We demonstrate that the n-partite continuous-variable entanglement can be unconditionally prepared among n parties that share no common past, from n two-mode squeezed states. Both CHZ-like and cluster-like states can ...We demonstrate that the n-partite continuous-variable entanglement can be unconditionally prepared among n parties that share no common past, from n two-mode squeezed states. Both CHZ-like and cluster-like states can be generated for any nonzero squeezing in the entangled sources. An application of the resulting multipartite entangled state to a teleportation network is illustrated.展开更多
We obtain an explicit formula to calculate the entanglement entropy of bipartite entangled state of general two-mode boson exponential quadratic operator with continuous variables in Fock space. The simplicity and gen...We obtain an explicit formula to calculate the entanglement entropy of bipartite entangled state of general two-mode boson exponential quadratic operator with continuous variables in Fock space. The simplicity and generality of our formula are shown by some examples.展开更多
We propose a quantum-enhanced metrological scheme utilizing unbalanced entangled coherent states(ECSs) generated by passing a coherent state and a coherent state superposition through an unbalanced beam splitter(BS). ...We propose a quantum-enhanced metrological scheme utilizing unbalanced entangled coherent states(ECSs) generated by passing a coherent state and a coherent state superposition through an unbalanced beam splitter(BS). We identify the optimal phase sensitivity of this scheme by maximizing the quantum Fisher information(QFI) with respect to the BS transmission ratio. Our scheme outperforms the conventional scheme with a balanced BS, particularly in the presence of single-mode photon loss. Notably, our scheme retains quantum advantage in phase sensitivity in the limit of high photon intensity, where the balanced scheme offers no advantage over the classical strategy.展开更多
We introduce a new kind of four-mode continuous variable entangled state in Fock space. The completeness relation and the partly nonorthonormal property of such a state are proven. The scheme to generate this state is...We introduce a new kind of four-mode continuous variable entangled state in Fock space. The completeness relation and the partly nonorthonormal property of such a state are proven. The scheme to generate this state is presented by combining a symmetrical beamsplitter, a parametric down-conversion and a polarizer. After making a single-mode quadrature amplitude measurement, the remaining three modes are kept in entanglement. And its applications are also discussed.展开更多
We present a quantum ranging protocol that overcomes photon-loss limitations using optimized partially frequencyentangled states.By establishing the fundamental relationship between the degree of entanglement,channel ...We present a quantum ranging protocol that overcomes photon-loss limitations using optimized partially frequencyentangled states.By establishing the fundamental relationship between the degree of entanglement,channel transmission efficiency and measurement precision,we demonstrate superclassical timing resolution in both lossless and lossy regimes.Theoretical analysis and numerical simulations reveal that,under a lossless channel,the precision gain increases with the degree of entanglement,approaching the Heisenberg limit.Importantly,in lossy channels,the precision gain is significantly influenced by both the channel transmission efficiency and the degree of entanglement.For transmission efficiencies above50%,the proposed method provides up to 1.5 times the precision gain of classical methods when entanglement parameters are optimized.Moreover,by optimizing intra-group and inter-group covariances in the multi-structured entangled state,we achieve substantial precision gains even at low transmission efficiencies(~30%),demonstrating its robustness against loss.This study resolves the critical trade-off between entanglement-enhanced precision and loss-induced information degradation.Future implementation could extend to satellite-based quantum positioning,remote sensing,quantum illumination,and other fields that require high-precision ranging in lossy environments.The protocol establishes a universal framework for loss-tolerant quantum metrology,advancing the practical deployment of quantum-enhanced sensing in real-world applications.展开更多
The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented. In these proposals, the entanglement between two coherent states, |α〉 and |-α〉, with the same amplitu...The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented. In these proposals, the entanglement between two coherent states, |α〉 and |-α〉, with the same amplitude but a phase difference of π is utilized as a quantum channel. The processes of the entanglement diversion and the teleportation are achieved by using the 50/50 symmctric beam splitters, the phase shifters and the photodetectors with the help of classical information.展开更多
