期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Unsteady aerodynamic noise prediction of contra-rotating open rotor using meshless method 被引量:1
1
作者 Zhiliang HONG Meng SU +3 位作者 Haitao ZHANG Zerui XU Lin DU Lingfeng CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第8期144-165,共22页
The Contra-Rotating Open Rotor(CROR)design confronts significant noise challenges despite being one of the possible options for future green aeroengines.To efficiently estimate the noise emitted from a CROR,a three-di... The Contra-Rotating Open Rotor(CROR)design confronts significant noise challenges despite being one of the possible options for future green aeroengines.To efficiently estimate the noise emitted from a CROR,a three-dimensional unsteady prediction model based on the meshless method is presented.The unsteady wake flow and the aerodynamic load fluctuations on the blade are solved through the viscous vortex particle method,the blade element momentum theory and vortex lattice method.Then,the acoustic field is obtained through the Farassat’s formulation 1A.Validation of this method is conducted on a CROR,and a mesh-based method,e.g.,Nonlinear Harmonic(NLH)method,is also employed for comparison.It is found that the presented method is three times faster than NLH method while maintaining a comparable precision.A thorough parametric analysis is also carried out to illustrate the effects of rotational speed,rotor-rotor spacing and rear rotor diameter on the noise level.The rotor speed is found to be the most influencing factor,and by optimizing the speed difference between the front and rear rotors,a notable noise reduction can be expected.The current findings not only contribute to a deeper comprehension of the CROR’s aeroacoustic properties but also offer an effective tool for engineering applications. 展开更多
关键词 contra-rotating Open Rotor(CROR) Aerodynamic noise Blade element momentum theory Viscosity vortex particle method Farassat’s formulation 1A
原文传递
Effect of Time Step Size and Turbulence Model on the Open Water Hydrodynamic Performance Prediction of Contra-Rotating Propellers 被引量:15
2
作者 王展智 熊鹰 《China Ocean Engineering》 SCIE EI CSCD 2013年第2期193-204,共12页
A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibrati... A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers. 展开更多
关键词 contra-rotating propeller open water performance RANS time step size turbulence model
在线阅读 下载PDF
Interaction tonal noise generated by contra-rotating open rotors 被引量:4
3
作者 Wangjian SHU Congcong CHEN +2 位作者 Lin DU Xiang HE Xiaofeng SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第4期134-147,共14页
Fast and accurate prediction of sound radiation of Contra-Rotating Open Rotors(CRORs)is an essential element of design methods of low-noise open rotor propulsion systems.In the present work,a previous frequency-domain... Fast and accurate prediction of sound radiation of Contra-Rotating Open Rotors(CRORs)is an essential element of design methods of low-noise open rotor propulsion systems.In the present work,a previous frequency-domain model is extended to predict CROR noise.It builds explicitly the relationship between harmonic loadings and corresponding tonal noise,by which the influential parameters to noise generation can be clearly understood.The real distribu-tions of steady and unsteady blade loadings are calculated by the Nonlinear Harmonic(NLH)method.In the present hybrid approach,both the CFD and acoustic modules are solved in the fre-quency domain.To assess the accuracy of the developed method,the loading noise of a CROR is calculated and compared against results by using the time-domain FW-H module of NUMECA.The predicted sound directivities by the two methods are in good agreements.The present acoustic model in the frequency domain is proven to be accurate and have high efficiency in far-field noise prediction and data processing.Furthermore,the characteristics of the CROR interaction tonal noise are analyzed and discussed. 展开更多
关键词 contra-rotating Open Rotors(CRORs) Interaction tonal noise Nonlinear Harmonic(NLH) Frequency domain Acoustic analogy
原文传递
Experimental study on performance of contra-rotating axial flow fan 被引量:4
4
作者 Shizhai Zhang 《International Journal of Coal Science & Technology》 EI 2015年第3期232-236,共5页
