Once more to the lake is a representative work of the American Writer, Elwyn Brooks White, and has been acclaimed by people in the world. The paper offers a three-layered contrasting analysis of the essay. By detailed...Once more to the lake is a representative work of the American Writer, Elwyn Brooks White, and has been acclaimed by people in the world. The paper offers a three-layered contrasting analysis of the essay. By detailed analysis of the contrasts running through the whole essay, the author finds that those contrasts are symbol of White's internal struggle and reflection for life.On the foundation of the three-layered contrasts, the paper presents the theme analysis and clarifies the content of the essay.展开更多
Using the monthly geopotential heights and winds for 700 and 200 hPa for India during July and August, and the weekly M-100 Soviet rocketsonde temperature and wind data for Thumba (8.5 ° N, 76.9 ° E) during ...Using the monthly geopotential heights and winds for 700 and 200 hPa for India during July and August, and the weekly M-100 Soviet rocketsonde temperature and wind data for Thumba (8.5 ° N, 76.9 ° E) during the last week of June and the first week of September for the two contrasting summer monsoon years 1975 (a very strong monsoon year) and 1979 (a very weak monsoon year), a study has been made to examine the mean circulation features of the troposphere over India, and the structures of the temperatures and the winds of the middle atmosphere over Thumba. The study suggested that the axis of the monsoon trough (AMT) at 700 hPa shifted southward in 1975 and northward towards the foothills of the Himalayas in 1979, from its normal position. Superimposed on the low-pressure area (AMT) at 700 hPa, a well-defined divergence was noticed at 200 hPa over the northern India in 1975.The mean temperatures at 25,50 and 60 km (middle atmosphere) over Thumba were cooler in 1975 than in 1979. While a cooling trend in 1975 and warming trend in 1979 were observed at 25 and 50 km, a reversed picture was noticed at 60 km. There was a weak easterly / westerly (weak westerly phase) zonal wind in 1975 and a strong easterly zonal wind in 1979. A phase reversal of the zonal wind was observed at 50 km. A tentative physical mechanism was offered, in terms of upward propagation of the two equatorially trapped planetary waves i.e. the Kelvin and the mixed Rossby-gravity waves, to explain the occurrence of the two spells of strong warmings in the mesosphere in 1975.展开更多
The iconic image of a giant radiating dyke swarm subsequently fragmented into three pieces via supercontinental breakup was produced by Paul May in1971(see next page).That figure presented a large part of
As the risk of malware is sharply increasing in Android platform,Android malware detection has become an important research topic.Existing works have demonstrated that required permissions of Android applications are ...As the risk of malware is sharply increasing in Android platform,Android malware detection has become an important research topic.Existing works have demonstrated that required permissions of Android applications are valuable for malware analysis,but how to exploit those permission patterns for malware detection remains an open issue.In this paper,we introduce the contrasting permission patterns to characterize the essential differences between malwares and clean applications from the permission aspect Then a framework based on contrasting permission patterns is presented for Android malware detection.According to the proposed framework,an ensemble classifier,Enclamald,is further developed to detect whether an application is potentially malicious.Every contrasting permission pattern is acting as a weak classifier in Enclamald,and the weighted predictions of involved weak classifiers are aggregated to the final result.Experiments on real-world applications validate that the proposed Enclamald classifier outperforms commonly used classifiers for Android Malware Detection.展开更多
The Awakening is about the heroine Edna Pontellier awakes and tries to reset her relation with the world in New Orleans,a place the family chose to spend the summer, where there also are influences working their way t...The Awakening is about the heroine Edna Pontellier awakes and tries to reset her relation with the world in New Orleans,a place the family chose to spend the summer, where there also are influences working their way to awake Edna. Among them, theeffects from Madame Ratignolle and Madame Reisz are of great importance in the process of Edna's awakening and to her final sui-cide. This dissertation will see how Edna is affected by and distinguished from them, and get the conclusion that Edna fails being alife mediator by contrasting with the two women.展开更多
Wearable wristband systems leverage deep learning to revolutionize hand gesture recognition in daily activities.Unlike existing approaches that often focus on static gestures and require extensive labeled data,the pro...Wearable wristband systems leverage deep learning to revolutionize hand gesture recognition in daily activities.Unlike existing approaches that often focus on static gestures and require extensive labeled data,the proposed wearable wristband with selfsupervised contrastive learning excels at dynamic motion tracking and adapts rapidly across multiple scenarios.It features a four-channel sensing array composed of an ionic hydrogel with hierarchical microcone structures and ultrathin flexible electrodes,resulting in high-sensitivity capacitance output.Through wireless transmission from a Wi-Fi module,the proposed algorithm learns latent features from the unlabeled signals of random wrist movements.Remarkably,only few-shot labeled data are sufficient for fine-tuning the model,enabling rapid adaptation to various tasks.The system achieves a high accuracy of 94.9%in different scenarios,including the prediction of eight-direction commands,and air-writing of all numbers and letters.The proposed method facilitates smooth transitions between multiple tasks without the need for modifying the structure or undergoing extensive task-specific training.Its utility has been further extended to enhance human–machine interaction over digital platforms,such as game controls,calculators,and three-language login systems,offering users a natural and intuitive way of communication.展开更多
Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)t...Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information;(2)low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data;(3)the segmentation performance in low-contrast and local regions is less than optimal.We design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy(SADT),which enhances feature diversity and learns high-quality features to overcome these problems.To be more precise,SADT trains the Student Network by using pseudo-label-based training from Teacher Network 1 and supervised learning with labeled data,which prevents the loss of rare labeled data.We introduce a bi-directional copy-pastemask with progressive high-entropy filtering to reduce data distribution disparities and mitigate confirmation bias in pseudo-supervision.For the mixed images,Deep-Shallow Spatial Contrastive Learning(DSSCL)is proposed in the feature spaces of Teacher Network 2 and the Student Network to improve the segmentation capabilities in low-contrast and local areas.In this procedure,the features retrieved by the Student Network are subjected to a random feature perturbation technique.On two openly available datasets,extensive trials show that our proposed SADT performs much better than the state-ofthe-art semi-supervised medical segmentation techniques.Using only 10%of the labeled data for training,SADT was able to acquire a Dice score of 90.10%on the ACDC(Automatic Cardiac Diagnosis Challenge)dataset.展开更多
The rapid integration of Internet of Things(IoT)technologies is reshaping the global energy landscape by deploying smart meters that enable high-resolution consumption monitoring,two-way communication,and advanced met...The rapid integration of Internet of Things(IoT)technologies is reshaping the global energy landscape by deploying smart meters that enable high-resolution consumption monitoring,two-way communication,and advanced metering infrastructure services.However,this digital transformation also exposes power system to evolving threats,ranging from cyber intrusions and electricity theft to device malfunctions,and the unpredictable nature of these anomalies,coupled with the scarcity of labeled fault data,makes realtime detection exceptionally challenging.To address these difficulties,a real-time decision support framework is presented for smart meter anomality detection that leverages rolling time windows and two self-supervised contrastive learning modules.The first module synthesizes diverse negative samples to overcome the lack of labeled anomalies,while the second captures intrinsic temporal patterns for enhanced contextual discrimination.The end-to-end framework continuously updates its model with rolling updated meter data to deliver timely identification of emerging abnormal behaviors in evolving grids.Extensive evaluations on eight publicly available smart meter datasets over seven diverse abnormal patterns testing demonstrate the effectiveness of the proposed full framework,achieving average recall and F1 score of more than 0.85.展开更多
BACKGROUND Oil-based iodinated contrast media have excellent contrast properties and are widely used for hysterosalpingographic evaluation of female infertility.On abdominal radiography and computed tomography(CT)scan...BACKGROUND Oil-based iodinated contrast media have excellent contrast properties and are widely used for hysterosalpingographic evaluation of female infertility.On abdominal radiography and computed tomography(CT)scans,their radiodensity is similar to that of metallic objects,which can sometimes lead to diagnostic confusion in the postoperative settings.In this case,retained oil-based contrast medium was observed on an abdominal radiograph following a cesarean section,making it difficult to differentiate from an intraperitoneal foreign body from surgery.The patient was a 37-year-old pregnant woman who was referred to our hospital at 32 weeks and 1 day of pregnancy due to complete placenta previa for mana-gement of pregnancy and delivery.An elective cesarean section was performed at 37 weeks and 3 days.A plain abdominal radiograph taken immediately after surgery revealed a near-round,hyperdense,mass-like shadow with a regular margin in the pelvic cavity.An intraperitoneal foreign body was suspected;therefore,an abdominal CT scan was performed.The foreign body was located on the left side of the pouch of Douglas and had a CT value of 7000 Hounsfield units,similar to that of metals.The CT value strongly suggested the presence of an artificial object.However,further inquiries with the patient and her previous physician revealed a history of hysterosalpingography.Accordingly,retained oil-based iodinated contrast medium was suspected,and observation of the object’s course was adopted.CONCLUSION When intraperitoneal foreign bodies are suspected on postoperative radiographs,the possibility of oil-based iodinated contrast medium retention should be considered.展开更多
BACKGROUND Gastrointestinal dual-contrast ultrasonography(DCUS)is characterized by its high resolution,sensitivity,and specificity.AIM To determine the accuracy of DCUS in predicting lymph node metastasis in middle-ag...BACKGROUND Gastrointestinal dual-contrast ultrasonography(DCUS)is characterized by its high resolution,sensitivity,and specificity.AIM To determine the accuracy of DCUS in predicting lymph node metastasis in middle-aged and elderly patients with gastric cancer(GC).METHODS A total of 100 middle-aged and elderly patients with GC admitted to the Fourth Affiliated Hospital of Soochow University(Dushu Lake Hospital,Suzhou,China)between April 2022 and April 2024 were selected.The baseline data and lymph node metastasis status were collected.DCUS combined with intravenous contrast technology was used to calculate the enhancement time(ET),time to peak(TTP),and slope of the ascending branch wash-in rate(WIR).These indicators were used in assessing lymph node metastasis in patients with GC.RESULTS Among 100 middle-aged and elderly patients with GC,35(35.00%)had lymph node metastases.GC patients with lymph node metastasis had a higher propor-tion of stage II TNM classification and higher WIR values than those without lymph node metastasis.The ET and TTP values were lower in patients with lymph node metastases,and all differences were statistically significant(P<0.05).The area under the curve values for ET,TTP,WIR,and combined diagnosis of GC lymph node metastasis using DCUS were all>0.7.Optimal assessment was achieved when the cutoff values for ET,TTP,and WIR were set at 16.32 seconds,10.67 seconds,and 7.02,res-pectively.CONCLUSION DCUS-mediated assessment of ET,TTP,and WIR can effectively predict and evaluate lymph node metastasis status in patients with GC,with higher sensitivity when used in combination.展开更多
