In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelli...In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelligent decision-making method for TBM tunnelling control parameters based on multiobjective optimization(MOO).First,the effective TBM operation dataset is obtained through data preprocessing of the Songhua River(YS)tunnel project in China.Next,the proposed method begins with developing machine learning models for predicting TBM tunnelling performance parameters(i.e.total thrust and cutterhead torque),rock mass classification,and hazard risks(i.e.tunnel collapse and shield jamming).Then,considering three optimal objectives,(i.e.,penetration rate,rock-breaking energy consumption,and cutterhead hob wear),the MOO framework and corresponding mathematical expression are established.The Pareto optimal front is solved using DE-NSGA-II algorithm.Finally,the optimal control parameters(i.e.,advance rate and cutterhead rotation speed)are obtained by the satisfactory solution determination criterion,which can balance construction safety and efficiency with satisfaction.Furthermore,the proposed method is validated through 50 cases of TBM tunnelling,showing promising potential of application.展开更多
An enhanced least mean square(LMS)error identification algorithm integrated with Kalman filtering is proposed to resolve accuracy degradation induced by nonlinear dynamics and parameter uncertainties in continuous rot...An enhanced least mean square(LMS)error identification algorithm integrated with Kalman filtering is proposed to resolve accuracy degradation induced by nonlinear dynamics and parameter uncertainties in continuous rotary electro-hydraulic servo systems.This enhancement accelerates convergence and improves accuracy compared with traditional LMS.A fifth-order identification mod-el is developed based on valve-controlled hydraulic motors,with parameters identified using Kalman filter state estimation and gradient smoothing.The results indicate that the improved LMS effectively enhances parameter identification.An advanced disturbance rejection controller(ADRC)is de-signed,and its performance is compared with an optimal proportional integral derivative(PID)con-troller through Simulink simulations.The results show that the ADRC fulfills the control specifications and expands the system’s operational bandwidth.展开更多
Direct Thrust Control(DTC) is effective in dealing with the mismatch between thrust and rotor speed in traditional engine control. Among the DTC architecture, model-based thrust estimation method has less arithmetic c...Direct Thrust Control(DTC) is effective in dealing with the mismatch between thrust and rotor speed in traditional engine control. Among the DTC architecture, model-based thrust estimation method has less arithmetic consumption and better real-time performance. In this paper,a direct thrust controller design approach for gas turbine engine based on parameter dependent model is proposed. In order to ensure the stability of DTC control system based on parameter dependent model, there are usually conservatism detects. For the purpose of reducing the conservatism in the solution process of filter and controller, an Equilibrium Manifold Expansion(EME) model with bounded parameter variation of engine is established. The design conditions of Kalman filter for discrete-time EME system are introduced, and the proposed conditions have a certain suppression effect on the input noise of the system with bounded parameter variation.The engine thrust estimator stability and H∞filtering problems are solved by the polytopic quadratic Lyapunov function based on the Linear Matrix Inequalities(LMIs). To meet the performance requirements of thrust control, the Grey Wolf Optimization(GWO) algorithm is applied to optimize the PID control parameters. The proposed method is verified on a Hardware-in-Loop(HIL) platform. The simulation results demonstrate that the DTC framework can ensure the stability of engine closed-loop system in large range deviation tests. The filter and controller solution method considering the parameter variation boundary can obtain a solution that makes the system have better performance parameters. Moreover, the proposed filter has better thrust estimation performance than the traditional Kalman filter under the condition of sensor noise. Compared with Augmented Linear Quadratic Regulator(ALQR) controller, the PID controller optimized by GWO has a faster response in simulation.展开更多
This article presents an adaptive optimal control method for a semi-active suspension system.The model of the suspension system is built,in which the components of uncertain parameters and exogenous disturbance are de...This article presents an adaptive optimal control method for a semi-active suspension system.The model of the suspension system is built,in which the components of uncertain parameters and exogenous disturbance are described.The adaptive optimal control law consists of the sum of the optimal control component and the adaptive control component.First,the optimal control law is designed for the model of the suspension system after ignoring the components of uncertain parameters and exogenous disturbance caused by the road surface.The optimal control law expresses the desired dynamic characteristics of the suspension system.Next,the adaptive component is designed with the purpose of compensating for the effects caused by uncertain parameters and exogenous disturbance caused by the road surface;the adaptive component has adaptive parameter rules to estimate uncertain parameters and exogenous disturbance.When exogenous disturbances are eliminated,the system responds with an optimal controller designed.By separating theoretically the dynamic of a semi-active suspension system,this solution allows the design of two separate controllers easily and has reduced the computational burden and the use of too many tools,thus allowing for more convenient hardware implementation.The simulation results also show the effectiveness of damping oscillations of the proposed solution in this article.展开更多
To investigate the influence of different longitudinal constraint systems on the longitudinal displacement at the girder ends of a three-tower suspension bridge,this study takes the Cangrong Xunjiang Bridge as an engi...To investigate the influence of different longitudinal constraint systems on the longitudinal displacement at the girder ends of a three-tower suspension bridge,this study takes the Cangrong Xunjiang Bridge as an engineering case for finite element analysis.This bridge employs an unprecedented tower-girder constraintmethod,with all vertical supports placed at the transition piers at both ends.This paper aims to study the characteristics of longitudinal displacement control at the girder ends under this novel structure,relying on finite element(FE)analysis.Initially,based on the Weigh In Motion(WIM)data,a random vehicle load model is generated and applied to the finite elementmodel.Several longitudinal constraint systems are proposed,and their effects on the structural response of the bridge are compared.The most reasonable system,balancing girder-end displacement and transitional pier stress,is selected.Subsequently,the study examines the impact of different viscous damper parameters on key structural response indicators,including cumulative longitudinal displacement at the girder ends,maximum longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,maximum longitudinal displacement at the pier tops,longitudinal acceleration at the pier tops,and maximum bending moment at the pier bottoms.Finally,the coefficient of variation(CV)-TOPSIS method is used to optimize the viscous damper parameters for multiple objectives.The results show that adding viscous dampers at the side towers,in addition to the existing longitudinal limit bearings at the central tower,can most effectively reduce the response of structural indicators.The changes in these indicators are not entirely consistent with variations in damping coefficient and velocity exponent.The damper parameters significantly influence cumulative longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,and maximum bending moments at the pier bottoms.The optimal damper parameters are found to be a damping coefficient of 5000 kN/(m/s)0.2 and a velocity exponent of 0.2.展开更多
