In response to the urgent demand for lightweight,magnesium(Mg)alloys have garnered considerable attention owing to their low density.Nonetheless,the intrinsic poor room-temperature formability of Mg alloys remains a m...In response to the urgent demand for lightweight,magnesium(Mg)alloys have garnered considerable attention owing to their low density.Nonetheless,the intrinsic poor room-temperature formability of Mg alloys remains a major obstacle in shaping precise complex components,necessitating the development of superplastic Mg alloys.Excellent superplasticity is usually acquired in high-alloyed Mg alloys with enhanced microstructural thermal stability facilitated by abundant optimized second-phase particles.While for cost-effective low-alloyed Mg alloys lacking particles,regulating solute segregation has emerged as a promising approach to achieve superplasticity recently.Moreover,the potential of bimodal-grained Mg alloys for superplastic deformation has been revealed,expanding the options for designing superplastic materials beyond the conventional approach of fine-grained microstructures.This study reviews significant developments in superplastic Mg alloys from the view of alloying strategies,grain structure control and deformation mechanisms,with potential implications for future research and industrial applications of superplastic Mg alloys.展开更多
Age-related macular degeneration(AMD)is a disease that affects the vision of elderly individuals worldwide.Although current therapeutics have shown effectiveness against AMD,some patients may remain unresponsive and c...Age-related macular degeneration(AMD)is a disease that affects the vision of elderly individuals worldwide.Although current therapeutics have shown effectiveness against AMD,some patients may remain unresponsive and continue to experience disease progression.Therefore,in-depth knowledge of the mechanism underlying AMD pathogenesis is urgently required to identify potential drug targets for AMD treatment.Recently,studies have suggested that dysfunction of mitochondria can lead to the aggregation of reactive oxygen species(ROS)and activation of the cyclic GMP-AMP synthase(cGAS)/stimulator of interferon genes(STING)innate immunity pathways,ultimately resulting in sterile inflammation and cell death in various cells,such as cardiomyocytes and macrophages.Therefore,combining strategies targeting mitochondrial dysfunction and inflammatory mediators may hold great potential in facilitating AMD management.Notably,emerging evidence indicates that natural products targeting mitochondrial quality control(MQC)and the cGAS/STING innate immunity pathways exhibit promise in treating AMD.Here,we summarize phytochemicals that could directly or indirectly influence the MQC and the cGAS/STING innate immunity pathways,as well as their interconnected mediators,which have the potential to mitigate oxidative stress and suppress excessive inflammatory responses,thereby hoping to offer new insights into therapeutic interventions for AMD treatment.展开更多
Three-dimensional(3D)nanoprinting via two-photon polymerization offers unparalleled design flexibility and precision,thereby enabling rapid prototyping of advanced micro-optical elements and systems that have found im...Three-dimensional(3D)nanoprinting via two-photon polymerization offers unparalleled design flexibility and precision,thereby enabling rapid prototyping of advanced micro-optical elements and systems that have found important applications in endomicroscopy and biomedical imaging.The potential of this versatile tool for monolithic manufacturing of dynamic micro-opto-electro-mechanical systems(MOEMSs),however,has not yet been sufficiently explored.This work introduces a 3D-nanoprinted lens actuator with a large optical aperture,optimized for remote focusing in miniaturized imaging systems.The device integrates orthoplanar linear motion springs,a self-aligned sintered micro-magnet,and a monolithic lens,actuated by dual microcoils for uniaxial motion.The use of 3D nanoprinting allows complete design freedom for the integrated optical lens,whereas the monolithic fabrication ensures inherent alignment of the lens with the mechanical elements.With a lens diameter of 1.4 mm and a compact footprint of 5.74 mm,it achieves high mechanical robustness at resonant frequencies exceeding 300 Hz while still providing a large displacement range of 200μm(±100μm).A comprehensive analysis of optical and mechanical performance,including the effects of coil temperature and polymer viscoelasticity,demonstrates its advantages over conventional micro-electro-mechanical system actuators,showcasing its potential for next-generation imaging applications.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
In this paper,we define for the trace operator,the solution of certain models of vibrating plates standards with initial data in a strategic region spaces of weak regularities.Indeed,we know that the notion of regiona...In this paper,we define for the trace operator,the solution of certain models of vibrating plates standards with initial data in a strategic region spaces of weak regularities.Indeed,we know that the notion of regional controllability is more adapted to systems described by dynamic systems.Regional controllability results in a strategic area were established for vibrating plates by the Hilbertian Uniqueness Method.展开更多