Contra-rotating axial flow fan is a kind of the vital equipment in coal mines. Their work conditions directly affect the safety of staff and production. In the paper, the performance of the contra-rotating axial flow ... Contra-rotating axial flow fan is a kind of the vital equipment in coal mines. Their work conditions directly affect the safety of staff and production. In the paper, the performance of the contra-rotating axial flow fan is experi- mentally investigated. The study is focused on the fan performance, the shaft power and the match between the motor and fan efficiency at different blade angles. The results show that the blade angle 43°/26° has the best aerodynamic perfor- mance. The first engine has a greater impact on the fan than the second one. The blade angle with the best aerodynamic performance does not necessarily correspond to the one with the best match between the motor and fan efficiency. The blade angle 43°/24° is the best choice for the operation of the fan in the present study. 展开更多
关键词 contra-rotating axial flow fan Fan performance Shaft power Blade angle
在线阅读 下载PDF
Unsteady Flow Condition between Front and Rear Rotor of Contra-Rotating Small Sized Axial Fan 被引量:3
5
作者 Toru Shigemitsu Hiroaki Fukuda Katsuhiko Hirosawa 《Open Journal of Fluid Dynamics》 2017年第3期371-385,共15页
Contra-rotating small-sized axial fans are used as cooling fans for electric equipment. In the case of the contra-rotating rotors, the blade row distance between front and rear rotors is a key parameter for the perfor... Contra-rotating small-sized axial fans are used as cooling fans for electric equipment. In the case of the contra-rotating rotors, the blade row distance between front and rear rotors is a key parameter for the performance and stable operation. The wake and potential interference occur between the front and rear rotors and leakage flow from the front rotor tip influences on the flow condition of the rear rotor near the shroud when the blade row distance is small. Therefore, it is important to clarify the flow condition between front and rear rotors. The fan static pressure curves were obtained by the experimental apparatus and the numerical analysis was also conducted to investigate the internal flow between front and rear rotors. The leakage flow from the front rotor tip reaches the leading edge of the rear rotor when the blade row distance is small as L = 10 mm and the pressure fluctuations at the leading edge of the rear rotor tip becomes larger than those at other radial positions. In the present paper, the vorticity contour between front and rear rotors is shown and pressure fluctuations related to the leakage flow from the front rotor is investigated using the numerical analysis result. Then, suitable blade row distance for the contra-rotating small sized axial fan is discussed based on the internal flow condition. 展开更多
关键词 TURBOMACHINERY contra-rotating Axial FLOW FAN LEAKAGE FLOW WAKE
暂未订购
Study on Contra-Rotating Small-Sized Axial Flow Hydro Turbine 被引量:2
6
作者 Ryosuke Sonohata Junichiro Fukutomi Toru Toru Shigemitsu 《Open Journal of Fluid Dynamics》 2012年第4期318-323,共6页
It is thought that small hydropower generation is alternative energy, and the energy potential of small hydropower is large. The efficiency of small hydro turbines is lower than that of large one, and these small hydr... It is thought that small hydropower generation is alternative energy, and the energy potential of small hydropower is large. The efficiency of small hydro turbines is lower than that of large one, and these small hydro turbine’s common problems are out of operation by foreign materials. Then, there are demands for small hydro turbines to keep high per- formance and wide flow passage. Therefore, we adopted contra-rotating rotors which can be expected to achieve high performance and low-solidity rotors with wide flow passage in order to accomplish high performance and stable opera- tion. Final goal on this study is development of an electric appliance type small hydro turbine which has high portability and makes an effective use of the unused small hydro power energy source. In the present paper, the performance and the internal flow conditions in detail of contra-rotating small-sized axial flow hydro turbine are shown as a first step of the research with the numerical flow analysis. Then, a capability adopting contra-rotating rotors to an electric appliance type small hydro turbine was discussed. Furthermore, the high performance design for it was considered by the numeri- cal analysis results. 展开更多
关键词 Small-Sized AXIAL TURBINE contra-rotating ROTOR Electric APPLIANCE RENEWABLE Energy Internal Flow
暂未订购
Modeling and Numerical Simulation of Wings Effect on Turbulent Flow between two contra-rotating cylinders 被引量:1
7
作者 Maher Raddaoui 《Journal of Modern Physics》 2011年第5期392-397,共6页