Patent foramen ovale(PFO)is a common congenital heart disorder associated with stroke,decompression sickness and migraine.Combining synchronized contrast transcranial Doppler with contrast transthoracic echocardiograp...Patent foramen ovale(PFO)is a common congenital heart disorder associated with stroke,decompression sickness and migraine.Combining synchronized contrast transcranial Doppler with contrast transthoracic echocardiography has important clinical significance and can improve the accuracy of detecting right-left shunts(RLSs)in patients with PFO.In this letter,regarding an original study presented by Yao et al,we present our insights and discuss how to better help clinicians evaluate changes in PFO-related RLS.展开更多
AIM:To evaluate the effects of polarized and nonpolarized sunglasses on visual functions,including distance and near visual acuity,phoria,stereopsis and contrast sensitivity across five spatial frequencies(1.5,3,6,12,...AIM:To evaluate the effects of polarized and nonpolarized sunglasses on visual functions,including distance and near visual acuity,phoria,stereopsis and contrast sensitivity across five spatial frequencies(1.5,3,6,12,18 cycles/degree).METHODS:A before-after study was conducted on 45 emmetropic students from Shahid Beheshti University of Medical Sciences.Visual acuity,contrast sensitivity,stereopsis and phoria were measured under three conditions:without sunglasses,with non-polarized sunglasses and with polarized sunglasses.Tests were conducted under controlled glare conditions to simulate outdoor environments.RESULTS:A total of 45 participants were evaluated,comprising 17 males(37.8%)and 28 females(62.2%).The mean age was 21.67±2.31y(range 18-27y).The mean of distance and near visual acuity in all three conditions were equal to 0.00 logMAR.Contrast sensitivity generally decreased slightly with the use of non-polarized sunglasses compared to the no-sunglasses condition.The mean stereopsis with polarized sunglasses was 101.33±56.139 arc sec,which was worse than the no-sunglasses condition(94.33±46.632 arc sec)and better than the non-polarized sunglasses condition(105.67±58.965 arc sec),although these changes were not significant.In the phoria parameter,distance phoria appeared more affected than near phoria.CONCLUSION:Polarized and non-polarized sunglasses do not significantly affect visual acuity,stereopsis,or phoria under controlled glare conditions.Slight changes in contrast sensitivity are noted,but they are not statistically significant.展开更多
AIM:To find the effective contrast enhancement method on retinal images for effective segmentation of retinal features.METHODS:A novel image preprocessing method that used neighbourhood-based improved contrast limited...AIM:To find the effective contrast enhancement method on retinal images for effective segmentation of retinal features.METHODS:A novel image preprocessing method that used neighbourhood-based improved contrast limited adaptive histogram equalization(NICLAHE)to improve retinal image contrast was suggested to aid in the accurate identification of retinal disorders and improve the visibility of fine retinal structures.Additionally,a minimal-order filter was applied to effectively denoise the images without compromising important retinal structures.The novel NICLAHE algorithm was inspired by the classical CLAHE algorithm,but enhanced it by selecting the clip limits and tile sized in a dynamical manner relative to the pixel values in an image as opposed to using fixed values.It was evaluated on the Drive and high-resolution fundus(HRF)datasets on conventional quality measures.RESULTS:The new proposed preprocessing technique was applied to two retinal image databases,Drive and HRF,with four quality metrics being,root mean square error(RMSE),peak signal to noise ratio(PSNR),root mean square contrast(RMSC),and overall contrast.The technique performed superiorly on both the data sets as compared to the traditional enhancement methods.In order to assess the compatibility of the method with automated diagnosis,a deep learning framework named ResNet was applied in the segmentation of retinal blood vessels.Sensitivity,specificity,precision and accuracy were used to analyse the performance.NICLAHE–enhanced images outperformed the traditional techniques on both the datasets with improved accuracy.CONCLUSION:NICLAHE provides better results than traditional methods with less error and improved contrastrelated values.These enhanced images are subsequently measured by sensitivity,specificity,precision,and accuracy,which yield a better result in both datasets.展开更多
Neural machine translation(NMT)has advanced with deep learning and large-scale multilingual models,yet translating lowresource languages often lacks sufficient training data and leads to hallucinations.This often resu...Neural machine translation(NMT)has advanced with deep learning and large-scale multilingual models,yet translating lowresource languages often lacks sufficient training data and leads to hallucinations.This often results in translated content that diverges significantly from the source text.This research proposes a refined Contrastive Decoding(CD)algorithm that dynamically adjusts weights of log probabilities from strong expert and weak amateur models to mitigate hallucinations in lowresource NMT and improve translation quality.Advanced large language NMT models,including ChatGLM and LLaMA,are fine-tuned and implemented for their superior contextual understanding and cross-lingual capabilities.The refined CD algorithm evaluates multiple candidate translations using BLEU score,semantic similarity,and Named Entity Recognition accuracy.Extensive experimental results show substantial improvements in translation quality and a significant reduction in hallucination rates.Fine-tuned models achieve higher evaluation metrics compared to baseline models and state-of-the-art models.An ablation study confirms the contributions of each methodological component and highlights the effectiveness of the refined CD algorithm and advanced models in mitigating hallucinations.Notably,the refined methodology increased the BLEU score by approximately 30%compared to baseline models.展开更多
