a new,efficient framework for real-time quality control in complex seasonal processes,with potential applications in environmental monitoring and intelligent manufacturing systems.展开更多
Fiber quality measurement in spinning preparation is crucial for optimizing waste and meeting yarn quality specifications.The brand-new Uster AFIS 6–the next-generation laboratory instrument from Uster Technologies–...Fiber quality measurement in spinning preparation is crucial for optimizing waste and meeting yarn quality specifications.The brand-new Uster AFIS 6–the next-generation laboratory instrument from Uster Technologies–uniquely tests man-made fiber properties in addition to cotton.It provides critical data to optimize fiber process control for cotton,man-made fibers,and blended yarns.展开更多
During the sintering process of iron ore,a large amount of nitrogen oxides is generated,for which there is currently no efficient and economical treatment process.Therefore,it is necessary to implement process control...During the sintering process of iron ore,a large amount of nitrogen oxides is generated,for which there is currently no efficient and economical treatment process.Therefore,it is necessary to implement process control in sintering production to keep the mass concentration of NO_(x)in sintering flue gas at a low level.Through industrial trials at sintering sites,methods such as correlation analysis,path analysis,and multiple linear regression were applied to analyze the influence of various factors on NO emissions during the sintering process.The results indicate that negative correlations exist between nitrogen monoxide(NO)emissions and negative pressure,permeability index,O_(2) concentration,CO concentration,and flue gas temperature.Conversely,positive correlations exist between NO emissions and dust concentration,water vapor volume fraction,and sintering bed speed.Among these factors,O_(2) concentration and dust concentration are identified as the most significant influencing factors on NO emissions.By analyzing the masses and modes of influence of different factors,the mechanisms of action of each factor were obtained.Specifically,O_(2) concentration,dust concentration,permeability index,CO concentration,and flue gas temperature play a direct dominant role in NO emissions during the sintering process,while water vapor volume fraction,sintering trolley speed,and negative pressure have an indirect effect.A predictive model for NO mass concentration in flue gas was established with an accuracy rate of 91.6%,showing consistent overall trends with actual values.Finally,denitrification strategies for sintering industrial production were proposed,along with prospects for preliminary denitrification of sintering flue gas using fluidized bed conditions in the duct.展开更多
Green building construction typically incurs higher costs than conventional methods.To facilitate broader adoption by construction entities,cost optimization is essential.Firms must align with technological advancemen...Green building construction typically incurs higher costs than conventional methods.To facilitate broader adoption by construction entities,cost optimization is essential.Firms must align with technological advancements,judiciously apply emerging technologies,and ensure resource efficiency through context-specific strategies.Proactive and precise scheduling is critical to avert delays from unforeseen events.Additionally,construction units should enhance on-site safety training,promote mastery of innovative techniques,and foster environmental awareness among personnel.Finally,companies ought to capitalize on government incentives for green materials while adopting bulk procurement from local sources to minimize transportation costs and secure lower unit prices.展开更多
This study aims to examine the explicit solution for calculating the Average Run Length(ARL)on the triple exponentially weighted moving average(TEWMA)control chart applied to autoregressive model(AR(p)),where AR(p)is ...This study aims to examine the explicit solution for calculating the Average Run Length(ARL)on the triple exponentially weighted moving average(TEWMA)control chart applied to autoregressive model(AR(p)),where AR(p)is an autoregressive model of order p,representing a time series with dependencies on its p previous values.Additionally,the study evaluates the accuracy of both explicit and numerical integral equation(NIE)solutions for AR(p)using the TEWMA control chart,focusing on the absolute percentage relative error.The results indicate that the explicit and approximate solutions are in close agreement.Furthermore,the study investigates the performance of exponentially weighted moving average(EWMA)and TEWMA control charts in detecting changes in the process,using the relative mean index(RMI)as a measure.The findings demonstrate that the TEWMA control chart outperforms the EWMA control chart in detecting process changes,especially when the value ofλis sufficiently large.In addition,an analysis using historical data from the SET index between January 2024 and May 2024 and historical data of global annual plastic production,the results of both data sets also emphasize the superior performance of the TEWMA control chart.展开更多
The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and...The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and the character of neural network on exactly describing nonlinear and uncertainty dynamic process organically. The method implements functions of adaptive and self-learning by adjusting weighting parameters. Adaptive neural network can make some output trail given hoping value to decouple in static state. The simulation result indicates the validity, veracity and robustness of the method used in the timber drying process展开更多