Many industries in the world take part in the pollution of the environment. This pollution often comes from the reactions of combustion. To optimize these reactions and to minimize pollution, turbulence is a funda- me... Many industries in the world take part in the pollution of the environment. This pollution often comes from the reactions of combustion. To optimize these reactions and to minimize pollution, turbulence is a funda- mental tool. Several factors are at the origin of turbulence in the complex flows, among these factors, we can quote the effect of wings in the rotating flows. The interest of this work is to model and to simulate numeri- cally the effect of wings on the level of turbulence in the flow between two contra-rotating cylinders. We have fixed on these two cylinders eight wings uniformly distributed and we have varied the height of the wings to have six values from 2 mm to 20 mm by maintaining the same Reynolds number of rotation. The numerical tool is based on a statistical model in a point using the closing of the second order of the transport equations of the Reynolds stresses (Reynolds Stress Model: RSM). We have modelled wings effect on the flow by a source term added to the equation tangential speed. The results of the numerical simulation showed that all the average and fluctuating variables are affected the value of the kinetic energy of turbulence as those of Reynolds stresses increase with the height of the wings. 展开更多
关键词 Pollution Turbulence Combustion WING MODELING Numerical Simulation contra-rotating Cylinders REYNOLDS Stress Model Source TERM
在线阅读 下载PDF
Modeling and Numerical Simulation of Wings Effect on Turbulent Flow between Two Contra-Rotating Discs 被引量:1
8
作者 M. Raddaoui 《Journal of Energy and Power Engineering》 2011年第1期42-47,共6页
Turbulence is a fundamentally interesting physical phenomenon which is of fundamental interest. Indeed, it is at the origin of several industrial applications, the control of energy in these industrial applications pa... Turbulence is a fundamentally interesting physical phenomenon which is of fundamental interest. Indeed, it is at the origin of several industrial applications, the control of energy in these industrial applications pass by the comprehension and the modelling of turbulent flows. Several factors are at the origin of turbulence in the complex flows, among these factors, we can quote the effect of wings in the rotating flows. The interest of this work is to model and to simulate numerically the effect of wings on the level of turbulence in the flow between two contra-rotating discs. We have fixed on these two discs eight wings uniformly distributed and we have varied the height of the wings to have eleven values from 0 to 18 mm by maintaining the same Reynolds number of rotation. The numerical tool is based on a statistical model in a point using the closing of the second order of the transport equations of the Reynolds stresses (Reynolds Stress Model: RSM). We have modelled wings effect on the flow by a source term added to the equation tangential speed. The results of the numerical simulation showed that all the average and fluctuating variables are affected the value of the kinetic energy of turbulence as those of Reynolds stresses increase with the height of the wings. 展开更多
关键词 Turbulence control of energy WING MODELING numerical simulation contra-rotating discs Reynolds Stress Model source term.
在线阅读 下载PDF
Characteristics of an Axial-flux Permanent Magnet Synchronous Machine with Contra-rotating Rotors under Unbalanced Load Condition from 3-D Finite Element Analysis 被引量:1
9
作者 Yichang Zhong Shoudao Huang +1 位作者 Derong Luo Xuan Wu 《CES Transactions on Electrical Machines and Systems》 2018年第2期220-225,共6页
During recent years,the axial-flus PMSM with contra-rotating rotors has become a hot topic in academic research due to its high efficiency and simple structure.However,its back-EMF may be distorted under the condition... During recent years,the axial-flus PMSM with contra-rotating rotors has become a hot topic in academic research due to its high efficiency and simple structure.However,its back-EMF may be distorted under the condition of different angular positions.This paper investigates characteristics of the novel motor used for contra-propeller driving.Considering the torque ripple and current oscillation under unbalanced load condition,this paper analyzes the distorted back-EMF of the machine when its two rotors get different angular positions during rotating.The analysis results are validated by transient-magnetic 3-D FEA method,which the 3-D FEA software is used to model this motor and transient simulations are carried out to obtain its magnetic characteristic and main performances.A main focus is put on the back-EMF characteristic with different angular positions between the two rotors.Furthermore,the characteristic of torque production under unbalanced load is investigated.Finally,a prototype motor is fabricated to validate the analyses of this paper. 展开更多
关键词 3-D finite element analysis(FEM) back electromagnetic force(back-EMF) contra-rotating rotors permanent magnet machines.