Kounis syndrome(KS)is a rare but clinically significant condition characterized by the simultaneous occurrence of acute coronary syndrome(ACS)and allergic reactions,which can develop in patients with either normal or ...Kounis syndrome(KS)is a rare but clinically significant condition characterized by the simultaneous occurrence of acute coronary syndrome(ACS)and allergic reactions,which can develop in patients with either normal or diseased coronary arteries.[1,2]The condition is typically triggered by various allergens including medications(particularly contrast media),environmental factors,or food exposures,with symptom onset usually occurring within one hour of exposure.展开更多
Fisheye cameras offer a significantly larger field of view compared to conventional cameras,making them valuable tools in the field of computer vision.However,their unique optical characteristics often lead to image d...Fisheye cameras offer a significantly larger field of view compared to conventional cameras,making them valuable tools in the field of computer vision.However,their unique optical characteristics often lead to image distortions,which pose challenges for object detection tasks.To address this issue,we propose Yolo-CaSKA(Yolo with Contrastive Learning and Selective Kernel Attention),a novel training method that enhances object detection on fisheye camera images.The standard image and the corresponding distorted fisheye image pairs are used as positive samples,and the rest of the image pairs are used as negative samples,which are guided by contrastive learning to help the distorted images find the feature vectors of the corresponding normal images,to improve the detection accuracy.Additionally,we incorporate the Selective Kernel(SK)attention module to focus on regions prone to false detections,such as image edges and blind spots.Finally,the mAP_(50) on the augmented KITTI dataset is improved by 5.5% over the original Yolov8,while the mAP_(50) on the WoodScape dataset is improved by 2.6% compared to OmniDet.The results demonstrate the performance of our proposed model for object detection on fisheye images.展开更多
Sarcasm detection is a complex and challenging task,particularly in the context of Chinese social media,where it exhibits strong contextual dependencies and cultural specificity.To address the limitations of existing ...Sarcasm detection is a complex and challenging task,particularly in the context of Chinese social media,where it exhibits strong contextual dependencies and cultural specificity.To address the limitations of existing methods in capturing the implicit semantics and contextual associations in sarcastic expressions,this paper proposes an event-aware model for Chinese sarcasm detection,leveraging a multi-head attention(MHA)mechanism and contrastive learning(CL)strategies.The proposed model employs a dual-path Bidirectional Encoder Representations from Transformers(BERT)encoder to process comment text and event context separately and integrates an MHA mechanism to facilitate deep interactions between the two,thereby capturing multidimensional semantic associations.Additionally,a CL strategy is introduced to enhance feature representation capabilities,further improving the model’s performance in handling class imbalance and complex contextual scenarios.The model achieves state-of-the-art performance on the Chinese sarcasm dataset,with significant improvements in accuracy(79.55%),F1-score(84.22%),and an area under the curve(AUC,84.35%).展开更多
Image classification is crucial for various applications,including digital construction,smart manu-facturing,and medical imaging.Focusing on the inadequate model generalization and data privacy concerns in few-shot im...Image classification is crucial for various applications,including digital construction,smart manu-facturing,and medical imaging.Focusing on the inadequate model generalization and data privacy concerns in few-shot image classification,in this paper,we propose a federated learning approach that incorporates privacy-preserving techniques.First,we utilize contrastive learning to train on local few-shot image data and apply various data augmentation methods to expand the sample size,thereby enhancing the model’s generalization capabilities in few-shot contexts.Second,we introduce local differential privacy techniques and weight pruning methods to safeguard model parameters,perturbing the transmitted parameters to ensure user data privacy.Finally,numerical simulations are conducted to demonstrate the effectiveness of our proposed method.The results indicate that our approach significantly enhances model generalization and test accuracy compared to several popular federated learning algorithms while maintaining data privacy,highlighting its effectiveness and practicality in addressing the challenges of model generalization and data privacy in few-shot image scenarios.展开更多
文摘Once more to the lake is a representative work of the American Writer, Elwyn Brooks White, and has been acclaimed by people in the world. The paper offers a three-layered contrasting analysis of the essay. By detailed analysis of the contrasts running through the whole essay, the author finds that those contrasts are symbol of White's internal struggle and reflection for life.On the foundation of the three-layered contrasts, the paper presents the theme analysis and clarifies the content of the essay.
