AIM:To find the effective contrast enhancement method on retinal images for effective segmentation of retinal features.METHODS:A novel image preprocessing method that used neighbourhood-based improved contrast limited...AIM:To find the effective contrast enhancement method on retinal images for effective segmentation of retinal features.METHODS:A novel image preprocessing method that used neighbourhood-based improved contrast limited adaptive histogram equalization(NICLAHE)to improve retinal image contrast was suggested to aid in the accurate identification of retinal disorders and improve the visibility of fine retinal structures.Additionally,a minimal-order filter was applied to effectively denoise the images without compromising important retinal structures.The novel NICLAHE algorithm was inspired by the classical CLAHE algorithm,but enhanced it by selecting the clip limits and tile sized in a dynamical manner relative to the pixel values in an image as opposed to using fixed values.It was evaluated on the Drive and high-resolution fundus(HRF)datasets on conventional quality measures.RESULTS:The new proposed preprocessing technique was applied to two retinal image databases,Drive and HRF,with four quality metrics being,root mean square error(RMSE),peak signal to noise ratio(PSNR),root mean square contrast(RMSC),and overall contrast.The technique performed superiorly on both the data sets as compared to the traditional enhancement methods.In order to assess the compatibility of the method with automated diagnosis,a deep learning framework named ResNet was applied in the segmentation of retinal blood vessels.Sensitivity,specificity,precision and accuracy were used to analyse the performance.NICLAHE–enhanced images outperformed the traditional techniques on both the datasets with improved accuracy.CONCLUSION:NICLAHE provides better results than traditional methods with less error and improved contrastrelated values.These enhanced images are subsequently measured by sensitivity,specificity,precision,and accuracy,which yield a better result in both datasets.展开更多
Background:Pneumonia remains a critical global health challenge,manifesting as a severe respiratory infection caused by viruses,bacteria,and fungi.Early detection is paramount for effective treatment,potentially reduc...Background:Pneumonia remains a critical global health challenge,manifesting as a severe respiratory infection caused by viruses,bacteria,and fungi.Early detection is paramount for effective treatment,potentially reducing mortality rates and optimizing healthcare resource allocation.Despite the importance of chest X-ray diagnosis,image analysis presents significant challenges,particularly in regions with limited medical expertise.This study addresses these challenges by proposing a computer-aided diagnosis system leveraging targeted image preprocessing and optimized deep learning techniques.Methods:We systematically evaluated contrast limited adaptive histogram equalization with varying clip limits for preprocessing chest X-ray images,demonstrating its effectiveness in enhancing feature visibility for diagnostic accuracy.Employing a comprehensive dataset of 5,863 X-ray images(1,583 pneumonia-negative,4,280 pneumonia-positive)collected from multiple healthcare facilities,we conducted a comparative analysis of transfer learning with pre-trained models including ResNet50v2,VGG-19,and MobileNetV2.Statistical validation was performed through 5-fold cross-validation.Results:Our results show that the contrast limited adaptive histogram equalization-enhanced approach with ResNet50v2 achieves 93.40%accuracy,outperforming VGG-19(84.90%)and MobileNetV2(89.70%).Statistical validation confirms the significance of these improvements(P<0.01).The development and optimization resulted in a lightweight mobile application(74 KB)providing rapid diagnostic support(1-2 s response time).Conclusion:The proposed approach demonstrates practical applicability in resource-constrained settings,balancing diagnostic accuracy with deployment efficiency,and offers a viable solution for computer-aided pneumonia diagnosis in areas with limited medical expertise.展开更多
To improve image quality under low illumination conditions,a novel low-light image enhancement method is proposed in this paper based on multi-illumination estimation and multi-scale fusion(MIMS).Firstly,the illuminat...To improve image quality under low illumination conditions,a novel low-light image enhancement method is proposed in this paper based on multi-illumination estimation and multi-scale fusion(MIMS).Firstly,the illumination is processed by contrast-limited adaptive histogram equalization(CLAHE),adaptive complementary gamma function(ACG),and adaptive detail preserving S-curve(ADPS),respectively,to obtain three components.Then,the fusion-relevant features,exposure,and color contrast are selected as the weight maps.Subsequently,these components and weight maps are fused through multi-scale to generate enhanced illumination.Finally,the enhanced images are obtained by multiplying the enhanced illumination and reflectance.Compared with existing approaches,this proposed method achieves an average increase of 0.81%and 2.89%in the structural similarity index measurement(SSIM)and peak signal-to-noise ratio(PSNR),and a decrease of 6.17%and 32.61%in the natural image quality evaluator(NIQE)and gradient magnitude similarity deviation(GMSD),respectively.展开更多