Aquila Optimizer(AO)is a recently proposed population-based optimization technique inspired by Aquila’s behavior in catching prey.AO is applied in various applications and its numerous variants were proposed in the l...Aquila Optimizer(AO)is a recently proposed population-based optimization technique inspired by Aquila’s behavior in catching prey.AO is applied in various applications and its numerous variants were proposed in the literature.However,chaos theory has not been extensively investigated in AO.Moreover,it is still not applied in the parameter estimation of electro-hydraulic systems.In this work,ten well-defined chaotic maps were integrated into a narrowed exploitation of AO for the development of a robust chaotic optimization technique.An extensive investigation of twenty-three mathematical benchmarks and ten IEEE Congress on Evolutionary Computation(CEC)functions shows that chaotic Aquila optimization techniques perform better than the baseline technique.The investigation is further conducted on parameter estimation of an electro-hydraulic control system,which is performed on various noise levels and shows that the proposed chaotic AO with Piecewise map(CAO6)achieves the best fitness values of and at noise levels and respectively.Friedman test 2.873E-05,1.014E-04,8.728E-031.300E-03,1.300E-02,1.300E-01,for repeated measures,computational analysis,and Taguchi test reflect the superiority of CAO6 against the state of the arts,demonstrating its potential for addressing various engineering optimization problems.However,the sensitivity to parameter tuning may limit its direct application to complex optimization scenarios.展开更多
Purpose-The indoor vibration compaction test(IVCT)was a key step in controlling the compaction quality for high-speed railway graded aggregate(HRGA),which currently had a research gap on the assessment indicators and ...Purpose-The indoor vibration compaction test(IVCT)was a key step in controlling the compaction quality for high-speed railway graded aggregate(HRGA),which currently had a research gap on the assessment indicators and compaction parameters.Design/methodology/approach-To address these issues,a novel multi-indicator IVCT method was proposed,including physical indicator dry density(ρd)and mechanical indicators dynamic stiffness(Krb)and bearing capacity coefficient(K20).Then,a series of IVCTs on HRGA under different compaction parameters were conducted with an improved vibration compactor,which could monitor the physical-mechanical indicators in real-time.Finally,the optimal vibration compaction parameters,including the moisture content(ω),the diameter-to-maximum particle size ratio(Rd),the thickness-to-maximum particle size ratio(Rh),the vibration frequency(f),the vibration mass(Mc)and the eccentric distance(re),were determined based on the evolution characteristics for the physical-mechanical indicators during compaction.Findings-All results indicated that theρd gradually increased and then stabilized,and the Krb initially increased and then decreased.Moreover,the inflection time of the Krb was present as the optimal compaction time(Tlp)during compaction.Additionally,optimal compaction was achieved whenωwas the water-holding content after mud pumping,Rd was 3.4,Rh was 3.5,f was the resonance frequency,and the ratio between the excitation force and the Mc was 1.8.Originality/value-The findings of this paper were significant for the quality control of HRGA compaction.展开更多
This paper studies motor joint control of a 4-degree-of-freedom(DoF)robotic manipulator using learning-based Adaptive Dynamic Programming(ADP)approach.The manipulator’s dynamics are modelled as an open-loop 4-link se...This paper studies motor joint control of a 4-degree-of-freedom(DoF)robotic manipulator using learning-based Adaptive Dynamic Programming(ADP)approach.The manipulator’s dynamics are modelled as an open-loop 4-link serial kinematic chain with 4 Degrees of Freedom(DoF).Decentralised optimal controllers are designed for each link using ADP approach based on a set of cost matrices and data collected from exploration trajectories.The proposed control strategy employs an off-line,off-policy iterative approach to derive four optimal control policies,one for each joint,under exploration strategies.The objective of the controller is to control the position of each joint.Simulation and experimental results show that four independent optimal controllers are found,each under similar exploration strategies,and the proposed ADP approach successfully yields optimal linear control policies despite the presence of these complexities.The experimental results conducted on the Quanser Qarm robotic platform demonstrate the effectiveness of the proposed ADP controllers in handling significant dynamic nonlinearities,such as actuation limitations,output saturation,and filter delays.展开更多
Objective Helicobacter pylori(HP)infection is associated with non-alcoholic fatty liver disease(NAFLD)and insulin resistance;however,the correlation between HP eradication and NAFLD remains controversial.This systemat...Objective Helicobacter pylori(HP)infection is associated with non-alcoholic fatty liver disease(NAFLD)and insulin resistance;however,the correlation between HP eradication and NAFLD remains controversial.This systematic review and meta-analysis examined the effect of HP treatment on clinical and laboratory parameters in NAFLD patients.Methods We conducted a literature search of the PubMed,Embase,Scopus,and Web of Science databases through Septem-ber 2023 for randomized controlled trials(RCTs)examining the effect of HP treatment on NAFLD patients versus lifestyle changes alone.The primary outcome was the change in steatosis parameters.The secondary endpoints were changes in anthropometric parameters,inflammatory markers(TNF-α),and metabolic parameters(fasting blood glucose,homeostasis model assessment of insulin resistance,AST/ALT,and lipid profile).The random effects model was used to calculate the standardized mean difference(SMD)with associated 95%confidence intervals(CIs)for our desired outcome.Results Four RCTs met our inclusion criteria.A total of 453 patients were included(mean age 42.8 years,58.5%males),228(50.3%)of whom were in the HP eradication group and 225(49.7%)of whom were in the lifestyle modification group.Compared with lifestyle modification alone,HP eradication had a significant effect on reducing liver steatosis and TNF-αlevels(SMD:-0.9;95%CI-14.67,-3.82,I^(2)=0%and SMD:-6.3;95%CI-9.04,-3.56,I^(2)=0%,respectively).No sig-nificant effect on other metabolic parameters was found.Conclusions HP eradication significantly reduced liver steatosis and TNF-αlevels in NAFLD patients.However,HP eradi-cation did not significantly affect other metabolic indices compared to lifestyle changes alone.展开更多