文摘Using the monthly geopotential heights and winds for 700 and 200 hPa for India during July and August, and the weekly M-100 Soviet rocketsonde temperature and wind data for Thumba (8.5 ° N, 76.9 ° E) during the last week of June and the first week of September for the two contrasting summer monsoon years 1975 (a very strong monsoon year) and 1979 (a very weak monsoon year), a study has been made to examine the mean circulation features of the troposphere over India, and the structures of the temperatures and the winds of the middle atmosphere over Thumba. The study suggested that the axis of the monsoon trough (AMT) at 700 hPa shifted southward in 1975 and northward towards the foothills of the Himalayas in 1979, from its normal position. Superimposed on the low-pressure area (AMT) at 700 hPa, a well-defined divergence was noticed at 200 hPa over the northern India in 1975.The mean temperatures at 25,50 and 60 km (middle atmosphere) over Thumba were cooler in 1975 than in 1979. While a cooling trend in 1975 and warming trend in 1979 were observed at 25 and 50 km, a reversed picture was noticed at 60 km. There was a weak easterly / westerly (weak westerly phase) zonal wind in 1975 and a strong easterly zonal wind in 1979. A phase reversal of the zonal wind was observed at 50 km. A tentative physical mechanism was offered, in terms of upward propagation of the two equatorially trapped planetary waves i.e. the Kelvin and the mixed Rossby-gravity waves, to explain the occurrence of the two spells of strong warmings in the mesosphere in 1975.
文摘The iconic image of a giant radiating dyke swarm subsequently fragmented into three pieces via supercontinental breakup was produced by Paul May in1971(see next page).That figure presented a large part of
基金This work was supported by Deakin Cyber Security Research Cluster National Natural Science Foundation of China under Grant Nos. 61304067 and 61202211 +1 种基金 Guangxi Key Laboratory of Trusted Software No. kx201325 the Fundamental Research Funds for the Central Universities under Grant No 31541311314.
文摘As the risk of malware is sharply increasing in Android platform,Android malware detection has become an important research topic.Existing works have demonstrated that required permissions of Android applications are valuable for malware analysis,but how to exploit those permission patterns for malware detection remains an open issue.In this paper,we introduce the contrasting permission patterns to characterize the essential differences between malwares and clean applications from the permission aspect Then a framework based on contrasting permission patterns is presented for Android malware detection.According to the proposed framework,an ensemble classifier,Enclamald,is further developed to detect whether an application is potentially malicious.Every contrasting permission pattern is acting as a weak classifier in Enclamald,and the weighted predictions of involved weak classifiers are aggregated to the final result.Experiments on real-world applications validate that the proposed Enclamald classifier outperforms commonly used classifiers for Android Malware Detection.
文摘The Awakening is about the heroine Edna Pontellier awakes and tries to reset her relation with the world in New Orleans,a place the family chose to spend the summer, where there also are influences working their way to awake Edna. Among them, theeffects from Madame Ratignolle and Madame Reisz are of great importance in the process of Edna's awakening and to her final sui-cide. This dissertation will see how Edna is affected by and distinguished from them, and get the conclusion that Edna fails being alife mediator by contrasting with the two women.
基金supported by the Research Grant Fund from Kwangwoon University in 2023,the National Natural Science Foundation of China under Grant(62311540155)the Taishan Scholars Project Special Funds(tsqn202312035)the open research foundation of State Key Laboratory of Integrated Chips and Systems.
