The distribution control center(DCC)has evolved from a sideshow in the traditional distribution service center to a major centerpiece of the utility moving into the decentralized world.Mostly,this is the place where m...The distribution control center(DCC)has evolved from a sideshow in the traditional distribution service center to a major centerpiece of the utility moving into the decentralized world.Mostly,this is the place where much of the action is happening due to new forms of energy that are coining into the distribution system.This creates the flexibility of operation and in-creased complexity due to the need for increased coordination between the transmission control center and DCC.However,the US and European utilities have adapted to this change in very different ways.Firstly,we describe the research works done in a DCC and their evolutions from the perspectives of major US utilities,and those enhanced by the European perspective focusing on the coordination of distribution system operator and transmission system operator(DSO-TSO).We pres-ent the insights into the systems used in these control centers and the role of vendors in their evolution.Throughout this paper,we present the perspectives of challenges,operational capabilities,and the involvement of various parties who will be re-sponsible to make the transition successful.Key differences are pointed out on how distribution operations are conducted between the US and Europe.展开更多
With the simultaneous rise of energy costs and demand for cloud computing, efficient control of data centers becomes crucial. In the data center control problem, one needs to plan at every time step how many servers t...With the simultaneous rise of energy costs and demand for cloud computing, efficient control of data centers becomes crucial. In the data center control problem, one needs to plan at every time step how many servers to switch on or off in order to meet stochastic job arrivals while trying to minimize electricity consumption. This problem becomes particularly challenging when servers can be of various types and jobs from different classes can only be served by certain types of server, as it is often the case in real data centers. We model this problem as a robust Markov decision process(i.e., the transition function is not assumed to be known precisely). We give sufficient conditions(which seem to be reasonable and satisfied in practice) guaranteeing that an optimal threshold policy exists. This property can then be exploited in the design of an efficient solving method, which we provide.Finally, we present some experimental results demonstrating the practicability of our approach and compare with a previous related approach based on model predictive control.展开更多
Fast and high fidelity quantum control is the key technology of quantum computing. The hybrid system composed of the nitrogen-vacancy center and nearby Carbon-13 nuclear spin is expected to solve this problem. The nit...Fast and high fidelity quantum control is the key technology of quantum computing. The hybrid system composed of the nitrogen-vacancy center and nearby Carbon-13 nuclear spin is expected to solve this problem. The nitrogen-vacancy center electron spin enables fast operations for its strong coupling to the control field, whereas the nuclear spins preserve the coherence for their weak coupling to the environment. In this paper, we describe a strategy to achieve time-optimal control of the Carbon-13 nuclear spin qubit by alternating controlling the nitrogen-vacancy center electron spin as an actuator. We transform the qubit gate operation into a switched system. By using the maximum principle, we study the minimum time control of the switched system and obtain the time-optimal control of the qubit gate operation. We show that the X gate and Y gate operations are within 10μs while the fidelity reaches 0.995.展开更多
The Adaptive Quality Control Phantom (AQCP) is a computer-controlled phantom which positions and moves a radioactive source in the Field of View (FOV) of an imaging nuclear medicine device on a definite path to produc...The Adaptive Quality Control Phantom (AQCP) is a computer-controlled phantom which positions and moves a radioactive source in the Field of View (FOV) of an imaging nuclear medicine device on a definite path to produce a spatial distribution of gamma rays to perform QC Tests such as the Collimator Hole Angulation (CHA) and the Center of Rotation (COR) of Single Photon Emission Computer Tomography (SPECT). The collimator hole angulation for six collimators was measured using a point source and a computer-controlled cylindrical positioning system. In this method, the displacement of the image of a point source was examined as the AQCP was moving point source vertically away from the collimator face. The results of the high-accuracy measurement method of CHA show that the measurement accuracy for absolute angulation errors is better than ±0.024°. The Root Mean Square (RMS) of CHA for LEHR, LEHS and LEUHR collimators of SMV dual heads camera and LEGP, MEGP and HEGP of GE Millennium MG were evaluated to be 0.290°, 0.292°, 0.208°, 0.154°, 0.220° and 0.202°, respectively. It is to be added in this connection that the evaluated RMS of CHA for LEHR collimator with the distance variation from the collimator’s surface ±1 mm has been varied ±0.04 degree. A new method for the center of rotation assessment by AQCP is introduced and the results of this proposed method as compared with the routine QC test and their differences are discussed in detail. We defined and measured a new parameter called Dynamic Mechanical Error (DME) for applying the gantry motion correction.展开更多
Key technologies as well as their principles were discussed for a decentralized control platform capable of dynamic evolution. The primary content includes the automatic decision-making mechanism and the algorithm of ...Key technologies as well as their principles were discussed for a decentralized control platform capable of dynamic evolution. The primary content includes the automatic decision-making mechanism and the algorithm of the control center migration, the principle and technology of system self-monitoring, the principle and technology of the switch-mode of remote control station, the information transmission technology, and the data consistency technology. These key technologies have shown a series of advanced characteristics for decentralized control platform.展开更多