In this work, for a control consumption-investment process with the discounted reward optimization criteria, a numerical estimate of the stability index is made. Using explicit formulas for the optimal stationary poli...In this work, for a control consumption-investment process with the discounted reward optimization criteria, a numerical estimate of the stability index is made. Using explicit formulas for the optimal stationary policies and for the value functions, the stability index is explicitly calculated and through statistical techniques its asymptotic behavior is investigated (using numerical experiments) when the discount coefficient approaches 1. The results obtained define the conditions under which an approximate optimal stationary policy can be used to control the original process.展开更多
In this research,a methodology named whole-process pollution control(WPPC)is demonstrated that improves the effectiveness of process optimization.This methodology considers waste/emission treatment as a step of the wh...In this research,a methodology named whole-process pollution control(WPPC)is demonstrated that improves the effectiveness of process optimization.This methodology considers waste/emission treatment as a step of the whole production process with respect to the minimization of cost and environmental impact for the whole process.The following procedures are introduced in a WPPC process optimization:①a material and energy flow investigation and optimization based on a systematic understanding of the distribution and physiochemical properties of potential pollutants;②a process optimization to increase the utilization efficiency of different elements and minimize pollutant emissions;and③an evaluation to reveal the effectiveness of the optimization strategies.The production of ammonium paratungstate was chosen for the case study.Two factors of the different optimization schemes-namely the cost-effectiveness factor and the environmental impact indicator-were evaluated and compared.This research demonstrates that by considering the nature of potential pollutants,technological innovations,economic viability,environmental impacts,and regulation requirements,WPPC can efficiently optimize a metal production process.展开更多
A constrained decoupling (generalized predictive control) GPC algorithm is proposed for MIMO (malti-input multi-output) system. This algorithm takes account of all constraints of inputs and their increments. By solvin...A constrained decoupling (generalized predictive control) GPC algorithm is proposed for MIMO (malti-input multi-output) system. This algorithm takes account of all constraints of inputs and their increments. By solving matrix equations, the multi-step predictive decoupling controllers are realized. This algorithm need not solve Diophantine functions, and weakens the cross-coupling of the variables. At last the simulation results demon- strate the effectiveness of this proposed strategy.展开更多
Standard genetic algorithms (SGAs) are investigated to optimise discrete-time proportional-integral-derivative (PID) con- troller parameters, by three tuning approaches, for a multivariable glass furnace process w...Standard genetic algorithms (SGAs) are investigated to optimise discrete-time proportional-integral-derivative (PID) con- troller parameters, by three tuning approaches, for a multivariable glass furnace process with loop interaction. Initially, standard genetic algorithms (SGAs) are used to identify control oriented models of the plant which are subsequently used for controller optimisa- tion. An individual tuning approach without loop interaction is considered first to categorise the genetic operators, cost functions and improve searching boundaries to attain the desired performance criteria. The second tuning approach considers controller parameters optimisation with loop interaction and individual cost functions. While, the third tuning approach utilises a modified cost function which includes the total effect of both controlled variables, glass temperature and excess oxygen. This modified cost function is shown to exhibit improved control robustness and disturbance rejection under loop interaction.展开更多
Modeling and attitude control methods for a satellite with a large deployable antenna are studied in the present paper. Firstly, for reducing the model dimension, three dynamic models for the deploying process are dev...Modeling and attitude control methods for a satellite with a large deployable antenna are studied in the present paper. Firstly, for reducing the model dimension, three dynamic models for the deploying process are developed, which are built with the methods of multi-rigid-body dynam- ics, hybrid coordinate and substructure. Then an attitude control method suitable for the deploying process is proposed, which can keep stability under any dynamical parameter variation. Subse- quently, this attitude control is optimized to minimize attitude disturbance during the deploying process. The simulation results show that this attitude control method can keep stability and main- tain proper attitude variation during the deploying process, which indicates that this attitude con- trol method is suitable for practical applications.展开更多