In high-renewable-energy power systems,the demand for fast-responding capabilities is growing.To address the limitations of conventional closed-loop frequency control,where the integral coefficient cannot dynamically ...In high-renewable-energy power systems,the demand for fast-responding capabilities is growing.To address the limitations of conventional closed-loop frequency control,where the integral coefficient cannot dynamically adjust the frequency regulation command based on the state of charge(SoC)of energy storage units,this paper proposes a secondary frequency regulation control strategy based on variable integral coefficients for multiple energy storage units.First,a power-uniform controller is designed to ensure that thermal power units gradually take on more regulation power during the frequency regulation process.Next,a control framework based on variable integral coefficients is proposed within the secondary frequency regulation model,along with an objective function that simultaneously considers both Automatic Generation Control(AGC)command tracking performance and SoC recovery requirements of energy storage units.Finally,a gradient descent optimization method is used to dynamically adjust the gain of the energy storage integral controller,allowingmultiple energy storage units to respond in real-time to AGC instructions and SoC variations.Simulation results confirmthe effectiveness of the proposedmethod.Compared to traditional strategies,the proposed approach takes into account the SoCdiscrepancies amongmultiple energy storage units and the duration of system net power imbalances.It successfully implements secondary frequency regulation while achieving dynamic power allocation among the units.展开更多
This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results ...This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results that are applied to dispose of unknown constant parameters only,the unique feature is that an adaptive-gain nonlinear term is introduced into the control design to handle unknown time-variant parameters.Concurrently both mismatched and matched disturbances existing in electro-hydraulic axis systems can also be addressed in this way.With skillful integration of the backstepping technique and the adaptive control,a synthesized controller framework is successfully developed for electro-hydraulic axis systems,in which the coupled interaction between parameter estimation and disturbance estimation is avoided.Accordingly,this designed controller has the capacity of low-computation costs and simpler parameter tuning when compared to the other ones that integrate the adaptive control and observer/estimator-based technique to dividually handle parameter uncertainties and disturbances.Also,a nonlinear filter is designed to eliminate the“explosion of complexity”issue existing in the classical back-stepping technique.The stability analysis uncovers that all the closed-loop signals are bounded and the asymptotic tracking performance is also assured.Finally,contrastive experiment results validate the superiority of the developed method as well.展开更多
This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncerta...This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncertainty of structural and aerodynamic parameters,the six-degree-of-freedom(6Do F) nonlinear equations describing the position and attitude dynamics of the rotor-missile are established,respectively,in the inertial and body-fixed reference frames.Next,a hierarchical adaptive trajectory tracking controller that can guarantee closed-loop stability is proposed according to the cascade characteristics of the 6Do F dynamics.Then,a memory-augmented update rule of unknown parameters is proposed by integrating all historical data of the regression matrix.As long as the finitely excited condition is satisfied,the precise identification of unknown parameters can be achieved.Finally,the validity of the proposed trajectory tracking controller and the parameter identification method is proved through Lyapunov stability theory and numerical simulations.展开更多
Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of i...Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of inertia and mechanical size,the dynamic model of exoskeletons is difficult to construct.Hence,an enhanced whale optimization algorithm(EWOA)is proposed to identify the exoskeleton model parameters.Meanwhile,the periodic excitation trajectories are designed by finite Fourier series to input the desired position demand of exoskeletons with mechanical physical constraints.Then a backstepping controller based on the identified model is adopted to improve the human-robot wearable comfortable performance under cooperative motion.Finally,the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform.The knee joint motion achieves a steady-state response after 0.5 s.Meanwhile,the position error of hip joint response is less than 0.03 rad after 0.9 s.In addition,the steady-state human-robot interaction torque of the two joints is constrained within 15 N·m.This research proposes a whale optimization algorithm to optimize the excitation trajectory and identify model parameters.Furthermore,an enhanced mutation strategy is adopted to avoid whale evolution’s unsatisfactory local optimal value.展开更多
As an independent sand control unit or a common protective shell of a high-quality screen,the punching screen is the outermost sand retaining unit of the sand control pipe which is used in geothermal well or oil and g...As an independent sand control unit or a common protective shell of a high-quality screen,the punching screen is the outermost sand retaining unit of the sand control pipe which is used in geothermal well or oil and gas well.However,most screens only consider the influence of the internal sand retaining medium parameters in the sand control performance design while ignoring the influence of the plugging of the punching screen on the overall sand retaining performance of the screen.To explore the clogging mechanism of the punching screen,this paper established the clogging mechanism calculation model of a single punching screen sand control unit by using the computational fluid mechanics-discrete element method(CFD-DEM)combined method.According to the combined motion of particles and fluids,the influence of the internal flow state on particle motion and accumulation was analyzed.The results showed that(1)the clogging process of the punching sand control unit is divided into three stages:initial clogging,aggravation of clogging and stability of clogging.In the initial stage of blockage,coarse particles form a loose bridge structure,and blockage often occurs preferentially at the streamline gathering place below chamfering inside the sand control unit.In the stage of blockage intensification,the particle mass develops into a relatively complete sand bridge,which develops from both ends of the opening to the center of the opening.In the stable plugging stage,the sand deposits show a“fan shape”and form a“V-shaped”gully inside the punching slot element.(2)Under a certain reservoir particle-size distribution,The slit length and opening height have a large influence on the permeability and blockage rate,while the slit width size has little influence on the permeability and blockage rate.The microscopic clogging mechanism and its law of the punching screen prevention unit are proposed in this study,which has some field guidance significance for the design of punching screen and sand prevention selection.展开更多