在线阅读 下载PDF
Internal Flow Condition between Front and Rear Rotor of Contra-Rotating Small-Sized Axial Fan at Low Flow Rate
10
作者 Toru Shigemitsu Kensuke Tanaka +1 位作者 Katsuhiko Hirosawa Keisuke Miyazaki 《Open Journal of Fluid Dynamics》 2017年第4期709-723,共15页
Contra-rotating small-sized fans are used as cooling fans for electric equipment. The internal flow condition between the front and rear rotors of the contra-rotating small-sized fan is not known well especially at th... Contra-rotating small-sized fans are used as cooling fans for electric equipment. The internal flow condition between the front and rear rotors of the contra-rotating small-sized fan is not known well especially at the low flow rate. Furthermore, the blade row distance between the front and rear rotors is an important parameter for the contra-rotating small-sized fan and its influence on the internal flow condition is not clarified at the low flow rate. Therefore, the internal flow condition of the contra-rotating small-sized fan at the low flow rate is investigated by the numerical analysis in this research. The numerical analysis results are validated by comparing the fan static pressure curves of the numerical results to the experimental results. The internal flow condition at the low flow rate is clarified using the numerical models of the different blade row distance L = 10 mm and 30 mm. In the present paper, pressure fluctuations phase locked each front and rear rotor’s rotation are shown and the influences of the wake and the potential interference are discussed by the unsteady numerical analysis results at the low flow rate. 展开更多
关键词 Small-Sized AXIAL FAN contra-rotating Rotors WAKE Potential Interference Numerical Analysis
暂未订购
Performance and Internal Flow of Contra-Rotating Small-Sized Cooling Fan
11
作者 Toru Shigemitsu Keisuke Miyazaki +1 位作者 Katsuhiko Hirosawa Hiroaki Fukuda 《Open Journal of Fluid Dynamics》 2018年第2期181-194,共14页
High pressure and large flow rate small-sized cooling fans are used for servers in data centers and there is a strong demand to increase its performance because of increase of quantity of heat from servers. Contra-rot... High pressure and large flow rate small-sized cooling fans are used for servers in data centers and there is a strong demand to increase its performance because of increase of quantity of heat from servers. Contra-rotating rotors have been adopted for some of high pressure and large flow rate cooling fans to meet the demand. The performance curve of the contra-rotating small-sized cooling fan with 40 mm square casing was investigated by an experimental apparatus and its internal flow condition was clarified by the numerical analysis. The fan static pressure of the front rotor was extremely low and it increased significantly at the rear rotor. The uniform flow was achieved at the inlet of the rear rotor because of the special shape of the casing between the front and rear rotors. On the other hand, the tip leakage flow was large enough to influence on the main flow of the test cooling fan by the design specification of high pressure with compact rotor diameter. 展开更多
关键词 COOLING FAN Small-Sized AXIAL FAN contra-rotating Rotors PERFORMANCE INTERNAL Flow
暂未订购
Comparison of Rotating Stall Warning by Different Methods for Variable Speed Configurations in a Contra-Rotating Compressor 被引量:1
12
作者 XUE Fei WANG Yan'gang +2 位作者 LIU Qian WU Tong LIU Hanru 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第4期1379-1393,共15页
Stall in compressors can cause performance degradation and even lead to disasters.These unacceptable consequences can be avoided by timely monitoring stall inception and taking effective measures.This paper focused on... Stall in compressors can cause performance degradation and even lead to disasters.These unacceptable consequences can be avoided by timely monitoring stall inception and taking effective measures.This paper focused on the rotating stall warning in a low-speed axial contra-rotating compressor.Firstly,the stall disturbance characteristics under different speed configurations were analyzed.The results showed that as the speed ratio(RR)increased,the stall disturbance propagation speed based on the rear rotor speed gradually decreased.Subsequently,the standard deviation(SD)method,the cross-correlation(CC)method,and the discrete wavelet transform(DWT)method were employed to obtain the stall initiation moments of three different speed configurations.It was found that the SD and CC methods did not achieve significant stall warning results in all three speed configurations.Besides,the stall initiation moment obtained by the DWT method at RR=1.125 was one period after the stall had fully developed,which was unacceptable.Therefore,a stall warning method was developed in the present work based on the long short-term memory(LSTM)regression model.By applying the LSTM model,the predicted stall initiation moments of three speed configurations were at the 557th,518th,and 333rd revolution,which were44,2,and 74 revolutions ahead of stall onset moments,respectively.Furthermore,in scenarios where a minor disturbance preceded the stall,the stall warning effect of the LSTM was greatly improved in comparison with the aforementioned three methods.In contrast,when the pressure fluctuation before the stall was relatively small,the differences between the stall initiation moments predicted by these four methods were not significant. 展开更多