Based on the developed neural-fuzzy control system for anaerobic hybrid reactor (AHR) in wastewater treatment and biogas production, the neural network with backpropagation algorithm for prediction of the variables ...Based on the developed neural-fuzzy control system for anaerobic hybrid reactor (AHR) in wastewater treatment and biogas production, the neural network with backpropagation algorithm for prediction of the variables pH, alkalinity (Alk) and total volatile acids (TVA) at present day time t was used as input data for the fuzzy logic to calculate the influent feed flow rate that was applied to control and monitor the process response at different operations in the initial, overload influent feeding and the recovery phases. In all three phases, this neural-fuzzy control system showed great potential to control AHR in high stability and performance and quick response. Although in the overloading operation phase II with two fold calculating influent flow rate together with a two fold organic loading rate (OLR), this control system had rapid response and was sensitive to the intended overload. When the influent feeding rate was followed by the calculation of control system in the initial operation phase I and the recovery operation phase III, it was found that the neural-fuzzy control system application was capable of controlling the AHR in a good manner with the pH close to 7, TVA/Alk 〈 0.4 and COD removal 〉 80% with biogas and methane yields at 0.45 and 0.30 m^3/kg COD removed.展开更多
Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinea...Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial function followed in series by a linear impulse response dynamic element. A new nonlinear Hammerstein MAC algorithm (named NLH-MAC) is presented in detail. The simulation control results of a pH neutralization process show that NLH-MAC gives better control performance than linear MAC and the commonly used industrial nonlinear propotional plus integral plus derivative (PID) controller. Further simulation experiment demonstrates that NLH-MAC not only gives good control response, but also possesses good stability and robustness even with large modeling errors.展开更多
A hybrid neural network model,in which RH process(theoretical)model is combined organically with neural network(NN)and case-base reasoning(CBR),was established.The CBR method was used to select the operation mode and ...A hybrid neural network model,in which RH process(theoretical)model is combined organically with neural network(NN)and case-base reasoning(CBR),was established.The CBR method was used to select the operation mode and the RH operational guide parameters for different steel grades according to the initial conditions of molten steel,and a three-layer BP neural network was adopted to deal with nonlinear factors for improving and compensating the limitations of technological model for RH process control and end-point prediction.It was verified that the hybrid neural network is effective for improving the precision and calculation efficiency of the model.展开更多
Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves ...Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves severe nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC to accommodate nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC). It also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design, which relieves practising engineers from the need for deriving a physical-principles based model first. An on-line realisation technique for implementing NMPC is then developed and applied to a Mitsubishi Chemicals polymerisation reaction process. Results show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order Volterra model based methods. The advantages of the developed approach lie not only in control performance superior to existing NMPC methods, but also in eliminating the need for converting an analytical model and then convert it to a Volterra model obtainable only up to the second order. Keywords Model predictive control - Volterra series - process control - nonlinear control Yun Li is a senior lecturer at University of Glasgow, UK, where has taught and researched in evolutionary computation and control engineering since 1991. He worked in the UK National Engineering Laboratory and Industrial Systems and Control Ltd, Glasgow in 1989 and 1990. In 1998, he established the IEEE CACSD Evolutionary Computation Working Group and the European Network of Excellence in Evolutionary Computing (EvoNet) Workgroup on Systems, Control, and Drives. In summer 2002, he served as a visiting professor to Kumamoto University, Japan. He is also a visiting professor at University of Electronic Science and Technology of China. His research interests are in parallel processing, design automation and discovery of engineering systems using evolutionary learning and intelligent search techniques. Applications include control, system modelling and prediction, circuit design, microwave engineering, and operations management. He has advised 12 Ph.D.s in evolutionary computation and has 140 publications.Hiroshi Kashiwagi received B.E, M.E. and Ph.D. degrees in measurement and control engineering from the University of Tokyo, Japan, in 1962, 1964 and 1967 respectively. In 1967 he became an Associate Professor and in 1976 a Professor at Kumamoto University. From 1973 to 1974, he served as a visiting Associate Professor at Purdue University, Indiana, USA. From 1990 to 1994, he was the Director at Computer Center of Kumamoto University. He has also served as a member of Board of Trustees of Society of Instrument and Control Engineers (SICE), Japan, Chairman of Kyushu Branch of SICE and General Chair of many international conferences held in Japan, Korea, Chin and India. In 1994, he was awarded SICE Fellow for his contributions to the field of measurement and control engineering through his various academic activities. He also received the Gold Medal Prize at ICAUTO’95 held in India. In 1997, he received the “Best Book Award” from SICE for his new book entitled “M-sequence and its application” written in Japanese and published in 1996 by Shoukoudou Publishing Co. in Japan. In 1999, he received the “Best Paper Award” from SICE for his paper “M-transform and its application to system identification”. His research interests include signal processing and applications, especially pseudorandom sequence and its applications to measurement and control engineering.展开更多