BACKGROUND The severity of nonalcoholic fatty liver disease(NAFLD)and lipid metabolism are related to the occurrence of colorectal polyps.Liver-controlled attenuation parameters(liver-CAPs)have been established to pre...BACKGROUND The severity of nonalcoholic fatty liver disease(NAFLD)and lipid metabolism are related to the occurrence of colorectal polyps.Liver-controlled attenuation parameters(liver-CAPs)have been established to predict the prognosis of hepatic steatosis patients.AIM To explore the risk factors associated with colorectal polyps in patients with NAFLD by analyzing liver-CAPs and establishing a diagnostic model.METHODS Patients who were diagnosed with colorectal polyps in the Department of Gastroenterology of our hospital between June 2021 and April 2022 composed the case group,and those with no important abnormalities composed the control group.The area under the receiver operating characteristic curve was used to predict the diagnostic efficiency.Differences were considered statistically significant when P<0.05.RESULTS The median triglyceride(TG)and liver-CAP in the case group were significantly greater than those in the control group(mmol/L,1.74 vs 1.05;dB/m,282 vs 254,P<0.05).TG and liver-CAP were found to be independent risk factors for colorectal polyps,with ORs of 2.338(95%CI:1.154–4.733)and 1.019(95%CI:1.006–1.033),respectively(P<0.05).And there was no difference in the diagnostic efficacy between liver-CAP and TG combined with liver-CAP(TG+CAP)(P>0.05).When the liver-CAP was greater than 291 dB/m,colorectal polyps were more likely to occur.CONCLUSION The levels of TG and liver-CAP in patients with colorectal polyps are significantly greater than those patients without polyps.Liver-CAP alone can be used to diagnose NAFLD with colorectal polyps.展开更多
We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that prov...We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.展开更多
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST...In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.展开更多
This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)syste...This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)systems.A model-based probabilistic safe controller is first designed to guarantee probabilisticλ-contractivity(i.e.,stability and invariance)of the LPV system with respect to a given polyhedral safe set.To obviate the requirement of knowing the LPV system model and to bypass identifying its open-loop model,its closed-loop data-based representation is provided in terms of state and scheduling data as well as a decision variable.It is shown that the variance of the closedloop system,as well as the probability of safety satisfaction,depends on the decision variable and the noise covariance.A minimum-variance direct data-driven gain-scheduling safe control design approach is presented next by designing the decision variable such that all possible closed-loop system realizations satisfy safety with the highest confidence level.This minimum-variance approach is a control-oriented learning method since it minimizes the variance of the state of the closed-loop system with respect to the safe set,and thus minimizes the risk of safety violation.Unlike the certainty-equivalent approach that results in a risk-neutral control design,the minimum-variance method leads to a risk-averse control design.It is shown that the presented direct risk-averse learning approach requires weaker data richness conditions than existing indirect learning methods based on system identification and can lead to a lower risk of safety violation.Two simulation examples along with an experimental validation on an autonomous vehicle are provided to show the effectiveness of the presented approach.展开更多
Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the s...Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments.展开更多
Automatic voltage regulators(AVR)are designed to manipulate a synchronous generator’s voltage level automatically.Proportional integral derivative(PID)controllers are typically used in AVR systems to regulate voltage...Automatic voltage regulators(AVR)are designed to manipulate a synchronous generator’s voltage level automatically.Proportional integral derivative(PID)controllers are typically used in AVR systems to regulate voltage.Although advanced PID tuning methods have been proposed,the actual voltage response differs from the theoretical predictions due to modeling errors and system uncertainties.This requires continuous fine tuning of the PID parameters.However,manual adjustment of these parameters can compromise the stability and robustness of the AVR system.This study focuses on the online self-tuning of PID controllers called indirect design approach-2(IDA-2)in AVR systems while preserving robustness.In particular,we indirectly tune the PID controller by shifting the frequency response.The new PID parameters depend on the frequency-shifting constant and the previously optimized PID parameters.Adjusting the frequency-shifting constant modifies all the PID parameters simultaneously,thereby improving the control performance and robustness.We evaluate the robustness of the proposed online PID tuning method by comparing the gain margins(GMs)and phase margins(PMs)with previously optimized PID parameters during parameter uncertainties.The proposed method is further evaluated in terms of disturbance rejection,measurement noise,and frequency response analysis during parameter uncertainty calculations against existing methods.Simulations show that the proposed method significantly improves the robustness of the controller in the AVR system.In summary,online self-tuning enables automated PID parameter adjustment in an AVR system,while maintaining stability and robustness.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52179105)China Postdoctoral Science Foundation(Grant No.2024M762193)。
文摘In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelligent decision-making method for TBM tunnelling control parameters based on multiobjective optimization(MOO).First,the effective TBM operation dataset is obtained through data preprocessing of the Songhua River(YS)tunnel project in China.Next,the proposed method begins with developing machine learning models for predicting TBM tunnelling performance parameters(i.e.total thrust and cutterhead torque),rock mass classification,and hazard risks(i.e.tunnel collapse and shield jamming).Then,considering three optimal objectives,(i.e.,penetration rate,rock-breaking energy consumption,and cutterhead hob wear),the MOO framework and corresponding mathematical expression are established.The Pareto optimal front is solved using DE-NSGA-II algorithm.Finally,the optimal control parameters(i.e.,advance rate and cutterhead rotation speed)are obtained by the satisfactory solution determination criterion,which can balance construction safety and efficiency with satisfaction.Furthermore,the proposed method is validated through 50 cases of TBM tunnelling,showing promising potential of application.