This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and de...This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.展开更多
Recently, Liu et al. [Commun. Theor. Phys. 57(2012) 583] proposed a quantum private comparison protocol based on entanglement swapping of Bell states, which aims to securely compare the equality of two participants...Recently, Liu et al. [Commun. Theor. Phys. 57(2012) 583] proposed a quantum private comparison protocol based on entanglement swapping of Bell states, which aims to securely compare the equality of two participants' information with the help of a semi-honest third party(TP). However, the present study points out there is a fatal loophole in Liu et al.'s protocol, and TP can make Bell-basis measurement to know all the participants' secret inputs without being detected. To fix the problem, a simple solution, which uses one-time eavesdropper checking with decoy photons instead of twice eavesdropper checking with Bell states, is demonstrated. Compared with the original protocol,it not only reduces the Bell states consumption but also simplifies the protocol steps.展开更多
In this paper,we first re-examine the previous protocol of controlled quantum secure direct communication of Zhang et al.’s scheme,which was found insecure under two kinds of attacks,fake entangled particles attack a...In this paper,we first re-examine the previous protocol of controlled quantum secure direct communication of Zhang et al.’s scheme,which was found insecure under two kinds of attacks,fake entangled particles attack and disentanglement attack.Then,by changing the party of the preparation of cluster states and using unitary operations,we present an improved protocol which can avoid these two kinds of attacks.Moreover,the protocol is proposed using the three-qubit partially entangled set of states.It is more efficient by only using three particles rather than four or even more to transmit one bit secret information.Given our using state is much easier to prepare for multiqubit states and our protocol needs less measurement resource,it makes this protocol more convenient from an applied point of view.展开更多
We propose a most simple and experimentally feasible scheme for teleporting unknown atomic entangled states in driven cavity quantum electrodynamics (QED). In our scheme, the joint Bell-state measurement (BSM) is ...We propose a most simple and experimentally feasible scheme for teleporting unknown atomic entangled states in driven cavity quantum electrodynamics (QED). In our scheme, the joint Bell-state measurement (BSM) is not required, and the successful probability can reach 1.0. Furthermore, the scheme is insensitive to the cavity decay and the thermal field.展开更多
We present a controlled secure quantum dialogue protocol using a non-maximally (pure) entangled Greenberger-Horne-Zeibinger (GHZ) states at first, and then discuss the requirements for a real quantum dialogue. We ...We present a controlled secure quantum dialogue protocol using a non-maximally (pure) entangled Greenberger-Horne-Zeibinger (GHZ) states at first, and then discuss the requirements for a real quantum dialogue. We show that the authorized two users can exchange their secret messages after purifying the non-maximally entangled GHZ states quantum channel unconditionally securely and simultaneously under the control of a third party.展开更多
In this paper,a quantum private comparison protocol is proposed based on bell entangled states.In our protocol,two parties can compare the equality of their information with the help of a semi-honest third party.The c...In this paper,a quantum private comparison protocol is proposed based on bell entangled states.In our protocol,two parties can compare the equality of their information with the help of a semi-honest third party.The correctness and security of our protocol are discussed.One party cannot learn the other's private information and the third party also cannot learn any information about the private information.展开更多
In this paper, by using the parity operator as well as the nonlinear displacement-type operator, we define new operators which by the action of them on the vacuum state of the radiation field, superposition of two non...In this paper, by using the parity operator as well as the nonlinear displacement-type operator, we define new operators which by the action of them on the vacuum state of the radiation field, superposition of two nonlinear coherent states and two-mode entangled nonlinear coherent states are generated. Also, we show that via the generalization of the presented method, the superposition of more than two nonlinear coherent states and n-mode entangled nonlinear coherent states can be generated.展开更多