关键词 contra-rotating compressor stall disturbance stall initiation moment long short-term memory(LSTM) stall warning
原文传递
Design of a two spool contra-rotating turbine for a turbo-fan engine 被引量:1
13
作者 Prathapanayaka Rajeevalochanam S.N.Agnimitra Sunkara +1 位作者 Seepana Venkata Ramana Murthy R.Senthil Kumaran 《Propulsion and Power Research》 SCIE 2020年第3期225-239,共15页
Contra-rotating turbines offer enhanced performance over their conventional corotating configurations.In addition,vaneless contra-rotating turbine stages offer lesser stage length along with improved performance.Contr... Contra-rotating turbines offer enhanced performance over their conventional corotating configurations.In addition,vaneless contra-rotating turbine stages offer lesser stage length along with improved performance.Contra-rotating turbines with a vaned LP stages offer a controlled work-split between the stages over a wider range of operating conditions by maintaining inlet swirl to the second rotor.The objective of the present work is to design an equivalent vaned contra-rotating turbine for an existing co-rotating configuration of a two-spool turbo fan engine.The contra-rotating turbine is designed by retaining the existing flow path and HP turbine,and redesigning the LP turbine for fixed radial distributions of inlet total temperature,pressure and swirl.A comparative study between performance of the co-rotating and contra-rotating turbines is carried out for different speeds.Cascade testing of the LP stator and rotor mean sections was carried out to validate the analysis.The LP stage of contra-rotating turbine exhibits a performance improvement by 2%points at design point,as per flow predictions.The reduced flow deflection in stator row is the primary reason for significant reduction in profile and secondary losses in contra-rotating turbine,which contributed to the performance improvement.A significant reduction of 23%in blade weight and 45% in LP stator vane count is obtained. 展开更多
关键词 contra-rotating turbine Computational fluid dynamics Vaned contra-rotating Two spool Unsteady CFD
原文传递
Performance Test and Flow Measurement of Contra-Rotating Axial Flow Pump 被引量:20
14
作者 Akinori Furukawa Toru Shigemitsu Satoshi Watanabe 《Journal of Thermal Science》 SCIE EI CAS CSCD 2007年第1期7-13,共7页
An application of contra-rotating rotors has been proposed against a demand for developing higher specific speed axial flow pump. In the present paper, the advantage and disadvantage of using contra-rotating rotors ar... An application of contra-rotating rotors has been proposed against a demand for developing higher specific speed axial flow pump. In the present paper, the advantage and disadvantage of using contra-rotating rotors are described in comparison with conventional type of rotor-stator, based on theoretical and experimental investigations. The advantages are as follows: (1) The pump is inherently designed as smaller sized and at lower rotational speed. (2) A stable head-characteristic curve for flow rate with negative slope appears. (3) As the rear rotor rotational speed is varied as independent control of front rotor, the wider range of high performance operation is obtained by rear rotor speed control in addition to front rotor speed control. The disadvantages are as follows: (1) The structure of double shaft system becomes complex. (2) The pump performance is inferior at over flow rate as the rear rotor loading is weakened. (3) The blade rows interaction from rear rotor to front rotor more strongly appears. Then the rear rotor design is a key to achieve higher pump performance. Some methods to overcome these disadvantages will be discussed in more details toward wider usage of contra-rotating axial flow pump in various industrial fields. 展开更多
关键词 axial flow pump contra-rotating rotors multiphase flow rotational speed control blade rows interaction
原文传递
Performance and Flow Condition of Small-Sized Axial Fan and Adoption of Contra-Rotating Rotors 被引量:9
15
作者 T.Shigemitsu J.Fukutomi Y.Okabe 《Journal of Thermal Science》 SCIE EI CAS CSCD 2010年第1期1-6,共6页