There are significant effects of process parameters on internal qualities of bloom, and these process parameters are as follows. position and reduction amount, reduction distribution, reduction rate, and so on. Develo...There are significant effects of process parameters on internal qualities of bloom, and these process parameters are as follows. position and reduction amount, reduction distribution, reduction rate, and so on. Developing a control model is the key to apply soft reduction technology successfully. As the research object, 360 mm ×450 mm bloom caster in PISCO (Panzhihua Iron and Steel Co. ) has been studied, and the research method for control model of dynamic soft reduction has been proposed. On the basis of solidification and heat transfer model, the position of soft reduction and reduction distribution of each frame are determined according to the bloom temperature distribution and solid fraction in bloom center calculated. Production practice shows that the ratio of center porosity which is less than or equal to 1.0, increased to 97.27%, ratio of central segregation which is less than or equal to 0.5, increased to 80.91%, and ratio of central carbon segregation index which is more than or equal to 1.10, decreased to 4% with the applying model of dynamic soft reduction.展开更多
This paper is devoted to adaptive attitude tracking control for rigid spacecraft in the presence of parametric uncertainties, actuator faults and external disturbance. Specifically, a dynamic model is established base...This paper is devoted to adaptive attitude tracking control for rigid spacecraft in the presence of parametric uncertainties, actuator faults and external disturbance. Specifically, a dynamic model is established based on one-tank spacecraft, which explicitly takes into account changing Center of Mass(CM). Then, a control scheme is proposed to achieve attitude tracking.Benefiting from explicitly considering the changing CM during the controller design process, the proposed scheme possesses good robustness to parametric uncertainties with less fuel consumption.Moreover, a fault-tolerant control algorithm is proposed to accommodate actuator faults with no need of knowing the actuators' fault information. Lyapunov-based analysis is provided and the closed-loop system stability is rigorously proved. Finally, numerical simulations are presented to illustrate the effectiveness of the proposed controllers.展开更多
The attitude control system design and its control effect are affected considerably by the mass-property parameters of the spacecraft. In the mission of on-orbit servicing, as fuel is expended, or the payloads are add...The attitude control system design and its control effect are affected considerably by the mass-property parameters of the spacecraft. In the mission of on-orbit servicing, as fuel is expended, or the payloads are added or removed, the center of mass will be changed in certain axe; consequently, some thrusters' directions are deviated from the center of mass(CM) in certain plane. The CM of assembled spacecraft estimation and thruster direction control are studied. Firstly, the attitude dynamics of the assembled spacecraft is established based on the Newton-Euler method. Secondly, the estimation can be identified by the least recursive squares algorithm. Then, a scheme to control the thrusters' directions is proposed. By using the gimbal installed at the end of the boom, the angle of the thruster is controlled by driving the gimbal; therefore, thrusters can be directed to the CM again. Finally, numerical simulations are used to verify this scheme. Results of the numerical simulations clearly show that this control scheme is rational and feasible.展开更多
This research investigates the impact of managed health care on academic medical centers in the United States. Academic medical centers hold a unique position in the U. S. health care system through their missions of ...This research investigates the impact of managed health care on academic medical centers in the United States. Academic medical centers hold a unique position in the U. S. health care system through their missions of conducting cutting-edge biomedical researeh, pursuing clinical and technological innovations, Providing state-of-the-art medical care and producing highly qUalified health professionals. However, policies to control costs through the use of managed care and limiting resources are detrimental to academic medical centers and impede the advancement of medical sciTo survive the threats of managed care in the health care environment, acadendc medical centers must rely on their upper level managers to derive successful strategies. The methods used in this study include qualitative approaches in the form of key informants and case studies. In addition, a survey questionnaire was sent to 1h8 CEOs in all the academic medical centers in the U. S. The findings revealed that managers who perform the liaison, monitor, entrepreneur and resource allocator roles are crucial to ensure the survival of academic medical centers, so that academic medical centers can continue their missions to serve the general public and promote their well-being.展开更多