基金Supported by the National Natural Science Foundation of China(No.52375037)the Outstanding Youth of Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture(No.GDRC 20220801)+1 种基金the Graduate Innovation Fund Project of Beijing University of Civil Engineering and Architecture(No.PG2025160)the Special Fund for Cultivation Projects of Beijing University of Civil Engineering and Architecture(No.X24026).
文摘An enhanced least mean square(LMS)error identification algorithm integrated with Kalman filtering is proposed to resolve accuracy degradation induced by nonlinear dynamics and parameter uncertainties in continuous rotary electro-hydraulic servo systems.This enhancement accelerates convergence and improves accuracy compared with traditional LMS.A fifth-order identification mod-el is developed based on valve-controlled hydraulic motors,with parameters identified using Kalman filter state estimation and gradient smoothing.The results indicate that the improved LMS effectively enhances parameter identification.An advanced disturbance rejection controller(ADRC)is de-signed,and its performance is compared with an optimal proportional integral derivative(PID)con-troller through Simulink simulations.The results show that the ADRC fulfills the control specifications and expands the system’s operational bandwidth.
基金supported by the National Natural Science Foundation of China(No.52372371)the Science Center for Gas Turbine Project,China(Nos.P2022-B-V-002-001,P2022-B-V-001-001).
文摘Direct Thrust Control(DTC) is effective in dealing with the mismatch between thrust and rotor speed in traditional engine control. Among the DTC architecture, model-based thrust estimation method has less arithmetic consumption and better real-time performance. In this paper,a direct thrust controller design approach for gas turbine engine based on parameter dependent model is proposed. In order to ensure the stability of DTC control system based on parameter dependent model, there are usually conservatism detects. For the purpose of reducing the conservatism in the solution process of filter and controller, an Equilibrium Manifold Expansion(EME) model with bounded parameter variation of engine is established. The design conditions of Kalman filter for discrete-time EME system are introduced, and the proposed conditions have a certain suppression effect on the input noise of the system with bounded parameter variation.The engine thrust estimator stability and H∞filtering problems are solved by the polytopic quadratic Lyapunov function based on the Linear Matrix Inequalities(LMIs). To meet the performance requirements of thrust control, the Grey Wolf Optimization(GWO) algorithm is applied to optimize the PID control parameters. The proposed method is verified on a Hardware-in-Loop(HIL) platform. The simulation results demonstrate that the DTC framework can ensure the stability of engine closed-loop system in large range deviation tests. The filter and controller solution method considering the parameter variation boundary can obtain a solution that makes the system have better performance parameters. Moreover, the proposed filter has better thrust estimation performance than the traditional Kalman filter under the condition of sensor noise. Compared with Augmented Linear Quadratic Regulator(ALQR) controller, the PID controller optimized by GWO has a faster response in simulation.
基金supported in part by the Thai Nguyen University of Technology,Vietnam.
文摘This article presents an adaptive optimal control method for a semi-active suspension system.The model of the suspension system is built,in which the components of uncertain parameters and exogenous disturbance are described.The adaptive optimal control law consists of the sum of the optimal control component and the adaptive control component.First,the optimal control law is designed for the model of the suspension system after ignoring the components of uncertain parameters and exogenous disturbance caused by the road surface.The optimal control law expresses the desired dynamic characteristics of the suspension system.Next,the adaptive component is designed with the purpose of compensating for the effects caused by uncertain parameters and exogenous disturbance caused by the road surface;the adaptive component has adaptive parameter rules to estimate uncertain parameters and exogenous disturbance.When exogenous disturbances are eliminated,the system responds with an optimal controller designed.By separating theoretically the dynamic of a semi-active suspension system,this solution allows the design of two separate controllers easily and has reduced the computational burden and the use of too many tools,thus allowing for more convenient hardware implementation.The simulation results also show the effectiveness of damping oscillations of the proposed solution in this article.
基金supported by the National Key Research and Development Program of China(No.2022YFB3706704)the Academician Special Science Research Project of CCCC(No.YSZX-03-2022-01-B).