Control of sludge age and mixed liquid suspended solids concentration in the activated sludge process is critical for ensuring effective wastewater treatment. A nonlinear dynamic model for a step-feed activated sludge...Control of sludge age and mixed liquid suspended solids concentration in the activated sludge process is critical for ensuring effective wastewater treatment. A nonlinear dynamic model for a step-feed activated sludge process was developed in this study. The system is based on the control of the sludge age and mixed liquor suspended solids in the aerator of last stage by adjusting the sludge recycle and wastage flow rates respectively. The simulation results showed that the sludge age remained nearly constant at a value of 16 d in the variation of the influent characteristics. The mixed liquor suspended solids in the aerator of last stage were also maintained to a desired value of 2500 g/m3 by adjusting wastage flow rates.展开更多
To develop technically feasible and economically favorable dynamic process control(DPC)strategies for an alternating activated sludge(AAS)system,a bench-scale continuous-flow alternating aerobic and anoxic reactor,per...To develop technically feasible and economically favorable dynamic process control(DPC)strategies for an alternating activated sludge(AAS)system,a bench-scale continuous-flow alternating aerobic and anoxic reactor,performing short-cut nitrogen removal from real domestic wastewater was operated under different control strategies for more than five months.A fixed-time control(FTC) study showed that bending-points on pH and oxidation-reduction potential(ORP)profiles accurately coincided with the major biologic...展开更多
Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes w...Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.展开更多
基金financially by the National Research Council of Thailand(NRCT)under Contract No.N42A670894.
文摘This study presents an innovative development of the exponentially weighted moving average(EWMA)control chart,explicitly adapted for the examination of time series data distinguished by seasonal autoregressive moving average behavior—SARMA(1,1)L under exponential white noise.Unlike previous works that rely on simplified models such as AR(1)or assume independence,this research derives for the first time an exact two-sided Average Run Length(ARL)formula for theModified EWMAchart under SARMA(1,1)L conditions,using a mathematically rigorous Fredholm integral approach.The derived formulas are validated against numerical integral equation(NIE)solutions,showing strong agreement and significantly reduced computational burden.Additionally,a performance comparison index(PCI)is introduced to assess the chart’s detection capability.Results demonstrate that the proposed method exhibits superior sensitivity to mean shifts in autocorrelated environments,outperforming existing approaches.The findings offer a new,efficient framework for real-time quality control in complex seasonal processes,with potential applications in environmental monitoring and intelligent manufacturing systems.
文摘Fiber quality measurement in spinning preparation is crucial for optimizing waste and meeting yarn quality specifications.The brand-new Uster AFIS 6–the next-generation laboratory instrument from Uster Technologies–uniquely tests man-made fiber properties in addition to cotton.It provides critical data to optimize fiber process control for cotton,man-made fibers,and blended yarns.
基金supported by the National Natural Science Foundation of China(No.51974131)Hebei Outstanding Youth Fund Project(No.E2020209082),Tangshan Key R&D Program project(No.22150232J)Sixth Division Wujiaqu City Science and Technology Plan Project(2410).
文摘During the sintering process of iron ore,a large amount of nitrogen oxides is generated,for which there is currently no efficient and economical treatment process.Therefore,it is necessary to implement process control in sintering production to keep the mass concentration of NO_(x)in sintering flue gas at a low level.Through industrial trials at sintering sites,methods such as correlation analysis,path analysis,and multiple linear regression were applied to analyze the influence of various factors on NO emissions during the sintering process.The results indicate that negative correlations exist between nitrogen monoxide(NO)emissions and negative pressure,permeability index,O_(2) concentration,CO concentration,and flue gas temperature.Conversely,positive correlations exist between NO emissions and dust concentration,water vapor volume fraction,and sintering bed speed.Among these factors,O_(2) concentration and dust concentration are identified as the most significant influencing factors on NO emissions.By analyzing the masses and modes of influence of different factors,the mechanisms of action of each factor were obtained.Specifically,O_(2) concentration,dust concentration,permeability index,CO concentration,and flue gas temperature play a direct dominant role in NO emissions during the sintering process,while water vapor volume fraction,sintering trolley speed,and negative pressure have an indirect effect.A predictive model for NO mass concentration in flue gas was established with an accuracy rate of 91.6%,showing consistent overall trends with actual values.Finally,denitrification strategies for sintering industrial production were proposed,along with prospects for preliminary denitrification of sintering flue gas using fluidized bed conditions in the duct.