This study highlights the importance of identifying and addressing risk factors associated with wound complications following transtibial amputation in diabetic patients.These amputations,often necessitated by severe ...This study highlights the importance of identifying and addressing risk factors associated with wound complications following transtibial amputation in diabetic patients.These amputations,often necessitated by severe diabetic foot ulcers,carry significant risks of postoperative complications such as infection and delayed wound healing.Elevated hemoglobin A1c levels,indicative of poor glycemic control,and a history of kidney transplantation,due to required immunosuppressive therapy,are key factors influencing these outcomes.This paper emphasizes the need for enhanced glycemic management and personalized postoperative care,particularly for immunocompromised individuals,to minimize complications and improve patient prognosis.Future research should focus on prospective studies to validate targeted interventions and optimize care strategies,ultimately aiming to reduce the healthcare burden associated with diabetic foot complications.展开更多
This paper presents a method for the automatic adjustment of the laser defocusing amount in micro-laser-induced breakdown spectroscopy. A microscopic optical imaging system consisting of a CCD camera and a 20× ob...This paper presents a method for the automatic adjustment of the laser defocusing amount in micro-laser-induced breakdown spectroscopy. A microscopic optical imaging system consisting of a CCD camera and a 20× objective lens was adopted to realize the method. The real-time auto-focusing of the system was achieved by detecting the effective pixels of the light spot generated by the laser pointer. The focusing accuracy of the method could achieve 3 μm. The element concentrations of Mn and Ni in low-alloy steels were analyzed at a crater diameter of about 35 μm using the presented method. After using the presented method, the determination coefficients of Mn and Ni both exceeded 0.997, with the root-mean-square errors being 0.0133 and 0.0395, respectively. Scanning analysis was performed on the inclined plane and the curved surface by means of focusing control and non-focusing control. Ten characteristic spectral lines of Fe were selected as the analysis lines. With the focusing control, the average relative standard deviations obtained on the inclined plane and curved surface were both less than 5%, and much less than the values without focusing control, 14.6% and 40.39%.展开更多
There exists a gap between control theory and control practice,i.e.,all control methods suggested by researchers are not implemented in real systems and,on the other hand,many important in dustrial problems are not st...There exists a gap between control theory and control practice,i.e.,all control methods suggested by researchers are not implemented in real systems and,on the other hand,many important in dustrial problems are not studied in the academic research.Benchmark problems can help close this gap and provide many opportunities for members in both the controls theory and application communities.The goal is to survey and give pointers to different general controls and modeling related benchmark problems that can serve as inspiration for future benchmarks and then specifically focus the benchmark coverage on automotive control engineering application.In the paper reflections are given on how different categories of benchmark designers,benchmark solvers and third part users can benefit from providing,solving,and studying benchmark problems.The paper also collects information about several benchmark problems and gives pointers to papers than give more detailed information about different problems that have been presented.展开更多
AIM: To evaluate the effectiveness of peripheral defocus spectacle lenses(PDLs) in myopia control. METHODS: Literature retrieval on Pub Med, Cochrane Library, Embase, and Web of Science databases, and the search time ...AIM: To evaluate the effectiveness of peripheral defocus spectacle lenses(PDLs) in myopia control. METHODS: Literature retrieval on Pub Med, Cochrane Library, Embase, and Web of Science databases, and the search time limit was from the establishment of each database to December 29, 2021 were conducted. Change of spherical equivalent refraction(SER) and axial change(AL) were extracted from the literatures that met the inclusion criteria, and Rev Man5.3 software was used for Meta-analysis. RESULTS: A total of 4 randomized controlled trials(RCTs) were included in this Meta-analysis, involving 770 myopic children. The results showed that PDLs could delay the progression of myopia in children with myopia compared with single vision spectacle lenses(SVLs;WMD=0.21 D, 95%CI: 0.01, 0.41, P=0.04). However, there was no significant difference in controlling the growth of axial length(AL) in myopic children(WMD=-0.10 mm, 95%CI:-0.21, 0.01, P=0.07). The results of the effectiveness of myopia control between the two spectacle lenses showed that PDLs were more effective in controlling the progression of myopia(OR=5.73, 95%CI: 2.58, 12.70, P<0.001) and delaying the growth of AL(OR=44.25, 95%CI: 8.84, 221.58, P<0.001) than SVLs, and the differences were statistically significant. CONCLUSION: PDLs can control the progression of myopia compared with SVLs, but cannot delay the growth of AL, and the effectiveness of PDLs in myopia control better than SVLs.展开更多