Small-sized axial fans are used as air coolers for electric equipments.But there is a strong demand for higher power of fans according to the increase of quantity of heat from electric devices.Therefore,higher rotatio... Small-sized axial fans are used as air coolers for electric equipments.But there is a strong demand for higher power of fans according to the increase of quantity of heat from electric devices.Therefore,higher rotational speed design is conducted,although it causes the deterioration of the efficiency and the increase of noise.Then the adoption of contra-rotating rotors for the small-sized axial fan is proposed for the improvement of the performance.In the present paper,the performance and the internal flow condition of the small-sized axial fan are shown as a first step of the research for the contra-rotating small-sized axial fan and the important points to apply contra-rotating rotors to the small-sized axial fan are discussed.Furthermore,the numerical flow analysis is conducted to investigate the performance of the contra-rotating small-sized axial fan and internal flow conditions and pressure distributions are clarified and the effect of contra-rotating rotors is considered. 展开更多
关键词 Small-sized axial fan contra-rotating rotors Numerical analysis PERFORMANCE Internal flow
原文传递
Investigation of the Unsteady Disturbance in Tip Region of a Contra-Rotating Compressor near Stall 被引量:5
16
作者 CHEN Weixiong WANG Yangang WANG Hao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2019年第5期962-974,共13页
The present study investigated the spectrum characteristics of unsteady disturbance and the tip leakage vortex evolution during pre-stall process for a contra-rotating axial compressor(CRAC). Transient numerical simul... The present study investigated the spectrum characteristics of unsteady disturbance and the tip leakage vortex evolution during pre-stall process for a contra-rotating axial compressor(CRAC). Transient numerical simulation was carried out in a single passage of the CRAC. The original transient fluctuation and oscillation of the tip leakage vortex structure with varying flow capacity of the CRAC were revealed using circle-like pattern figure and phase-locked root mean square(PLRMS). Additionally, the tip leakage flow in terms of vortex structure evolution was visualized for the sake of revealing the flow mechanism during pre-stall process. Results show that the unsteady fluctuation first appears at φ=0.3622, and the fluctuation frequency is 2.86 BPF. Unsteady disturbance source is mainly located at the tip side of the downstream rotor leading edge. From the choking point to the near stall condition, tip leakage vortex is always found in the tip leading edge of the upstream rotor. In addition, the tip leakage vortex of upstream rotor remains in the same place over time, i.e., no fluctuation, even when the downstream rotor entered into stall state. Such a phenomenon indicates that the stall point of the contra-rotating compressor is determined by the downstream rotor. Moreover, the maximum fluctuation position is mainly concentrated on the interface between the mainstream and the tip leakage vortex of the downstream rotor. By throttling the compressor, the angle between the main leakage vortex and the circumferential direction decreases gradually. When the main leakage vortex touches and continuously impacts on the leading edge of the adjacent blade, the unsteady disturbance, which is different from that of BPF, appears firstly. 展开更多
关键词 contra-rotating axial COMPRESSOR blade PASSING frequency TIP leakage flow UNSTEADY DISTURBANCE source phase-locked RMS
原文传递
Experimental Investigation on the Development Process of Large-Scale Low-Speed Stall Disturbance in Contra-Rotating Compressor 被引量:7
17
作者 YUE Shaoyuan WANG Yan'gang +1 位作者 WEI Liguo WANG Hao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第5期1282-1291,共10页
In order to better understand the stall process of a contra-rotating compressor,the detailed characteristic and multi-channel unsteady pressure signals have been achieved by a special layout of high-frequency response... In order to better understand the stall process of a contra-rotating compressor,the detailed characteristic and multi-channel unsteady pressure signals have been achieved by a special layout of high-frequency response pressure sensors.The array consists of thirty-one high-frequency response dynamic sensors coupled with two optical fiber sensors that were installed on the compressor casing in the direction of circumferential and chordwise of the upstream and downstream of the contra-rotating rotors.A significant hysteresis loop during the stall-recovery process of the contra-rotating compressor