With the development of power systems, power grid within a control area becomes much more complicated due to increasing number of nodes and renewable energy interconnections. The role of power system control center is...With the development of power systems, power grid within a control area becomes much more complicated due to increasing number of nodes and renewable energy interconnections. The role of power system control center is more critical in maintaining system reliable and security operations. Latest developed information and communication technologies provide a platform to enhance the functions and performance of power system control center. Smart power dispatch concept will be the trend of future control center development. In this paper, we start from the human factors of control center design and propose operation indices to reduce the information presented to the system operator. The operation indices will be the important criteria in situation awareness of a power grid. Past, present, future and capability states of a power grid are also proposed to provide better visions to the operator of system conditions. The basic ideas of operation indices and operation states are discussed in the paper. In the end, the design factors for a power dispatch cockpit are discussed.展开更多
Objective: to explore the control measures and effects of CDC on infectious diseases. Methods: the management of infectious diseases in Huai 'an CDC was included: 2019.01.31~2019.12.31: routine management of infec...Objective: to explore the control measures and effects of CDC on infectious diseases. Methods: the management of infectious diseases in Huai 'an CDC was included: 2019.01.31~2019.12.31: routine management of infectious diseases (WKZ group), 2020.01.31~2021.05.31: prevention and control of infectious diseases (YFZ group). To compare the incidence of infectious diseases, health knowledge awareness rate and satisfaction. Results: the number of serious infectious diseases and epidemic events in YFZ group 3(0.66) and 0 (0) were better than those in WKZ group 12(2.64) and 5(1.10) (P<0.05). Health knowledge awareness rate: YFZ group (94.12±2.26) points, WKZ group (75.46±2.28) points (t=123.85, P=0.000<0.05);Satisfaction comparison: YFZ group was 425(93.61) and WKZ group was 401(88.33) (P<0.05). Conclusion: strengthening the control and management of infectious diseases can reduce the prevalence of infectious diseases and enhance people's awareness of prevention.展开更多
Defect control at nanoscale of MgB2 by doping various nanoparticles including Ti, C, nano-diamond, and HOB4, and their roles played to enhance flux pinning force in MgB2 are compared and analyzed. These nanodopants ha...Defect control at nanoscale of MgB2 by doping various nanoparticles including Ti, C, nano-diamond, and HOB4, and their roles played to enhance flux pinning force in MgB2 are compared and analyzed. These nanodopants have different chemical and physical properties, thus bring about different pinning efficiency, especially nanodopants with strong magnetic moment are particularly interesting as pinning centers in MgB2 since magnetic impurities usually have a stronger interaction with magnetic flux line than nonmagnetic impurities and may exert a stronger force to trap the flux lines when they are properly introduced into the superconducting matrix.展开更多
To implement a simulation of fir-floating-platform with higher frequency vibration, A satdlite-gesture emulation system with the functions of selectable high-frequency vibration-simulation and high-accuracy stability ...To implement a simulation of fir-floating-platform with higher frequency vibration, A satdlite-gesture emulation system with the functions of selectable high-frequency vibration-simulation and high-accuracy stability (with the control resolution within ± 5 × 10^-4 angle-degrees), controlled by using filtered-feedback and fuzzy-preeminence technology is designed and structured. The system is based on the analysis of dynamic and static composed-force-moment and disturhance factors. Through computational simulation, laboratory experiments and field-demo, it is proved that the system operation is available, practical, and propitious for minifying drive-power. These system structures and control strategies can be widely used in the fields such as astronomy, space navigation, deep-sea operation, high altitude motion, and weightless experiment, where a floating body must be controlled or simulated.展开更多
Intelligent techniques foster the dissemination of new discoveries and novel technologies that advance the ability of robots to assist and support humans. The human-centered intelligent robot has become an important r...Intelligent techniques foster the dissemination of new discoveries and novel technologies that advance the ability of robots to assist and support humans. The human-centered intelligent robot has become an important research field that spans all of the robot capabilities including navigation, intelligent control, pattern recognition and human-robot interaction. This paper focuses on the recent achievements and presents a survey of existing works on human-centered robots. Furthermore, we provide a comprehensive survey of the recent development of the human-centered intelligent robot and discuss the issues and challenges in the field.展开更多
The volumetric flow rate of smoke generated from the fire in large space often reaches to hundreds of thousands CMH because of extended floor height and as it’s more difficult to isolate the smoke to the limited area...The volumetric flow rate of smoke generated from the fire in large space often reaches to hundreds of thousands CMH because of extended floor height and as it’s more difficult to isolate the smoke to the limited area, comparing to normal-scale building, design and operation of effective smoke control system for large space is more than important. In this study, with the analysis model for such a large space as exhibition hall or conference room in conventional center, design of mechanical smoke exhaust system was conducted based on currently-available design standard which was then followed by numerical analysis of the design using 3D numerical analysis method. For conference room at 2.0 MW heat release rate, 99,173 CMH flow rate is required, if smoke layer is maintained at 60% of the floor height and for exhibition hall at 8.8 MW with 80% of floor height, flow rate required is 219,802 CMH, which are incorporated into the design. In view of 3D numerical analysis, accuracy of the design according to algebraic expression is sufficient.展开更多
基金MONKS,Sarajevo,FBiH,Bosnia and Herzegovina(No.27-02-11-41250-34/21).