This study is to investigate the effectiveness and safety of bloodletting puncture(BP)for acute ischemic stroke(AIS)when used in combination with standard treatment,as well as the patients'feelings and attitudes t...This study is to investigate the effectiveness and safety of bloodletting puncture(BP)for acute ischemic stroke(AIS)when used in combination with standard treatment,as well as the patients'feelings and attitudes toward the treatment.This is a mixed method research which includes a multi-center,superiority,randomized controlled clinical trial,and focus group interview.A total of 360 AIS participants will be enrolled.They will be randomized into one of the following two groups for 7 d:(a)BP with standard treatment group(n=180);(b)standard treatment group(n=180).The primary outcome will be National Institute of Health stroke scale(NIHSS)score at day 7 after treatment.Secondary outcomes will be changes of Glasgow Coma Scale score,NIHSS score,mRS and Traditional Chinese Medicine syndrome score from baseline to 7,14,and 30 d after treatment,recurrence rate and all-cause mortality rate within 30 d,and the safety assessments.The focus group will be conducted with a purposive sample of 1-2 acupuncturists and 1-2 patients respectively at each center at 7 and 30 d after treatment.We designed a mixed method study to evaluate the effect of BP,an acupuncture therapy for patients with AIS.If the findings of this study confirm the effectiveness of BP to reduce the NIHSS score and other related outcomes and patients are willing to accept the therapy,we believe this study will help the implementation of this therapy in clinical practice,and provide new evidence for the treatment of AIS.展开更多
Analytical propagation formulas are derived for partially coherent controllable dark-hollow beams (CDHBs) through a thin lens based on the generalized Huygens-Fresnel integral. The expressions of the position for ma...Analytical propagation formulas are derived for partially coherent controllable dark-hollow beams (CDHBs) through a thin lens based on the generalized Huygens-Fresnel integral. The expressions of the position for maximum irradiance on-axis and the relative focal shift are evaluated by the analytical propagation formulas. Our numerical results show that both the relative focal shift and the effective beam width of focused partially coherent CDHBs are mainly determined by the initial transverse coherence width 6g and the Fresnel number Nw, which are also affected by the changes of both the dark-size adjusting parameter p and the order N of CDHBs.展开更多
The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,...The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.展开更多
Purpose: The purpose of this study was to evaluate the change in corneal wavefront aberrations in young adults who have been fit with multifocal soft contact lenses for myopia progression control. Findings have been a...Purpose: The purpose of this study was to evaluate the change in corneal wavefront aberrations in young adults who have been fit with multifocal soft contact lenses for myopia progression control. Findings have been analyzed for statistical significance and clinical relevance and compared to reportedly successful Orthokeratology outcomes. Methods: The dominant eye of 40 participants (27 women, 13 men;mean age 27.3 ± 3.2 years;range 23 to 39 years) was fit with Proclear Multifocal center distance lenses (Coopervision, Pleasanton, USA) having a variety of distance powers and reading additions. Refractive errors were limited to a range of –6.00 D up to +1.00 D of sphere, and no greater than –1.00 D of cylinder. Corneal wavefront measurements were performed over 6 mm diameters with a Zeiss Atlas 9000 corneal topographer (Zeiss Meditec, Dublin, USA) prior to, and following lens fitting. Data were converted into rectangular Fourier optics terms M, J0, J45 and RMS values for each reading addition were statistically analyzed. Following evaluation of statistical significance and clinical relevance, results were compared to published data from successful Orthokeratology treatments. Results: Statistically significant changes in higher order aberrations were detected for lenses of all reading additions. Lens groups with higher Add-powers demonstrated stronger changes with increased significance. Final RMS values relating to 2nd, 3rd and 4th Zernike Orders reached clinical significance with a wavefront error of 0.10 μm, the equivalent of 0.25D. Moreover, as Add-powers increased, 3rd and 4th order aberrations likewise showed an increase. Pre-fitting astigmatism values accounted for the highest recorded aberrations and remained predominantly unchanged. Conclusion: Proclear Multifocal center-distance contact lenses were found to increase higher order wavefront aberrations in a manner dependent on their Add-power. In comparison to successful Orthokeratology outcomes, the amounts of resulting aberrations are notably different.展开更多