was captured successfully.The time series of unsteady signals when the compressor was working on the point of stall occurrence,the period of fully stall,and recovery stall were studied and discussed.Results show a large scale,and low-speed disturbance occurred abruptly at the leading-edge plane of the rear rotor and expands until it passes through both rotors.The single stall cell occupied a circumferential range of 135° and moved in the direction of the rear rotor with an 8.3%shaft speed.As the mass flow rate dropped,the stall cell speed decreases.During the stall recovery process,the rotational speed of disturbance suddenly increased from 7.5%to 18%and even increased to 47%just before the moment when flow recovered axisymmetric.Compared with the rear rotor,the front one dropped out unstable conditions earlier. 展开更多
关键词 contra-rotating ABRUPT large scale STALL
原文传递
Influence of Tip Clearance on Performance of a Contra-Rotating Fan 被引量:6
18
作者 Jian Xu Chunqing Tan +2 位作者 Haisheng Chen Yangli Zhu Dongyang Zhang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2009年第3期207-214,共8页
Influences of tip clearance on the tip flow and associated loss mechanism in a contra-rotating axial flow fan hasbeen studied in the paper, based on three dimensional numerical results. The results with different tip ... Influences of tip clearance on the tip flow and associated loss mechanism in a contra-rotating axial flow fan hasbeen studied in the paper, based on three dimensional numerical results. The results with different tip clearanceare compared in terms of stage efficiency, relative total pressure loss coefficient, flow angle. It is found that theefficiency of the contra-rotating fan changes almost linearly with increment of the tip clearance, however, efficiencyof the rear rotor is observed to decrease more dramatically than that of the forward rotor given same tipclearance variation. The analysis on the flow structure indicates that the tip region flow field is qualitatively similarin both rotors. However, with the same clearance value, the leakage flow in the rear rotor is effected by a tipleakage vortex of greater intensity caused by relative loading levels and the inter rotor interaction. 展开更多
关键词 contra-rotating fan tip clearance PERFORMANCE tip leakage flow
原文传递
Experimental Analysis of Flow Structure in Contra-Rotating Axial Flow Pump Designed with Different Rotational Speed Concept 被引量:3
19
作者 Linlin Cao Satoshi Watanabe +2 位作者 Toshiki Imanishi Hiroaki Yoshimura Akinori Furukawa 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第4期345-351,共7页
As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the... As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head - flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carded out to understand the complicated internal flow structures in the rotors. 展开更多
关键词 contra-rotating rotors Internal flow Limiting streamlines Tip leakage vortex Corner separation
原文传递
Performance and Internal Flow of Sirocco Fan Using Contra-Rotating Rotors 被引量:2
20
作者 J.Fukutomi T.Shigemitsu T.Yasunobu 《Journal of Thermal Science》 SCIE EI CAS CSCD 2008年第1期35-41,共7页
A sirocco fan using contra-rotating rotors in which an inner rotor is settled inside the sirocco fan rotor and each rotor rotates in an opposite direction was proposed for the purpose of getting the higher pressure an... A sirocco fan using contra-rotating rotors in which an inner rotor is settled inside the sirocco fan rotor and each rotor rotates in an opposite direction was proposed for the purpose of getting the higher pressure and making the structure of a sirocco fan more compact. If the high discharge pressure is obtained with the adoption of the contra-rotating rotors, it could be used for various purposes. Pressure coefficient of a sirocco fan with contra-rotating rotors is 2.5 times as high as the conventional sirocco fan and the maximum efficiency point of contra-rotating rotors shifts to larger flow rate than a conventional sirocco fan. On the other hand, it was clarified from the flow measurement results that circumferential velocity component at the outlet of the outer rotor of contra-rotating ro- tors becomes larger than a conventional one. In the present paper, the performance of a conventional sirocco fan and a sirocco fan with contra-rotating rotors are shown and the internal flow field at the outlet of outer rotor of both cases is clarified. Then, the effect of different kind of contra-rotating rotors on the performance and internal flow field is investigated and the rotor design with higher performance would be discussed. 展开更多
关键词 Sirocco fan High pressure contra-rotating rotors Slow angle Circular arc blade Aerofoil blade
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部