Virtual power plant(VPP)integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions,promote the consumption of renewable energy,and improve economic effici...Virtual power plant(VPP)integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions,promote the consumption of renewable energy,and improve economic efficiency.In this paper,aiming at the uncertainty of distributed wind power and photovoltaic output,considering the coupling relationship between power,carbon trading,and green cardmarket,the optimal operationmodel and bidding scheme of VPP in spot market,carbon trading market,and green card market are established.On this basis,through the Shapley value and independent risk contribution theory in cooperative game theory,the quantitative analysis of the total income and risk contribution of various distributed resources in the virtual power plant is realized.Moreover,the scheduling strategies of virtual power plants under different risk preferences are systematically compared,and the feasibility and accuracy of the combination of Shapley value and independent risk contribution theory in ensuring fair income distribution and reasonable risk assessment are emphasized.A comprehensive solution for virtual power plants in the multi-market environment is constructed,which integrates operation strategy,income distribution mechanism,and risk control system into a unified analysis framework.Through the simulation of multi-scenario examples,the CPLEXsolver inMATLAB software is used to optimize themodel.The proposed joint optimization scheme can increase the profit of VPP participating in carbon trading and green certificate market by 29%.The total revenue of distributed resources managed by VPP is 9%higher than that of individual participation.展开更多
In physics,our expectations for system behavior are often guided by intuitive arithmetic.For systems composed of identical units,we anticipate synergy of the contributions from these units,where 1+1=2.Conversely,for s...In physics,our expectations for system behavior are often guided by intuitive arithmetic.For systems composed of identical units,we anticipate synergy of the contributions from these units,where 1+1=2.Conversely,for systems built from opposing units,we expect cancellation of their contributions,where 1-1=0.This intuitive arithmetic has long underpinned our understanding of physical properties of materials,from electronic transport to optical responses.However,scientific breakthroughs often occur when nature reveals ways to circumvent these seemingly fundamental rules,opening new possibilities that challenge our deepest assumptions about material behavior.展开更多
基金funded by the Department of Education of Liaoning Province and was supported by the Basic Scientific Research Project of the Department of Education of Liaoning Province(Grant No.LJ222411632051)and(Grant No.LJKQZ2021085)Natural Science Foundation Project of Liaoning Province(Grant No.2022-BS-222).
文摘Virtual power plant(VPP)integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions,promote the consumption of renewable energy,and improve economic efficiency.In this paper,aiming at the uncertainty of distributed wind power and photovoltaic output,considering the coupling relationship between power,carbon trading,and green cardmarket,the optimal operationmodel and bidding scheme of VPP in spot market,carbon trading market,and green card market are established.On this basis,through the Shapley value and independent risk contribution theory in cooperative game theory,the quantitative analysis of the total income and risk contribution of various distributed resources in the virtual power plant is realized.Moreover,the scheduling strategies of virtual power plants under different risk preferences are systematically compared,and the feasibility and accuracy of the combination of Shapley value and independent risk contribution theory in ensuring fair income distribution and reasonable risk assessment are emphasized.A comprehensive solution for virtual power plants in the multi-market environment is constructed,which integrates operation strategy,income distribution mechanism,and risk control system into a unified analysis framework.Through the simulation of multi-scenario examples,the CPLEXsolver inMATLAB software is used to optimize themodel.The proposed joint optimization scheme can increase the profit of VPP participating in carbon trading and green certificate market by 29%.The total revenue of distributed resources managed by VPP is 9%higher than that of individual participation.
基金supported by the National Natural Science Foundation of China (Grant No.12374109)the National Key Research and Development Program of China (Grant No.2023YFA1406600)。
文摘In physics,our expectations for system behavior are often guided by intuitive arithmetic.For systems composed of identical units,we anticipate synergy of the contributions from these units,where 1+1=2.Conversely,for systems built from opposing units,we expect cancellation of their contributions,where 1-1=0.This intuitive arithmetic has long underpinned our understanding of physical properties of materials,from electronic transport to optical responses.However,scientific breakthroughs often occur when nature reveals ways to circumvent these seemingly fundamental rules,opening new possibilities that challenge our deepest assumptions about material behavior.