文摘Green building construction typically incurs higher costs than conventional methods.To facilitate broader adoption by construction entities,cost optimization is essential.Firms must align with technological advancements,judiciously apply emerging technologies,and ensure resource efficiency through context-specific strategies.Proactive and precise scheduling is critical to avert delays from unforeseen events.Additionally,construction units should enhance on-site safety training,promote mastery of innovative techniques,and foster environmental awareness among personnel.Finally,companies ought to capitalize on government incentives for green materials while adopting bulk procurement from local sources to minimize transportation costs and secure lower unit prices.
基金the National Science,Research and Innovation Fund(NSRF)King Mongkuts University of Technology North Bangkok under contract no.KMUTNB-FF-68-B-08.
文摘This study aims to examine the explicit solution for calculating the Average Run Length(ARL)on the triple exponentially weighted moving average(TEWMA)control chart applied to autoregressive model(AR(p)),where AR(p)is an autoregressive model of order p,representing a time series with dependencies on its p previous values.Additionally,the study evaluates the accuracy of both explicit and numerical integral equation(NIE)solutions for AR(p)using the TEWMA control chart,focusing on the absolute percentage relative error.The results indicate that the explicit and approximate solutions are in close agreement.Furthermore,the study investigates the performance of exponentially weighted moving average(EWMA)and TEWMA control charts in detecting changes in the process,using the relative mean index(RMI)as a measure.The findings demonstrate that the TEWMA control chart outperforms the EWMA control chart in detecting process changes,especially when the value ofλis sufficiently large.In addition,an analysis using historical data from the SET index between January 2024 and May 2024 and historical data of global annual plastic production,the results of both data sets also emphasize the superior performance of the TEWMA control chart.
基金the Key Technologies R&D Program of Harbin (0111211102).
文摘The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and the character of neural network on exactly describing nonlinear and uncertainty dynamic process organically. The method implements functions of adaptive and self-learning by adjusting weighting parameters. Adaptive neural network can make some output trail given hoping value to decouple in static state. The simulation result indicates the validity, veracity and robustness of the method used in the timber drying process
文摘In this work, for a control consumption-investment process with the discounted reward optimization criteria, a numerical estimate of the stability index is made. Using explicit formulas for the optimal stationary policies and for the value functions, the stability index is explicitly calculated and through statistical techniques its asymptotic behavior is investigated (using numerical experiments) when the discount coefficient approaches 1. The results obtained define the conditions under which an approximate optimal stationary policy can be used to control the original process.
基金The authors acknowledge financial support for this research from the National Key Research and Development Program of China(2017YFB0403300 and 2017YFB043305)the National Natural Science Foundation of China(51425405 and 51874269),the National Science-Technology Support Plan Projects(2015BAB02B05)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2014037).Zhi Sun acknowledges financial support from the National Youth Thousand Talents Program.The authors acknowledge constructive suggestions from Prof.Jianxin Yang.
文摘In this research,a methodology named whole-process pollution control(WPPC)is demonstrated that improves the effectiveness of process optimization.This methodology considers waste/emission treatment as a step of the whole production process with respect to the minimization of cost and environmental impact for the whole process.The following procedures are introduced in a WPPC process optimization:①a material and energy flow investigation and optimization based on a systematic understanding of the distribution and physiochemical properties of potential pollutants;②a process optimization to increase the utilization efficiency of different elements and minimize pollutant emissions;and③an evaluation to reveal the effectiveness of the optimization strategies.The production of ammonium paratungstate was chosen for the case study.Two factors of the different optimization schemes-namely the cost-effectiveness factor and the environmental impact indicator-were evaluated and compared.This research demonstrates that by considering the nature of potential pollutants,technological innovations,economic viability,environmental impacts,and regulation requirements,WPPC can efficiently optimize a metal production process.