文摘Wearable wristband systems leverage deep learning to revolutionize hand gesture recognition in daily activities.Unlike existing approaches that often focus on static gestures and require extensive labeled data,the proposed wearable wristband with selfsupervised contrastive learning excels at dynamic motion tracking and adapts rapidly across multiple scenarios.It features a four-channel sensing array composed of an ionic hydrogel with hierarchical microcone structures and ultrathin flexible electrodes,resulting in high-sensitivity capacitance output.Through wireless transmission from a Wi-Fi module,the proposed algorithm learns latent features from the unlabeled signals of random wrist movements.Remarkably,only few-shot labeled data are sufficient for fine-tuning the model,enabling rapid adaptation to various tasks.The system achieves a high accuracy of 94.9%in different scenarios,including the prediction of eight-direction commands,and air-writing of all numbers and letters.The proposed method facilitates smooth transitions between multiple tasks without the need for modifying the structure or undergoing extensive task-specific training.Its utility has been further extended to enhance human–machine interaction over digital platforms,such as game controls,calculators,and three-language login systems,offering users a natural and intuitive way of communication.
基金supported by the Natural Science Foundation of China(No.41804112,author:Chengyun Song).
文摘Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information;(2)low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data;(3)the segmentation performance in low-contrast and local regions is less than optimal.We design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy(SADT),which enhances feature diversity and learns high-quality features to overcome these problems.To be more precise,SADT trains the Student Network by using pseudo-label-based training from Teacher Network 1 and supervised learning with labeled data,which prevents the loss of rare labeled data.We introduce a bi-directional copy-pastemask with progressive high-entropy filtering to reduce data distribution disparities and mitigate confirmation bias in pseudo-supervision.For the mixed images,Deep-Shallow Spatial Contrastive Learning(DSSCL)is proposed in the feature spaces of Teacher Network 2 and the Student Network to improve the segmentation capabilities in low-contrast and local areas.In this procedure,the features retrieved by the Student Network are subjected to a random feature perturbation technique.On two openly available datasets,extensive trials show that our proposed SADT performs much better than the state-ofthe-art semi-supervised medical segmentation techniques.Using only 10%of the labeled data for training,SADT was able to acquire a Dice score of 90.10%on the ACDC(Automatic Cardiac Diagnosis Challenge)dataset.
文摘The rapid integration of Internet of Things(IoT)technologies is reshaping the global energy landscape by deploying smart meters that enable high-resolution consumption monitoring,two-way communication,and advanced metering infrastructure services.However,this digital transformation also exposes power system to evolving threats,ranging from cyber intrusions and electricity theft to device malfunctions,and the unpredictable nature of these anomalies,coupled with the scarcity of labeled fault data,makes realtime detection exceptionally challenging.To address these difficulties,a real-time decision support framework is presented for smart meter anomality detection that leverages rolling time windows and two self-supervised contrastive learning modules.The first module synthesizes diverse negative samples to overcome the lack of labeled anomalies,while the second captures intrinsic temporal patterns for enhanced contextual discrimination.The end-to-end framework continuously updates its model with rolling updated meter data to deliver timely identification of emerging abnormal behaviors in evolving grids.Extensive evaluations on eight publicly available smart meter datasets over seven diverse abnormal patterns testing demonstrate the effectiveness of the proposed full framework,achieving average recall and F1 score of more than 0.85.
文摘BACKGROUND Oil-based iodinated contrast media have excellent contrast properties and are widely used for hysterosalpingographic evaluation of female infertility.On abdominal radiography and computed tomography(CT)scans,their radiodensity is similar to that of metallic objects,which can sometimes lead to diagnostic confusion in the postoperative settings.In this case,retained oil-based contrast medium was observed on an abdominal radiograph following a cesarean section,making it difficult to differentiate from an intraperitoneal foreign body from surgery.The patient was a 37-year-old pregnant woman who was referred to our hospital at 32 weeks and 1 day of pregnancy due to complete placenta previa for mana-gement of pregnancy and delivery.An elective cesarean section was performed at 37 weeks and 3 days.A plain abdominal radiograph taken immediately after surgery revealed a near-round,hyperdense,mass-like shadow with a regular margin in the pelvic cavity.An intraperitoneal foreign body was suspected;therefore,an abdominal CT scan was performed.The foreign body was located on the left side of the pouch of Douglas and had a CT value of 7000 Hounsfield units,similar to that of metals.The CT value strongly suggested the presence of an artificial object.However,further inquiries with the patient and her previous physician revealed a history of hysterosalpingography.Accordingly,retained oil-based iodinated contrast medium was suspected,and observation of the object’s course was adopted.CONCLUSION When intraperitoneal foreign bodies are suspected on postoperative radiographs,the possibility of oil-based iodinated contrast medium retention should be considered.