Although terrorist bombings have tormented the world for a long time, currently they have reached unprecedented levels and become a continuous threat without borders, race or age. Almost all of them are caused by impr...Although terrorist bombings have tormented the world for a long time, currently they have reached unprecedented levels and become a continuous threat without borders, race or age. Almost all of them are caused by improvised explosive devices. The unpredictability of the terrorist bombings, leading to simultaneous generation of a large number of casualties and severe "multidimensional" blast trauma require a constant vigilance and preparedness of every hospital worldwide. Approximately 1.0%-2.6% of all trauma patients and 7% of the combat casualties require a massive blood transfusion. Coagulopathy is presented in 65% of them with mortality exceeding 50%. Damage control resuscitation is a novel approach, developed in the military practice for treatment of this subgroup of trauma patients. The comparison with the conventional approach revealed mortality reduction with 40%-74%, lower frequency of abdominal compartment syndrome(8% vs 16%), sepsis(9% vs 20%), multiorgan failure(16% vs 37%) and a significant reduction of resuscitation volumes, both crystalloids and blood products. Damage control surgery(DCS) and damage control resuscitation(DCR) are promising new approaches, contributing for the mortality reduction among the most severely wounded patients. Despite the lack of consensus about the optimal ratio of the blood products and the possible influence of the survival bias, we think that DCR carries survival benefit and recommend it in trauma patients with exsanguinating bleeding.展开更多
This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic mo...This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.展开更多
The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow ...The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract.展开更多
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype...This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.展开更多
基金primarily supported by The National Natural Science Foundation of China(under Nos.52234009 and 52271103)Partial financial support came from the Program for the Central University Youth Innovation Team(No.419021423505)the Fundamental Research Funds for the Central Universities,JLU.
文摘In response to the urgent demand for lightweight,magnesium(Mg)alloys have garnered considerable attention owing to their low density.Nonetheless,the intrinsic poor room-temperature formability of Mg alloys remains a major obstacle in shaping precise complex components,necessitating the development of superplastic Mg alloys.Excellent superplasticity is usually acquired in high-alloyed Mg alloys with enhanced microstructural thermal stability facilitated by abundant optimized second-phase particles.While for cost-effective low-alloyed Mg alloys lacking particles,regulating solute segregation has emerged as a promising approach to achieve superplasticity recently.Moreover,the potential of bimodal-grained Mg alloys for superplastic deformation has been revealed,expanding the options for designing superplastic materials beyond the conventional approach of fine-grained microstructures.This study reviews significant developments in superplastic Mg alloys from the view of alloying strategies,grain structure control and deformation mechanisms,with potential implications for future research and industrial applications of superplastic Mg alloys.
基金funded by Chinese NSFC(Grant Nos.:82373336,82303238,and U22A20311,Sichuan Science and Technology Department,China(GrantNos.:2024NSFSC1945,,and 2023NSFSC0667)the Third People's Hospital of Chengdu Clinical Research Program,China(Grant Nos.:CSY-YN-01-2023-013,CSYYN-01-2023-005,and CSY-YN-03-2024-003)+1 种基金Sichuan University“From O to 1”Innovative Research Project,China(Project No.:2023SCUH0024)Health Commission of Chengdu,China(Grant No.:2024291).
文摘Age-related macular degeneration(AMD)is a disease that affects the vision of elderly individuals worldwide.Although current therapeutics have shown effectiveness against AMD,some patients may remain unresponsive and continue to experience disease progression.Therefore,in-depth knowledge of the mechanism underlying AMD pathogenesis is urgently required to identify potential drug targets for AMD treatment.Recently,studies have suggested that dysfunction of mitochondria can lead to the aggregation of reactive oxygen species(ROS)and activation of the cyclic GMP-AMP synthase(cGAS)/stimulator of interferon genes(STING)innate immunity pathways,ultimately resulting in sterile inflammation and cell death in various cells,such as cardiomyocytes and macrophages.Therefore,combining strategies targeting mitochondrial dysfunction and inflammatory mediators may hold great potential in facilitating AMD management.Notably,emerging evidence indicates that natural products targeting mitochondrial quality control(MQC)and the cGAS/STING innate immunity pathways exhibit promise in treating AMD.Here,we summarize phytochemicals that could directly or indirectly influence the MQC and the cGAS/STING innate immunity pathways,as well as their interconnected mediators,which have the potential to mitigate oxidative stress and suppress excessive inflammatory responses,thereby hoping to offer new insights into therapeutic interventions for AMD treatment.