文摘The distribution control center(DCC)has evolved from a sideshow in the traditional distribution service center to a major centerpiece of the utility moving into the decentralized world.Mostly,this is the place where much of the action is happening due to new forms of energy that are coining into the distribution system.This creates the flexibility of operation and in-creased complexity due to the need for increased coordination between the transmission control center and DCC.However,the US and European utilities have adapted to this change in very different ways.Firstly,we describe the research works done in a DCC and their evolutions from the perspectives of major US utilities,and those enhanced by the European perspective focusing on the coordination of distribution system operator and transmission system operator(DSO-TSO).We pres-ent the insights into the systems used in these control centers and the role of vendors in their evolution.Throughout this paper,we present the perspectives of challenges,operational capabilities,and the involvement of various parties who will be re-sponsible to make the transition successful.Key differences are pointed out on how distribution operations are conducted between the US and Europe.
文摘With the simultaneous rise of energy costs and demand for cloud computing, efficient control of data centers becomes crucial. In the data center control problem, one needs to plan at every time step how many servers to switch on or off in order to meet stochastic job arrivals while trying to minimize electricity consumption. This problem becomes particularly challenging when servers can be of various types and jobs from different classes can only be served by certain types of server, as it is often the case in real data centers. We model this problem as a robust Markov decision process(i.e., the transition function is not assumed to be known precisely). We give sufficient conditions(which seem to be reasonable and satisfied in practice) guaranteeing that an optimal threshold policy exists. This property can then be exploited in the design of an efficient solving method, which we provide.Finally, we present some experimental results demonstrating the practicability of our approach and compare with a previous related approach based on model predictive control.
基金This work was supported by the National Natural Science Foundation of China (Nos. 61227902, 61573343) and the National Center for Mathematics and Interdisciplinary Sciences, CAS.
文摘Fast and high fidelity quantum control is the key technology of quantum computing. The hybrid system composed of the nitrogen-vacancy center and nearby Carbon-13 nuclear spin is expected to solve this problem. The nitrogen-vacancy center electron spin enables fast operations for its strong coupling to the control field, whereas the nuclear spins preserve the coherence for their weak coupling to the environment. In this paper, we describe a strategy to achieve time-optimal control of the Carbon-13 nuclear spin qubit by alternating controlling the nitrogen-vacancy center electron spin as an actuator. We transform the qubit gate operation into a switched system. By using the maximum principle, we study the minimum time control of the switched system and obtain the time-optimal control of the qubit gate operation. We show that the X gate and Y gate operations are within 10μs while the fidelity reaches 0.995.
文摘The Adaptive Quality Control Phantom (AQCP) is a computer-controlled phantom which positions and moves a radioactive source in the Field of View (FOV) of an imaging nuclear medicine device on a definite path to produce a spatial distribution of gamma rays to perform QC Tests such as the Collimator Hole Angulation (CHA) and the Center of Rotation (COR) of Single Photon Emission Computer Tomography (SPECT). The collimator hole angulation for six collimators was measured using a point source and a computer-controlled cylindrical positioning system. In this method, the displacement of the image of a point source was examined as the AQCP was moving point source vertically away from the collimator face. The results of the high-accuracy measurement method of CHA show that the measurement accuracy for absolute angulation errors is better than ±0.024°. The Root Mean Square (RMS) of CHA for LEHR, LEHS and LEUHR collimators of SMV dual heads camera and LEGP, MEGP and HEGP of GE Millennium MG were evaluated to be 0.290°, 0.292°, 0.208°, 0.154°, 0.220° and 0.202°, respectively. It is to be added in this connection that the evaluated RMS of CHA for LEHR collimator with the distance variation from the collimator’s surface ±1 mm has been varied ±0.04 degree. A new method for the center of rotation assessment by AQCP is introduced and the results of this proposed method as compared with the routine QC test and their differences are discussed in detail. We defined and measured a new parameter called Dynamic Mechanical Error (DME) for applying the gantry motion correction.