基金Supported by the National Natural Science Foundation of China (No.60374037, No.60574036), the Program for New Century Excellent Talents in University of China (NCET), and the Specialized Research Fund for the Doctoral Program of Higher Edu-cation of China (No.20050055013).
文摘A constrained decoupling (generalized predictive control) GPC algorithm is proposed for MIMO (malti-input multi-output) system. This algorithm takes account of all constraints of inputs and their increments. By solving matrix equations, the multi-step predictive decoupling controllers are realized. This algorithm need not solve Diophantine functions, and weakens the cross-coupling of the variables. At last the simulation results demon- strate the effectiveness of this proposed strategy.
文摘Standard genetic algorithms (SGAs) are investigated to optimise discrete-time proportional-integral-derivative (PID) con- troller parameters, by three tuning approaches, for a multivariable glass furnace process with loop interaction. Initially, standard genetic algorithms (SGAs) are used to identify control oriented models of the plant which are subsequently used for controller optimisa- tion. An individual tuning approach without loop interaction is considered first to categorise the genetic operators, cost functions and improve searching boundaries to attain the desired performance criteria. The second tuning approach considers controller parameters optimisation with loop interaction and individual cost functions. While, the third tuning approach utilises a modified cost function which includes the total effect of both controlled variables, glass temperature and excess oxygen. This modified cost function is shown to exhibit improved control robustness and disturbance rejection under loop interaction.
基金sponsored by the National Natural Science Foundation of China (No. 11272172)
文摘Modeling and attitude control methods for a satellite with a large deployable antenna are studied in the present paper. Firstly, for reducing the model dimension, three dynamic models for the deploying process are developed, which are built with the methods of multi-rigid-body dynam- ics, hybrid coordinate and substructure. Then an attitude control method suitable for the deploying process is proposed, which can keep stability under any dynamical parameter variation. Subse- quently, this attitude control is optimized to minimize attitude disturbance during the deploying process. The simulation results show that this attitude control method can keep stability and main- tain proper attitude variation during the deploying process, which indicates that this attitude con- trol method is suitable for practical applications.
基金the Thailand Graduate Institute of Science and Technology(No. TGIST 01-47-038)the National Science and Technology Development Agency(NSTDA) for Ph.D.Scholarship to Mr. Chaiwat Waewsakthe National Research Council of Thailand for research grant under Fiscal Year 2008 Budget to King Mongkut’s University of Technology Thonburi
文摘Based on the developed neural-fuzzy control system for anaerobic hybrid reactor (AHR) in wastewater treatment and biogas production, the neural network with backpropagation algorithm for prediction of the variables pH, alkalinity (Alk) and total volatile acids (TVA) at present day time t was used as input data for the fuzzy logic to calculate the influent feed flow rate that was applied to control and monitor the process response at different operations in the initial, overload influent feeding and the recovery phases. In all three phases, this neural-fuzzy control system showed great potential to control AHR in high stability and performance and quick response. Although in the overloading operation phase II with two fold calculating influent flow rate together with a two fold organic loading rate (OLR), this control system had rapid response and was sensitive to the intended overload. When the influent feeding rate was followed by the calculation of control system in the initial operation phase I and the recovery operation phase III, it was found that the neural-fuzzy control system application was capable of controlling the AHR in a good manner with the pH close to 7, TVA/Alk 〈 0.4 and COD removal 〉 80% with biogas and methane yields at 0.45 and 0.30 m^3/kg COD removed.
文摘Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial function followed in series by a linear impulse response dynamic element. A new nonlinear Hammerstein MAC algorithm (named NLH-MAC) is presented in detail. The simulation control results of a pH neutralization process show that NLH-MAC gives better control performance than linear MAC and the commonly used industrial nonlinear propotional plus integral plus derivative (PID) controller. Further simulation experiment demonstrates that NLH-MAC not only gives good control response, but also possesses good stability and robustness even with large modeling errors.
基金Item Sponsored by National Natural Science Foundation of China(50074026)
文摘A hybrid neural network model,in which RH process(theoretical)model is combined organically with neural network(NN)and case-base reasoning(CBR),was established.The CBR method was used to select the operation mode and the RH operational guide parameters for different steel grades according to the initial conditions of molten steel,and a three-layer BP neural network was adopted to deal with nonlinear factors for improving and compensating the limitations of technological model for RH process control and end-point prediction.It was verified that the hybrid neural network is effective for improving the precision and calculation efficiency of the model.