文摘Three-dimensional(3D)nanoprinting via two-photon polymerization offers unparalleled design flexibility and precision,thereby enabling rapid prototyping of advanced micro-optical elements and systems that have found important applications in endomicroscopy and biomedical imaging.The potential of this versatile tool for monolithic manufacturing of dynamic micro-opto-electro-mechanical systems(MOEMSs),however,has not yet been sufficiently explored.This work introduces a 3D-nanoprinted lens actuator with a large optical aperture,optimized for remote focusing in miniaturized imaging systems.The device integrates orthoplanar linear motion springs,a self-aligned sintered micro-magnet,and a monolithic lens,actuated by dual microcoils for uniaxial motion.The use of 3D nanoprinting allows complete design freedom for the integrated optical lens,whereas the monolithic fabrication ensures inherent alignment of the lens with the mechanical elements.With a lens diameter of 1.4 mm and a compact footprint of 5.74 mm,it achieves high mechanical robustness at resonant frequencies exceeding 300 Hz while still providing a large displacement range of 200μm(±100μm).A comprehensive analysis of optical and mechanical performance,including the effects of coil temperature and polymer viscoelasticity,demonstrates its advantages over conventional micro-electro-mechanical system actuators,showcasing its potential for next-generation imaging applications.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
文摘In this paper,we define for the trace operator,the solution of certain models of vibrating plates standards with initial data in a strategic region spaces of weak regularities.Indeed,we know that the notion of regional controllability is more adapted to systems described by dynamic systems.Regional controllability results in a strategic area were established for vibrating plates by the Hilbertian Uniqueness Method.
基金Supported by Henan Province Key Research and Development Program,No.231111311000Henan Provincial Science and Technology Research Project,No.232102310411+2 种基金Henan Province Medical Science and Technology Key Project,No.LHGJ20220566 and No.LHGJ20240365Henan Province Medical Education Research Project,No.WJLX2023079Zhengzhou Medical and Health Technology Innovation Guidance Program,No.2024YLZDJH022.
文摘This study highlights the importance of identifying and addressing risk factors associated with wound complications following transtibial amputation in diabetic patients.These amputations,often necessitated by severe diabetic foot ulcers,carry significant risks of postoperative complications such as infection and delayed wound healing.Elevated hemoglobin A1c levels,indicative of poor glycemic control,and a history of kidney transplantation,due to required immunosuppressive therapy,are key factors influencing these outcomes.This paper emphasizes the need for enhanced glycemic management and personalized postoperative care,particularly for immunocompromised individuals,to minimize complications and improve patient prognosis.Future research should focus on prospective studies to validate targeted interventions and optimize care strategies,ultimately aiming to reduce the healthcare burden associated with diabetic foot complications.
基金supported by the National Key Research and Development Program of China (Grant No. 2017YFF0106202)National Natural Science Foundation of China (Grant No. 61473279)+1 种基金the Key Research Program of Frontier Sciences, CAS (Grant No. QYZDJ-SSW-JSC037)the Youth Innovation Promotion Association, CAS
文摘This paper presents a method for the automatic adjustment of the laser defocusing amount in micro-laser-induced breakdown spectroscopy. A microscopic optical imaging system consisting of a CCD camera and a 20× objective lens was adopted to realize the method. The real-time auto-focusing of the system was achieved by detecting the effective pixels of the light spot generated by the laser pointer. The focusing accuracy of the method could achieve 3 μm. The element concentrations of Mn and Ni in low-alloy steels were analyzed at a crater diameter of about 35 μm using the presented method. After using the presented method, the determination coefficients of Mn and Ni both exceeded 0.997, with the root-mean-square errors being 0.0133 and 0.0395, respectively. Scanning analysis was performed on the inclined plane and the curved surface by means of focusing control and non-focusing control. Ten characteristic spectral lines of Fe were selected as the analysis lines. With the focusing control, the average relative standard deviations obtained on the inclined plane and curved surface were both less than 5%, and much less than the values without focusing control, 14.6% and 40.39%.