基金The National Innovation Fund ( No.00C262251211336)
文摘Key technologies as well as their principles were discussed for a decentralized control platform capable of dynamic evolution. The primary content includes the automatic decision-making mechanism and the algorithm of the control center migration, the principle and technology of system self-monitoring, the principle and technology of the switch-mode of remote control station, the information transmission technology, and the data consistency technology. These key technologies have shown a series of advanced characteristics for decentralized control platform.
文摘There are significant effects of process parameters on internal qualities of bloom, and these process parameters are as follows. position and reduction amount, reduction distribution, reduction rate, and so on. Developing a control model is the key to apply soft reduction technology successfully. As the research object, 360 mm ×450 mm bloom caster in PISCO (Panzhihua Iron and Steel Co. ) has been studied, and the research method for control model of dynamic soft reduction has been proposed. On the basis of solidification and heat transfer model, the position of soft reduction and reduction distribution of each frame are determined according to the bloom temperature distribution and solid fraction in bloom center calculated. Production practice shows that the ratio of center porosity which is less than or equal to 1.0, increased to 97.27%, ratio of central segregation which is less than or equal to 0.5, increased to 80.91%, and ratio of central carbon segregation index which is more than or equal to 1.10, decreased to 4% with the applying model of dynamic soft reduction.
基金supported partially by the National Natural Science Foundation of China(Nos.61522301,61633003)
文摘This paper is devoted to adaptive attitude tracking control for rigid spacecraft in the presence of parametric uncertainties, actuator faults and external disturbance. Specifically, a dynamic model is established based on one-tank spacecraft, which explicitly takes into account changing Center of Mass(CM). Then, a control scheme is proposed to achieve attitude tracking.Benefiting from explicitly considering the changing CM during the controller design process, the proposed scheme possesses good robustness to parametric uncertainties with less fuel consumption.Moreover, a fault-tolerant control algorithm is proposed to accommodate actuator faults with no need of knowing the actuators' fault information. Lyapunov-based analysis is provided and the closed-loop system stability is rigorously proved. Finally, numerical simulations are presented to illustrate the effectiveness of the proposed controllers.
基金supported by the National Natural Science Foundation of China(11302010)
文摘The attitude control system design and its control effect are affected considerably by the mass-property parameters of the spacecraft. In the mission of on-orbit servicing, as fuel is expended, or the payloads are added or removed, the center of mass will be changed in certain axe; consequently, some thrusters' directions are deviated from the center of mass(CM) in certain plane. The CM of assembled spacecraft estimation and thruster direction control are studied. Firstly, the attitude dynamics of the assembled spacecraft is established based on the Newton-Euler method. Secondly, the estimation can be identified by the least recursive squares algorithm. Then, a scheme to control the thrusters' directions is proposed. By using the gimbal installed at the end of the boom, the angle of the thruster is controlled by driving the gimbal; therefore, thrusters can be directed to the CM again. Finally, numerical simulations are used to verify this scheme. Results of the numerical simulations clearly show that this control scheme is rational and feasible.
文摘This research investigates the impact of managed health care on academic medical centers in the United States. Academic medical centers hold a unique position in the U. S. health care system through their missions of conducting cutting-edge biomedical researeh, pursuing clinical and technological innovations, Providing state-of-the-art medical care and producing highly qUalified health professionals. However, policies to control costs through the use of managed care and limiting resources are detrimental to academic medical centers and impede the advancement of medical sciTo survive the threats of managed care in the health care environment, acadendc medical centers must rely on their upper level managers to derive successful strategies. The methods used in this study include qualitative approaches in the form of key informants and case studies. In addition, a survey questionnaire was sent to 1h8 CEOs in all the academic medical centers in the U. S. The findings revealed that managers who perform the liaison, monitor, entrepreneur and resource allocator roles are crucial to ensure the survival of academic medical centers, so that academic medical centers can continue their missions to serve the general public and promote their well-being.