文摘AIM:To find the effective contrast enhancement method on retinal images for effective segmentation of retinal features.METHODS:A novel image preprocessing method that used neighbourhood-based improved contrast limited adaptive histogram equalization(NICLAHE)to improve retinal image contrast was suggested to aid in the accurate identification of retinal disorders and improve the visibility of fine retinal structures.Additionally,a minimal-order filter was applied to effectively denoise the images without compromising important retinal structures.The novel NICLAHE algorithm was inspired by the classical CLAHE algorithm,but enhanced it by selecting the clip limits and tile sized in a dynamical manner relative to the pixel values in an image as opposed to using fixed values.It was evaluated on the Drive and high-resolution fundus(HRF)datasets on conventional quality measures.RESULTS:The new proposed preprocessing technique was applied to two retinal image databases,Drive and HRF,with four quality metrics being,root mean square error(RMSE),peak signal to noise ratio(PSNR),root mean square contrast(RMSC),and overall contrast.The technique performed superiorly on both the data sets as compared to the traditional enhancement methods.In order to assess the compatibility of the method with automated diagnosis,a deep learning framework named ResNet was applied in the segmentation of retinal blood vessels.Sensitivity,specificity,precision and accuracy were used to analyse the performance.NICLAHE–enhanced images outperformed the traditional techniques on both the datasets with improved accuracy.CONCLUSION:NICLAHE provides better results than traditional methods with less error and improved contrastrelated values.These enhanced images are subsequently measured by sensitivity,specificity,precision,and accuracy,which yield a better result in both datasets.
文摘Background:Pneumonia remains a critical global health challenge,manifesting as a severe respiratory infection caused by viruses,bacteria,and fungi.Early detection is paramount for effective treatment,potentially reducing mortality rates and optimizing healthcare resource allocation.Despite the importance of chest X-ray diagnosis,image analysis presents significant challenges,particularly in regions with limited medical expertise.This study addresses these challenges by proposing a computer-aided diagnosis system leveraging targeted image preprocessing and optimized deep learning techniques.Methods:We systematically evaluated contrast limited adaptive histogram equalization with varying clip limits for preprocessing chest X-ray images,demonstrating its effectiveness in enhancing feature visibility for diagnostic accuracy.Employing a comprehensive dataset of 5,863 X-ray images(1,583 pneumonia-negative,4,280 pneumonia-positive)collected from multiple healthcare facilities,we conducted a comparative analysis of transfer learning with pre-trained models including ResNet50v2,VGG-19,and MobileNetV2.Statistical validation was performed through 5-fold cross-validation.Results:Our results show that the contrast limited adaptive histogram equalization-enhanced approach with ResNet50v2 achieves 93.40%accuracy,outperforming VGG-19(84.90%)and MobileNetV2(89.70%).Statistical validation confirms the significance of these improvements(P<0.01).The development and optimization resulted in a lightweight mobile application(74 KB)providing rapid diagnostic support(1-2 s response time).Conclusion:The proposed approach demonstrates practical applicability in resource-constrained settings,balancing diagnostic accuracy with deployment efficiency,and offers a viable solution for computer-aided pneumonia diagnosis in areas with limited medical expertise.
基金supported by the National Key R&D Program of China(No.2022YFB3205101)NSAF(No.U2230116)。
文摘To improve image quality under low illumination conditions,a novel low-light image enhancement method is proposed in this paper based on multi-illumination estimation and multi-scale fusion(MIMS).Firstly,the illumination is processed by contrast-limited adaptive histogram equalization(CLAHE),adaptive complementary gamma function(ACG),and adaptive detail preserving S-curve(ADPS),respectively,to obtain three components.Then,the fusion-relevant features,exposure,and color contrast are selected as the weight maps.Subsequently,these components and weight maps are fused through multi-scale to generate enhanced illumination.Finally,the enhanced images are obtained by multiplying the enhanced illumination and reflectance.Compared with existing approaches,this proposed method achieves an average increase of 0.81%and 2.89%in the structural similarity index measurement(SSIM)and peak signal-to-noise ratio(PSNR),and a decrease of 6.17%and 32.61%in the natural image quality evaluator(NIQE)and gradient magnitude similarity deviation(GMSD),respectively.