文摘There exists a gap between control theory and control practice,i.e.,all control methods suggested by researchers are not implemented in real systems and,on the other hand,many important in dustrial problems are not studied in the academic research.Benchmark problems can help close this gap and provide many opportunities for members in both the controls theory and application communities.The goal is to survey and give pointers to different general controls and modeling related benchmark problems that can serve as inspiration for future benchmarks and then specifically focus the benchmark coverage on automotive control engineering application.In the paper reflections are given on how different categories of benchmark designers,benchmark solvers and third part users can benefit from providing,solving,and studying benchmark problems.The paper also collects information about several benchmark problems and gives pointers to papers than give more detailed information about different problems that have been presented.
基金Supported by National Natural Science Foundation of China(No.81960177)Jiangxi Provincial Science and Technology Grant(No.20192BAB205049)+2 种基金A research grant from Jiangxi Provincial Health Commission(No.202210723)Postgraduate Innovation Special Fund Project of Jiangxi Province(No.YC2021-S077)。
文摘AIM: To evaluate the effectiveness of peripheral defocus spectacle lenses(PDLs) in myopia control. METHODS: Literature retrieval on Pub Med, Cochrane Library, Embase, and Web of Science databases, and the search time limit was from the establishment of each database to December 29, 2021 were conducted. Change of spherical equivalent refraction(SER) and axial change(AL) were extracted from the literatures that met the inclusion criteria, and Rev Man5.3 software was used for Meta-analysis. RESULTS: A total of 4 randomized controlled trials(RCTs) were included in this Meta-analysis, involving 770 myopic children. The results showed that PDLs could delay the progression of myopia in children with myopia compared with single vision spectacle lenses(SVLs;WMD=0.21 D, 95%CI: 0.01, 0.41, P=0.04). However, there was no significant difference in controlling the growth of axial length(AL) in myopic children(WMD=-0.10 mm, 95%CI:-0.21, 0.01, P=0.07). The results of the effectiveness of myopia control between the two spectacle lenses showed that PDLs were more effective in controlling the progression of myopia(OR=5.73, 95%CI: 2.58, 12.70, P<0.001) and delaying the growth of AL(OR=44.25, 95%CI: 8.84, 221.58, P<0.001) than SVLs, and the differences were statistically significant. CONCLUSION: PDLs can control the progression of myopia compared with SVLs, but cannot delay the growth of AL, and the effectiveness of PDLs in myopia control better than SVLs.
基金Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences:Research Design and Application of Mixed Methods in Traditional Chinese Medicine (No.CI2021B003)Evidence-based Ability Construction Project of National Administration of Traditional Chinese Medicine:Evidencebased Ability Improvement and Platform Construction of Traditional Chinese Medicine in Encephalopathy (No.2019XZZX-NB014)+2 种基金CACMS Innovation Fund:Research Priorities on Screening and Evaluating Appropriate and Effective Health Technologies in Specific Disease Field of TCM (No.CI2021A05503)CACMS Innovation Fund:Evaluation Method and Demonstration Research of Traditional Chinese Medicine Health Technology Assessment (No.CI2021A00701-3)the Fundamental Research Funds for the Central Public Welfare Research Institutes:Evidence Mapping and Scoping Review of Chinese Patent Medicines for Clearing Heat and Detoxifying (No.ZZ13-YQ-075)
文摘This study is to investigate the effectiveness and safety of bloodletting puncture(BP)for acute ischemic stroke(AIS)when used in combination with standard treatment,as well as the patients'feelings and attitudes toward the treatment.This is a mixed method research which includes a multi-center,superiority,randomized controlled clinical trial,and focus group interview.A total of 360 AIS participants will be enrolled.They will be randomized into one of the following two groups for 7 d:(a)BP with standard treatment group(n=180);(b)standard treatment group(n=180).The primary outcome will be National Institute of Health stroke scale(NIHSS)score at day 7 after treatment.Secondary outcomes will be changes of Glasgow Coma Scale score,NIHSS score,mRS and Traditional Chinese Medicine syndrome score from baseline to 7,14,and 30 d after treatment,recurrence rate and all-cause mortality rate within 30 d,and the safety assessments.The focus group will be conducted with a purposive sample of 1-2 acupuncturists and 1-2 patients respectively at each center at 7 and 30 d after treatment.We designed a mixed method study to evaluate the effect of BP,an acupuncture therapy for patients with AIS.If the findings of this study confirm the effectiveness of BP to reduce the NIHSS score and other related outcomes and patients are willing to accept the therapy,we believe this study will help the implementation of this therapy in clinical practice,and provide new evidence for the treatment of AIS.