文摘With the development of power systems, power grid within a control area becomes much more complicated due to increasing number of nodes and renewable energy interconnections. The role of power system control center is more critical in maintaining system reliable and security operations. Latest developed information and communication technologies provide a platform to enhance the functions and performance of power system control center. Smart power dispatch concept will be the trend of future control center development. In this paper, we start from the human factors of control center design and propose operation indices to reduce the information presented to the system operator. The operation indices will be the important criteria in situation awareness of a power grid. Past, present, future and capability states of a power grid are also proposed to provide better visions to the operator of system conditions. The basic ideas of operation indices and operation states are discussed in the paper. In the end, the design factors for a power dispatch cockpit are discussed.
文摘Objective: to explore the control measures and effects of CDC on infectious diseases. Methods: the management of infectious diseases in Huai 'an CDC was included: 2019.01.31~2019.12.31: routine management of infectious diseases (WKZ group), 2020.01.31~2021.05.31: prevention and control of infectious diseases (YFZ group). To compare the incidence of infectious diseases, health knowledge awareness rate and satisfaction. Results: the number of serious infectious diseases and epidemic events in YFZ group 3(0.66) and 0 (0) were better than those in WKZ group 12(2.64) and 5(1.10) (P<0.05). Health knowledge awareness rate: YFZ group (94.12±2.26) points, WKZ group (75.46±2.28) points (t=123.85, P=0.000<0.05);Satisfaction comparison: YFZ group was 425(93.61) and WKZ group was 401(88.33) (P<0.05). Conclusion: strengthening the control and management of infectious diseases can reduce the prevalence of infectious diseases and enhance people's awareness of prevention.
基金supported Australian Research Council (Nos. DP0559872 and DP0881739)
文摘Defect control at nanoscale of MgB2 by doping various nanoparticles including Ti, C, nano-diamond, and HOB4, and their roles played to enhance flux pinning force in MgB2 are compared and analyzed. These nanodopants have different chemical and physical properties, thus bring about different pinning efficiency, especially nanodopants with strong magnetic moment are particularly interesting as pinning centers in MgB2 since magnetic impurities usually have a stronger interaction with magnetic flux line than nonmagnetic impurities and may exert a stronger force to trap the flux lines when they are properly introduced into the superconducting matrix.
文摘To implement a simulation of fir-floating-platform with higher frequency vibration, A satdlite-gesture emulation system with the functions of selectable high-frequency vibration-simulation and high-accuracy stability (with the control resolution within ± 5 × 10^-4 angle-degrees), controlled by using filtered-feedback and fuzzy-preeminence technology is designed and structured. The system is based on the analysis of dynamic and static composed-force-moment and disturhance factors. Through computational simulation, laboratory experiments and field-demo, it is proved that the system operation is available, practical, and propitious for minifying drive-power. These system structures and control strategies can be widely used in the fields such as astronomy, space navigation, deep-sea operation, high altitude motion, and weightless experiment, where a floating body must be controlled or simulated.
基金supported in part by the National Natural Science Foundation of China(61573147,91520201,61625303,61522302,61761130080)Guangzhou Research Collaborative Innovation Projects(2014Y2-00507)+2 种基金Guangdong Science and Technology Research Collaborative Innovation Projects(20138010102010,20148090901056,20158020214003)Guangdong Science and Technology Plan Project(Application Technology Research Foundation)(2015B020233006)National High-Tech Research and De-velopment Program of China(863 Program)(2015AA042303)
文摘Intelligent techniques foster the dissemination of new discoveries and novel technologies that advance the ability of robots to assist and support humans. The human-centered intelligent robot has become an important research field that spans all of the robot capabilities including navigation, intelligent control, pattern recognition and human-robot interaction. This paper focuses on the recent achievements and presents a survey of existing works on human-centered robots. Furthermore, we provide a comprehensive survey of the recent development of the human-centered intelligent robot and discuss the issues and challenges in the field.
文摘The volumetric flow rate of smoke generated from the fire in large space often reaches to hundreds of thousands CMH because of extended floor height and as it’s more difficult to isolate the smoke to the limited area, comparing to normal-scale building, design and operation of effective smoke control system for large space is more than important. In this study, with the analysis model for such a large space as exhibition hall or conference room in conventional center, design of mechanical smoke exhaust system was conducted based on currently-available design standard which was then followed by numerical analysis of the design using 3D numerical analysis method. For conference room at 2.0 MW heat release rate, 99,173 CMH flow rate is required, if smoke layer is maintained at 60% of the floor height and for exhibition hall at 8.8 MW with 80% of floor height, flow rate required is 219,802 CMH, which are incorporated into the design. In view of 3D numerical analysis, accuracy of the design according to algebraic expression is sufficient.