文摘Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves severe nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC to accommodate nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC). It also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design, which relieves practising engineers from the need for deriving a physical-principles based model first. An on-line realisation technique for implementing NMPC is then developed and applied to a Mitsubishi Chemicals polymerisation reaction process. Results show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order Volterra model based methods. The advantages of the developed approach lie not only in control performance superior to existing NMPC methods, but also in eliminating the need for converting an analytical model and then convert it to a Volterra model obtainable only up to the second order. Keywords Model predictive control - Volterra series - process control - nonlinear control Yun Li is a senior lecturer at University of Glasgow, UK, where has taught and researched in evolutionary computation and control engineering since 1991. He worked in the UK National Engineering Laboratory and Industrial Systems and Control Ltd, Glasgow in 1989 and 1990. In 1998, he established the IEEE CACSD Evolutionary Computation Working Group and the European Network of Excellence in Evolutionary Computing (EvoNet) Workgroup on Systems, Control, and Drives. In summer 2002, he served as a visiting professor to Kumamoto University, Japan. He is also a visiting professor at University of Electronic Science and Technology of China. His research interests are in parallel processing, design automation and discovery of engineering systems using evolutionary learning and intelligent search techniques. Applications include control, system modelling and prediction, circuit design, microwave engineering, and operations management. He has advised 12 Ph.D.s in evolutionary computation and has 140 publications.Hiroshi Kashiwagi received B.E, M.E. and Ph.D. degrees in measurement and control engineering from the University of Tokyo, Japan, in 1962, 1964 and 1967 respectively. In 1967 he became an Associate Professor and in 1976 a Professor at Kumamoto University. From 1973 to 1974, he served as a visiting Associate Professor at Purdue University, Indiana, USA. From 1990 to 1994, he was the Director at Computer Center of Kumamoto University. He has also served as a member of Board of Trustees of Society of Instrument and Control Engineers (SICE), Japan, Chairman of Kyushu Branch of SICE and General Chair of many international conferences held in Japan, Korea, Chin and India. In 1994, he was awarded SICE Fellow for his contributions to the field of measurement and control engineering through his various academic activities. He also received the Gold Medal Prize at ICAUTO’95 held in India. In 1997, he received the “Best Book Award” from SICE for his new book entitled “M-sequence and its application” written in Japanese and published in 1996 by Shoukoudou Publishing Co. in Japan. In 1999, he received the “Best Paper Award” from SICE for his paper “M-transform and its application to system identification”. His research interests include signal processing and applications, especially pseudorandom sequence and its applications to measurement and control engineering.
基金The National Hi Tech Development Program (863) of China(No.2003AA601110) and the National Natural Science Foundation Key Item of China(No.50138010)
文摘Control of sludge age and mixed liquid suspended solids concentration in the activated sludge process is critical for ensuring effective wastewater treatment. A nonlinear dynamic model for a step-feed activated sludge process was developed in this study. The system is based on the control of the sludge age and mixed liquor suspended solids in the aerator of last stage by adjusting the sludge recycle and wastage flow rates respectively. The simulation results showed that the sludge age remained nearly constant at a value of 16 d in the variation of the influent characteristics. The mixed liquor suspended solids in the aerator of last stage were also maintained to a desired value of 2500 g/m3 by adjusting wastage flow rates.
文摘To develop technically feasible and economically favorable dynamic process control(DPC)strategies for an alternating activated sludge(AAS)system,a bench-scale continuous-flow alternating aerobic and anoxic reactor,performing short-cut nitrogen removal from real domestic wastewater was operated under different control strategies for more than five months.A fixed-time control(FTC) study showed that bending-points on pH and oxidation-reduction potential(ORP)profiles accurately coincided with the major biologic...
基金Supported in part by NSFC/RGC joint Research Scheme (N-HKUST639/09), the National Natural Science Foundation of China (61104058, 61273101), Guangzhou Scientific and Technological Project (2012J5100032), Nansha district independent innovation project (201103003), China Postdoctoral Science Foundation (2012M511367, 2012M511368), and Doctor Scientific Research Foundation of Liaoning Province (20121046).
文摘Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.