文摘To investigate the influence of different longitudinal constraint systems on the longitudinal displacement at the girder ends of a three-tower suspension bridge,this study takes the Cangrong Xunjiang Bridge as an engineering case for finite element analysis.This bridge employs an unprecedented tower-girder constraintmethod,with all vertical supports placed at the transition piers at both ends.This paper aims to study the characteristics of longitudinal displacement control at the girder ends under this novel structure,relying on finite element(FE)analysis.Initially,based on the Weigh In Motion(WIM)data,a random vehicle load model is generated and applied to the finite elementmodel.Several longitudinal constraint systems are proposed,and their effects on the structural response of the bridge are compared.The most reasonable system,balancing girder-end displacement and transitional pier stress,is selected.Subsequently,the study examines the impact of different viscous damper parameters on key structural response indicators,including cumulative longitudinal displacement at the girder ends,maximum longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,maximum longitudinal displacement at the pier tops,longitudinal acceleration at the pier tops,and maximum bending moment at the pier bottoms.Finally,the coefficient of variation(CV)-TOPSIS method is used to optimize the viscous damper parameters for multiple objectives.The results show that adding viscous dampers at the side towers,in addition to the existing longitudinal limit bearings at the central tower,can most effectively reduce the response of structural indicators.The changes in these indicators are not entirely consistent with variations in damping coefficient and velocity exponent.The damper parameters significantly influence cumulative longitudinal displacement at the girder ends,cumulative longitudinal displacement at the pier tops,and maximum bending moments at the pier bottoms.The optimal damper parameters are found to be a damping coefficient of 5000 kN/(m/s)0.2 and a velocity exponent of 0.2.
基金funded by Taif University,Saudi Arabia,Project No.(TU-DSPP-2024-52).
文摘Aquila Optimizer(AO)is a recently proposed population-based optimization technique inspired by Aquila’s behavior in catching prey.AO is applied in various applications and its numerous variants were proposed in the literature.However,chaos theory has not been extensively investigated in AO.Moreover,it is still not applied in the parameter estimation of electro-hydraulic systems.In this work,ten well-defined chaotic maps were integrated into a narrowed exploitation of AO for the development of a robust chaotic optimization technique.An extensive investigation of twenty-three mathematical benchmarks and ten IEEE Congress on Evolutionary Computation(CEC)functions shows that chaotic Aquila optimization techniques perform better than the baseline technique.The investigation is further conducted on parameter estimation of an electro-hydraulic control system,which is performed on various noise levels and shows that the proposed chaotic AO with Piecewise map(CAO6)achieves the best fitness values of and at noise levels and respectively.Friedman test 2.873E-05,1.014E-04,8.728E-031.300E-03,1.300E-02,1.300E-01,for repeated measures,computational analysis,and Taguchi test reflect the superiority of CAO6 against the state of the arts,demonstrating its potential for addressing various engineering optimization problems.However,the sensitivity to parameter tuning may limit its direct application to complex optimization scenarios.
基金funded by the National Key R&D Program“Transportation Infrastructure”project(No.2022YFB2603400)the Technology Research and Development Plan Program of China State Railway Group Co.,Ltd.(No.Q2024T001)the National project pre research project of Suzhou City University(No.2023SGY019).
文摘Purpose-The indoor vibration compaction test(IVCT)was a key step in controlling the compaction quality for high-speed railway graded aggregate(HRGA),which currently had a research gap on the assessment indicators and compaction parameters.Design/methodology/approach-To address these issues,a novel multi-indicator IVCT method was proposed,including physical indicator dry density(ρd)and mechanical indicators dynamic stiffness(Krb)and bearing capacity coefficient(K20).Then,a series of IVCTs on HRGA under different compaction parameters were conducted with an improved vibration compactor,which could monitor the physical-mechanical indicators in real-time.Finally,the optimal vibration compaction parameters,including the moisture content(ω),the diameter-to-maximum particle size ratio(Rd),the thickness-to-maximum particle size ratio(Rh),the vibration frequency(f),the vibration mass(Mc)and the eccentric distance(re),were determined based on the evolution characteristics for the physical-mechanical indicators during compaction.Findings-All results indicated that theρd gradually increased and then stabilized,and the Krb initially increased and then decreased.Moreover,the inflection time of the Krb was present as the optimal compaction time(Tlp)during compaction.Additionally,optimal compaction was achieved whenωwas the water-holding content after mud pumping,Rd was 3.4,Rh was 3.5,f was the resonance frequency,and the ratio between the excitation force and the Mc was 1.8.Originality/value-The findings of this paper were significant for the quality control of HRGA compaction.
基金supported by the DEEPCOBOT project under Grant 306640/O70 funded by the Research Council of Norway.
文摘This paper studies motor joint control of a 4-degree-of-freedom(DoF)robotic manipulator using learning-based Adaptive Dynamic Programming(ADP)approach.The manipulator’s dynamics are modelled as an open-loop 4-link serial kinematic chain with 4 Degrees of Freedom(DoF).Decentralised optimal controllers are designed for each link using ADP approach based on a set of cost matrices and data collected from exploration trajectories.The proposed control strategy employs an off-line,off-policy iterative approach to derive four optimal control policies,one for each joint,under exploration strategies.The objective of the controller is to control the position of each joint.Simulation and experimental results show that four independent optimal controllers are found,each under similar exploration strategies,and the proposed ADP approach successfully yields optimal linear control policies despite the presence of these complexities.The experimental results conducted on the Quanser Qarm robotic platform demonstrate the effectiveness of the proposed ADP controllers in handling significant dynamic nonlinearities,such as actuation limitations,output saturation,and filter delays.