文摘BACKGROUND Gastrointestinal dual-contrast ultrasonography(DCUS)is characterized by its high resolution,sensitivity,and specificity.AIM To determine the accuracy of DCUS in predicting lymph node metastasis in middle-aged and elderly patients with gastric cancer(GC).METHODS A total of 100 middle-aged and elderly patients with GC admitted to the Fourth Affiliated Hospital of Soochow University(Dushu Lake Hospital,Suzhou,China)between April 2022 and April 2024 were selected.The baseline data and lymph node metastasis status were collected.DCUS combined with intravenous contrast technology was used to calculate the enhancement time(ET),time to peak(TTP),and slope of the ascending branch wash-in rate(WIR).These indicators were used in assessing lymph node metastasis in patients with GC.RESULTS Among 100 middle-aged and elderly patients with GC,35(35.00%)had lymph node metastases.GC patients with lymph node metastasis had a higher propor-tion of stage II TNM classification and higher WIR values than those without lymph node metastasis.The ET and TTP values were lower in patients with lymph node metastases,and all differences were statistically significant(P<0.05).The area under the curve values for ET,TTP,WIR,and combined diagnosis of GC lymph node metastasis using DCUS were all>0.7.Optimal assessment was achieved when the cutoff values for ET,TTP,and WIR were set at 16.32 seconds,10.67 seconds,and 7.02,res-pectively.CONCLUSION DCUS-mediated assessment of ET,TTP,and WIR can effectively predict and evaluate lymph node metastasis status in patients with GC,with higher sensitivity when used in combination.
文摘Patent foramen ovale(PFO)is a common congenital heart disorder associated with stroke,decompression sickness and migraine.Combining synchronized contrast transcranial Doppler with contrast transthoracic echocardiography has important clinical significance and can improve the accuracy of detecting right-left shunts(RLSs)in patients with PFO.In this letter,regarding an original study presented by Yao et al,we present our insights and discuss how to better help clinicians evaluate changes in PFO-related RLS.
文摘AIM:To evaluate the effects of polarized and nonpolarized sunglasses on visual functions,including distance and near visual acuity,phoria,stereopsis and contrast sensitivity across five spatial frequencies(1.5,3,6,12,18 cycles/degree).METHODS:A before-after study was conducted on 45 emmetropic students from Shahid Beheshti University of Medical Sciences.Visual acuity,contrast sensitivity,stereopsis and phoria were measured under three conditions:without sunglasses,with non-polarized sunglasses and with polarized sunglasses.Tests were conducted under controlled glare conditions to simulate outdoor environments.RESULTS:A total of 45 participants were evaluated,comprising 17 males(37.8%)and 28 females(62.2%).The mean age was 21.67±2.31y(range 18-27y).The mean of distance and near visual acuity in all three conditions were equal to 0.00 logMAR.Contrast sensitivity generally decreased slightly with the use of non-polarized sunglasses compared to the no-sunglasses condition.The mean stereopsis with polarized sunglasses was 101.33±56.139 arc sec,which was worse than the no-sunglasses condition(94.33±46.632 arc sec)and better than the non-polarized sunglasses condition(105.67±58.965 arc sec),although these changes were not significant.In the phoria parameter,distance phoria appeared more affected than near phoria.CONCLUSION:Polarized and non-polarized sunglasses do not significantly affect visual acuity,stereopsis,or phoria under controlled glare conditions.Slight changes in contrast sensitivity are noted,but they are not statistically significant.
文摘AIM:To find the effective contrast enhancement method on retinal images for effective segmentation of retinal features.METHODS:A novel image preprocessing method that used neighbourhood-based improved contrast limited adaptive histogram equalization(NICLAHE)to improve retinal image contrast was suggested to aid in the accurate identification of retinal disorders and improve the visibility of fine retinal structures.Additionally,a minimal-order filter was applied to effectively denoise the images without compromising important retinal structures.The novel NICLAHE algorithm was inspired by the classical CLAHE algorithm,but enhanced it by selecting the clip limits and tile sized in a dynamical manner relative to the pixel values in an image as opposed to using fixed values.It was evaluated on the Drive and high-resolution fundus(HRF)datasets on conventional quality measures.RESULTS:The new proposed preprocessing technique was applied to two retinal image databases,Drive and HRF,with four quality metrics being,root mean square error(RMSE),peak signal to noise ratio(PSNR),root mean square contrast(RMSC),and overall contrast.The technique performed superiorly on both the data sets as compared to the traditional enhancement methods.In order to assess the compatibility of the method with automated diagnosis,a deep learning framework named ResNet was applied in the segmentation of retinal blood vessels.Sensitivity,specificity,precision and accuracy were used to analyse the performance.NICLAHE–enhanced images outperformed the traditional techniques on both the datasets with improved accuracy.CONCLUSION:NICLAHE provides better results than traditional methods with less error and improved contrastrelated values.These enhanced images are subsequently measured by sensitivity,specificity,precision,and accuracy,which yield a better result in both datasets.
基金M.Faheem is supported by VTT Technical Research Center of Finland.