基金Supported by the National Natural Science Foundation of China under Grant No 61201193
文摘Analytical propagation formulas are derived for partially coherent controllable dark-hollow beams (CDHBs) through a thin lens based on the generalized Huygens-Fresnel integral. The expressions of the position for maximum irradiance on-axis and the relative focal shift are evaluated by the analytical propagation formulas. Our numerical results show that both the relative focal shift and the effective beam width of focused partially coherent CDHBs are mainly determined by the initial transverse coherence width 6g and the Fresnel number Nw, which are also affected by the changes of both the dark-size adjusting parameter p and the order N of CDHBs.
基金supported by the State Grid Corporation of China Science and Technology Project,grant number 52270723000900K.
文摘The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.
文摘Purpose: The purpose of this study was to evaluate the change in corneal wavefront aberrations in young adults who have been fit with multifocal soft contact lenses for myopia progression control. Findings have been analyzed for statistical significance and clinical relevance and compared to reportedly successful Orthokeratology outcomes. Methods: The dominant eye of 40 participants (27 women, 13 men;mean age 27.3 ± 3.2 years;range 23 to 39 years) was fit with Proclear Multifocal center distance lenses (Coopervision, Pleasanton, USA) having a variety of distance powers and reading additions. Refractive errors were limited to a range of –6.00 D up to +1.00 D of sphere, and no greater than –1.00 D of cylinder. Corneal wavefront measurements were performed over 6 mm diameters with a Zeiss Atlas 9000 corneal topographer (Zeiss Meditec, Dublin, USA) prior to, and following lens fitting. Data were converted into rectangular Fourier optics terms M, J0, J45 and RMS values for each reading addition were statistically analyzed. Following evaluation of statistical significance and clinical relevance, results were compared to published data from successful Orthokeratology treatments. Results: Statistically significant changes in higher order aberrations were detected for lenses of all reading additions. Lens groups with higher Add-powers demonstrated stronger changes with increased significance. Final RMS values relating to 2nd, 3rd and 4th Zernike Orders reached clinical significance with a wavefront error of 0.10 μm, the equivalent of 0.25D. Moreover, as Add-powers increased, 3rd and 4th order aberrations likewise showed an increase. Pre-fitting astigmatism values accounted for the highest recorded aberrations and remained predominantly unchanged. Conclusion: Proclear Multifocal center-distance contact lenses were found to increase higher order wavefront aberrations in a manner dependent on their Add-power. In comparison to successful Orthokeratology outcomes, the amounts of resulting aberrations are notably different.
文摘Although terrorist bombings have tormented the world for a long time, currently they have reached unprecedented levels and become a continuous threat without borders, race or age. Almost all of them are caused by improvised explosive devices. The unpredictability of the terrorist bombings, leading to simultaneous generation of a large number of casualties and severe "multidimensional" blast trauma require a constant vigilance and preparedness of every hospital worldwide. Approximately 1.0%-2.6% of all trauma patients and 7% of the combat casualties require a massive blood transfusion. Coagulopathy is presented in 65% of them with mortality exceeding 50%. Damage control resuscitation is a novel approach, developed in the military practice for treatment of this subgroup of trauma patients. The comparison with the conventional approach revealed mortality reduction with 40%-74%, lower frequency of abdominal compartment syndrome(8% vs 16%), sepsis(9% vs 20%), multiorgan failure(16% vs 37%) and a significant reduction of resuscitation volumes, both crystalloids and blood products. Damage control surgery(DCS) and damage control resuscitation(DCR) are promising new approaches, contributing for the mortality reduction among the most severely wounded patients. Despite the lack of consensus about the optimal ratio of the blood products and the possible influence of the survival bias, we think that DCR carries survival benefit and recommend it in trauma patients with exsanguinating bleeding.
基金supported by the National Natural Science Foundation of China(Nos.62103052 and No.52175214)。
文摘This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.
基金supported in part by Natural Science Foundation of Jiangsu Province under Grant BK20230255Natural Science Foundation of Shandong Province under Grant ZR2023QE281.
文摘The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract.
基金supported by the National Natural Science Foundation of China(12072090).
文摘This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.