文摘Objective Helicobacter pylori(HP)infection is associated with non-alcoholic fatty liver disease(NAFLD)and insulin resistance;however,the correlation between HP eradication and NAFLD remains controversial.This systematic review and meta-analysis examined the effect of HP treatment on clinical and laboratory parameters in NAFLD patients.Methods We conducted a literature search of the PubMed,Embase,Scopus,and Web of Science databases through Septem-ber 2023 for randomized controlled trials(RCTs)examining the effect of HP treatment on NAFLD patients versus lifestyle changes alone.The primary outcome was the change in steatosis parameters.The secondary endpoints were changes in anthropometric parameters,inflammatory markers(TNF-α),and metabolic parameters(fasting blood glucose,homeostasis model assessment of insulin resistance,AST/ALT,and lipid profile).The random effects model was used to calculate the standardized mean difference(SMD)with associated 95%confidence intervals(CIs)for our desired outcome.Results Four RCTs met our inclusion criteria.A total of 453 patients were included(mean age 42.8 years,58.5%males),228(50.3%)of whom were in the HP eradication group and 225(49.7%)of whom were in the lifestyle modification group.Compared with lifestyle modification alone,HP eradication had a significant effect on reducing liver steatosis and TNF-αlevels(SMD:-0.9;95%CI-14.67,-3.82,I^(2)=0%and SMD:-6.3;95%CI-9.04,-3.56,I^(2)=0%,respectively).No sig-nificant effect on other metabolic parameters was found.Conclusions HP eradication significantly reduced liver steatosis and TNF-αlevels in NAFLD patients.However,HP eradi-cation did not significantly affect other metabolic indices compared to lifestyle changes alone.
文摘In high-renewable-energy power systems,the demand for fast-responding capabilities is growing.To address the limitations of conventional closed-loop frequency control,where the integral coefficient cannot dynamically adjust the frequency regulation command based on the state of charge(SoC)of energy storage units,this paper proposes a secondary frequency regulation control strategy based on variable integral coefficients for multiple energy storage units.First,a power-uniform controller is designed to ensure that thermal power units gradually take on more regulation power during the frequency regulation process.Next,a control framework based on variable integral coefficients is proposed within the secondary frequency regulation model,along with an objective function that simultaneously considers both Automatic Generation Control(AGC)command tracking performance and SoC recovery requirements of energy storage units.Finally,a gradient descent optimization method is used to dynamically adjust the gain of the energy storage integral controller,allowingmultiple energy storage units to respond in real-time to AGC instructions and SoC variations.Simulation results confirmthe effectiveness of the proposedmethod.Compared to traditional strategies,the proposed approach takes into account the SoCdiscrepancies amongmultiple energy storage units and the duration of system net power imbalances.It successfully implements secondary frequency regulation while achieving dynamic power allocation among the units.
基金supported in part by the National Key R&D Program of China(No.2021YFB2011300)the National Natural Science Foundation of China(No.52075262,51905271,52275062)+1 种基金the Fok Ying-Tong Education Foundation of China(No.171044)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX22_0471)。
文摘This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results that are applied to dispose of unknown constant parameters only,the unique feature is that an adaptive-gain nonlinear term is introduced into the control design to handle unknown time-variant parameters.Concurrently both mismatched and matched disturbances existing in electro-hydraulic axis systems can also be addressed in this way.With skillful integration of the backstepping technique and the adaptive control,a synthesized controller framework is successfully developed for electro-hydraulic axis systems,in which the coupled interaction between parameter estimation and disturbance estimation is avoided.Accordingly,this designed controller has the capacity of low-computation costs and simpler parameter tuning when compared to the other ones that integrate the adaptive control and observer/estimator-based technique to dividually handle parameter uncertainties and disturbances.Also,a nonlinear filter is designed to eliminate the“explosion of complexity”issue existing in the classical back-stepping technique.The stability analysis uncovers that all the closed-loop signals are bounded and the asymptotic tracking performance is also assured.Finally,contrastive experiment results validate the superiority of the developed method as well.
基金partially supported by the Natural Science Foundation of China (Grant Nos.62103052,52272358)partially supported by the Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncertainty of structural and aerodynamic parameters,the six-degree-of-freedom(6Do F) nonlinear equations describing the position and attitude dynamics of the rotor-missile are established,respectively,in the inertial and body-fixed reference frames.Next,a hierarchical adaptive trajectory tracking controller that can guarantee closed-loop stability is proposed according to the cascade characteristics of the 6Do F dynamics.Then,a memory-augmented update rule of unknown parameters is proposed by integrating all historical data of the regression matrix.As long as the finitely excited condition is satisfied,the precise identification of unknown parameters can be achieved.Finally,the validity of the proposed trajectory tracking controller and the parameter identification method is proved through Lyapunov stability theory and numerical simulations.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFF0708903)Ningbo Municipal Key Technology Research and Development Program of China(Grant No.2022Z006)Youth Fund of National Natural Science Foundation of China(Grant No.52205043)。
文摘Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of inertia and mechanical size,the dynamic model of exoskeletons is difficult to construct.Hence,an enhanced whale optimization algorithm(EWOA)is proposed to identify the exoskeleton model parameters.Meanwhile,the periodic excitation trajectories are designed by finite Fourier series to input the desired position demand of exoskeletons with mechanical physical constraints.Then a backstepping controller based on the identified model is adopted to improve the human-robot wearable comfortable performance under cooperative motion.Finally,the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform.The knee joint motion achieves a steady-state response after 0.5 s.Meanwhile,the position error of hip joint response is less than 0.03 rad after 0.9 s.In addition,the steady-state human-robot interaction torque of the two joints is constrained within 15 N·m.This research proposes a whale optimization algorithm to optimize the excitation trajectory and identify model parameters.Furthermore,an enhanced mutation strategy is adopted to avoid whale evolution’s unsatisfactory local optimal value.