文摘Neural machine translation(NMT)has advanced with deep learning and large-scale multilingual models,yet translating lowresource languages often lacks sufficient training data and leads to hallucinations.This often results in translated content that diverges significantly from the source text.This research proposes a refined Contrastive Decoding(CD)algorithm that dynamically adjusts weights of log probabilities from strong expert and weak amateur models to mitigate hallucinations in lowresource NMT and improve translation quality.Advanced large language NMT models,including ChatGLM and LLaMA,are fine-tuned and implemented for their superior contextual understanding and cross-lingual capabilities.The refined CD algorithm evaluates multiple candidate translations using BLEU score,semantic similarity,and Named Entity Recognition accuracy.Extensive experimental results show substantial improvements in translation quality and a significant reduction in hallucination rates.Fine-tuned models achieve higher evaluation metrics compared to baseline models and state-of-the-art models.An ablation study confirms the contributions of each methodological component and highlights the effectiveness of the refined CD algorithm and advanced models in mitigating hallucinations.Notably,the refined methodology increased the BLEU score by approximately 30%compared to baseline models.
基金supported by the National Key Research and Development Program of China(No.2022YFB380-7300)the National Natural Science Foundation of China(No.12471455)+2 种基金the Clinical Cohort Construction Program of Peking University Third Hospital(BYSYDL2022005)the Key Clinical Projects of Peking University Third Hospital(BYSYZD2023006)the Innovation&Transfer Fund of Peking University Third Hospital(BYSYZHKC2023-109).
文摘Kounis syndrome(KS)is a rare but clinically significant condition characterized by the simultaneous occurrence of acute coronary syndrome(ACS)and allergic reactions,which can develop in patients with either normal or diseased coronary arteries.[1,2]The condition is typically triggered by various allergens including medications(particularly contrast media),environmental factors,or food exposures,with symptom onset usually occurring within one hour of exposure.
文摘Fisheye cameras offer a significantly larger field of view compared to conventional cameras,making them valuable tools in the field of computer vision.However,their unique optical characteristics often lead to image distortions,which pose challenges for object detection tasks.To address this issue,we propose Yolo-CaSKA(Yolo with Contrastive Learning and Selective Kernel Attention),a novel training method that enhances object detection on fisheye camera images.The standard image and the corresponding distorted fisheye image pairs are used as positive samples,and the rest of the image pairs are used as negative samples,which are guided by contrastive learning to help the distorted images find the feature vectors of the corresponding normal images,to improve the detection accuracy.Additionally,we incorporate the Selective Kernel(SK)attention module to focus on regions prone to false detections,such as image edges and blind spots.Finally,the mAP_(50) on the augmented KITTI dataset is improved by 5.5% over the original Yolov8,while the mAP_(50) on the WoodScape dataset is improved by 2.6% compared to OmniDet.The results demonstrate the performance of our proposed model for object detection on fisheye images.
基金granted by Qin Xin Talents Cultivation Program(No.QXTCP C202115),Beijing Information Science&Technology Universitythe Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing Fund(No.GJJ-23),National Social Science Foundation,China(No.21BTQ079).
文摘Sarcasm detection is a complex and challenging task,particularly in the context of Chinese social media,where it exhibits strong contextual dependencies and cultural specificity.To address the limitations of existing methods in capturing the implicit semantics and contextual associations in sarcastic expressions,this paper proposes an event-aware model for Chinese sarcasm detection,leveraging a multi-head attention(MHA)mechanism and contrastive learning(CL)strategies.The proposed model employs a dual-path Bidirectional Encoder Representations from Transformers(BERT)encoder to process comment text and event context separately and integrates an MHA mechanism to facilitate deep interactions between the two,thereby capturing multidimensional semantic associations.Additionally,a CL strategy is introduced to enhance feature representation capabilities,further improving the model’s performance in handling class imbalance and complex contextual scenarios.The model achieves state-of-the-art performance on the Chinese sarcasm dataset,with significant improvements in accuracy(79.55%),F1-score(84.22%),and an area under the curve(AUC,84.35%).
基金supported by Suzhou Science and Technology Plan(Basic Research)Project under Grant SJC2023002Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant KYCX23_3322.
文摘Image classification is crucial for various applications,including digital construction,smart manu-facturing,and medical imaging.Focusing on the inadequate model generalization and data privacy concerns in few-shot image classification,in this paper,we propose a federated learning approach that incorporates privacy-preserving techniques.First,we utilize contrastive learning to train on local few-shot image data and apply various data augmentation methods to expand the sample size,thereby enhancing the model’s generalization capabilities in few-shot contexts.Second,we introduce local differential privacy techniques and weight pruning methods to safeguard model parameters,perturbing the transmitted parameters to ensure user data privacy.Finally,numerical simulations are conducted to demonstrate the effectiveness of our proposed method.The results indicate that our approach significantly enhances model generalization and test accuracy compared to several popular federated learning algorithms while maintaining data privacy,highlighting its effectiveness and practicality in addressing the challenges of model generalization and data privacy in few-shot image scenarios.