文摘As an independent sand control unit or a common protective shell of a high-quality screen,the punching screen is the outermost sand retaining unit of the sand control pipe which is used in geothermal well or oil and gas well.However,most screens only consider the influence of the internal sand retaining medium parameters in the sand control performance design while ignoring the influence of the plugging of the punching screen on the overall sand retaining performance of the screen.To explore the clogging mechanism of the punching screen,this paper established the clogging mechanism calculation model of a single punching screen sand control unit by using the computational fluid mechanics-discrete element method(CFD-DEM)combined method.According to the combined motion of particles and fluids,the influence of the internal flow state on particle motion and accumulation was analyzed.The results showed that(1)the clogging process of the punching sand control unit is divided into three stages:initial clogging,aggravation of clogging and stability of clogging.In the initial stage of blockage,coarse particles form a loose bridge structure,and blockage often occurs preferentially at the streamline gathering place below chamfering inside the sand control unit.In the stage of blockage intensification,the particle mass develops into a relatively complete sand bridge,which develops from both ends of the opening to the center of the opening.In the stable plugging stage,the sand deposits show a“fan shape”and form a“V-shaped”gully inside the punching slot element.(2)Under a certain reservoir particle-size distribution,The slit length and opening height have a large influence on the permeability and blockage rate,while the slit width size has little influence on the permeability and blockage rate.The microscopic clogging mechanism and its law of the punching screen prevention unit are proposed in this study,which has some field guidance significance for the design of punching screen and sand prevention selection.
基金Supported by the Special Research Project of the Capital’s Health Development,No.2024-3-7037and the Beijing Clinical Key Specialty Project.
文摘BACKGROUND The severity of nonalcoholic fatty liver disease(NAFLD)and lipid metabolism are related to the occurrence of colorectal polyps.Liver-controlled attenuation parameters(liver-CAPs)have been established to predict the prognosis of hepatic steatosis patients.AIM To explore the risk factors associated with colorectal polyps in patients with NAFLD by analyzing liver-CAPs and establishing a diagnostic model.METHODS Patients who were diagnosed with colorectal polyps in the Department of Gastroenterology of our hospital between June 2021 and April 2022 composed the case group,and those with no important abnormalities composed the control group.The area under the receiver operating characteristic curve was used to predict the diagnostic efficiency.Differences were considered statistically significant when P<0.05.RESULTS The median triglyceride(TG)and liver-CAP in the case group were significantly greater than those in the control group(mmol/L,1.74 vs 1.05;dB/m,282 vs 254,P<0.05).TG and liver-CAP were found to be independent risk factors for colorectal polyps,with ORs of 2.338(95%CI:1.154–4.733)and 1.019(95%CI:1.006–1.033),respectively(P<0.05).And there was no difference in the diagnostic efficacy between liver-CAP and TG combined with liver-CAP(TG+CAP)(P>0.05).When the liver-CAP was greater than 291 dB/m,colorectal polyps were more likely to occur.CONCLUSION The levels of TG and liver-CAP in patients with colorectal polyps are significantly greater than those patients without polyps.Liver-CAP alone can be used to diagnose NAFLD with colorectal polyps.
基金Project supported by the National Natural Science Foundation of China (Grant No.62073045)。
文摘We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.
文摘In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.
基金supported in part by the Department of Navy award (N00014-22-1-2159)the National Science Foundation under award (ECCS-2227311)。
文摘This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)systems.A model-based probabilistic safe controller is first designed to guarantee probabilisticλ-contractivity(i.e.,stability and invariance)of the LPV system with respect to a given polyhedral safe set.To obviate the requirement of knowing the LPV system model and to bypass identifying its open-loop model,its closed-loop data-based representation is provided in terms of state and scheduling data as well as a decision variable.It is shown that the variance of the closedloop system,as well as the probability of safety satisfaction,depends on the decision variable and the noise covariance.A minimum-variance direct data-driven gain-scheduling safe control design approach is presented next by designing the decision variable such that all possible closed-loop system realizations satisfy safety with the highest confidence level.This minimum-variance approach is a control-oriented learning method since it minimizes the variance of the state of the closed-loop system with respect to the safe set,and thus minimizes the risk of safety violation.Unlike the certainty-equivalent approach that results in a risk-neutral control design,the minimum-variance method leads to a risk-averse control design.It is shown that the presented direct risk-averse learning approach requires weaker data richness conditions than existing indirect learning methods based on system identification and can lead to a lower risk of safety violation.Two simulation examples along with an experimental validation on an autonomous vehicle are provided to show the effectiveness of the presented approach.
基金supported in part by the National Natural Science Foundation of China under Grant 52077002。
文摘Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments.
基金the Malaysian Ministry of Higher Education(MOHE)for their support through the Fundamental Research Grant Scheme(FRGS/1/2021/ICT02/UMP/03/3)(UMPSA Reference:RDU 210117)。
文摘Automatic voltage regulators(AVR)are designed to manipulate a synchronous generator’s voltage level automatically.Proportional integral derivative(PID)controllers are typically used in AVR systems to regulate voltage.Although advanced PID tuning methods have been proposed,the actual voltage response differs from the theoretical predictions due to modeling errors and system uncertainties.This requires continuous fine tuning of the PID parameters.However,manual adjustment of these parameters can compromise the stability and robustness of the AVR system.This study focuses on the online self-tuning of PID controllers called indirect design approach-2(IDA-2)in AVR systems while preserving robustness.In particular,we indirectly tune the PID controller by shifting the frequency response.The new PID parameters depend on the frequency-shifting constant and the previously optimized PID parameters.Adjusting the frequency-shifting constant modifies all the PID parameters simultaneously,thereby improving the control performance and robustness.We evaluate the robustness of the proposed online PID tuning method by comparing the gain margins(GMs)and phase margins(PMs)with previously optimized PID parameters during parameter uncertainties.The proposed method is further evaluated in terms of disturbance rejection,measurement noise,and frequency response analysis during parameter uncertainty calculations against existing methods.Simulations show that the proposed method significantly improves the robustness of the controller in the AVR system.In summary,online self-tuning enables automated PID parameter adjustment in an AVR system,while maintaining stability and robustness.