We propose the methods of generating multipartite entanglement by considering the interaction of a system of N two-level atoms in M cavities of high quality factor with a strong classical driving field. It is shown th...We propose the methods of generating multipartite entanglement by considering the interaction of a system of N two-level atoms in M cavities of high quality factor with a strong classical driving field. It is shown that, with the cavity detuning, the applied driving field detuning and vacuum Rabi coupling, we can produce an entangled coherent state in two single-mode cavities and generate the entangled coherent cluster states in two bimodal vacuum cavities. Tuning these parameters also allows us to acquire the anti-Jaynes-Cummings (AJC) interaction, with which we can generate the maximally two-photon entangled states, and the two-atom and the two-photon entangled cluster states.展开更多
Although the multi-level structure of superconducting qubits may result in calculation errors, it can be rationally used to effectively improve the speed of gate operations. Utilizing a current-biased Josephson juncti...Although the multi-level structure of superconducting qubits may result in calculation errors, it can be rationally used to effectively improve the speed of gate operations. Utilizing a current-biased Josephson junction (A-type rf-SQUID) as a tunable coupler for superconducting transmission line resonators (TLRs), under the large detuning condition, we demonstrate the controllable generation of entangled coherent states in circuit quantum electrodynamics (circuit QED). The coupling between the TLRs and the qubit can be effectively regulated by an external bias current or coupling capacitor. Further investigations indicate that the maximum entangled state can be obtained through measuring the excited state of the superconducting qubits. Then, the influence of the TLR [tecay on the prepared entangled states is analyzed.展开更多
We propose two schemes for splitting single- and two-qubit states by using four-particle genuine entangled state as the quantum channel. After the sender performs Bell-basis (or three-partite GHZ- basis) measurement...We propose two schemes for splitting single- and two-qubit states by using four-particle genuine entangled state as the quantum channel. After the sender performs Bell-basis (or three-partite GHZ- basis) measurements on her particles, and the cooperators operate single-particle measurements on their particles, the state receiver can reconstruct the original state of the sender by applying the appropriate unitary operation. In particular, in the scheme for splitting two-qubit state, the receiver needs to introduce an auxiliary particle and carries out a C-NOT operation.展开更多
A scheme is proposed for the generation of two-atom maximally entangled states and multi-atom maximally entangled states of W class. The scheme is based on the simultaneous resonant interaction of atoms with a single-...A scheme is proposed for the generation of two-atom maximally entangled states and multi-atom maximally entangled states of W class. The scheme is based on the simultaneous resonant interaction of atoms with a single-mode cavity field. It does not require accurate adjustment of the interaction time. The time needed to complete the generation does not increase with the number of the atom.展开更多
This paper proposes a decoherence-immune scheme for generating highly entangled states for two atoms trapped in a cavity. The scheme is based on two resonant atom-cavity interactions. Conditional upon the detection of...This paper proposes a decoherence-immune scheme for generating highly entangled states for two atoms trapped in a cavity. The scheme is based on two resonant atom-cavity interactions. Conditional upon the detection of no photon, the two atoms may exchange an excitation via the first resonant interaction, which leads to entanglement. Due to the loss of the excitation, the two atoms are in a mixed entangled state. With the help of an auxiliary ground state not coupled to the cavity mode, the state related to the excitation loss is eliminated by the detection of a photon resulting from the second resonant interaction. Thus, the fidelity of entanglement is almost not affected by the decoherence.展开更多
This paper proposes a feasible scheme for the quantum teleportation of tripartite entangled coherent states by using linear optical devices such as beam splitters, phase shifters and photo detectors. The scheme is bas...This paper proposes a feasible scheme for the quantum teleportation of tripartite entangled coherent states by using linear optical devices such as beam splitters, phase shifters and photo detectors. The scheme is based on the bipartite maximally entangled coherent state and the tripartite entangled coherent state with bipartite maximal entanglement as quantum channels. It shows that when the mean number of photons is equal to 2, the total minimum of the average fidelity for an arbitrary tripartite entangled state is 1 - 0.67 ×10^-3.展开更多
A scheme is presented for generating entangled states of multiple atoms in a cavity. In the scheme the atoms simultaneously interact with a cavity mode, with the first atom driven by two classical fields and the other...A scheme is presented for generating entangled states of multiple atoms in a cavity. In the scheme the atoms simultaneously interact with a cavity mode, with the first atom driven by two classical fields and the other atoms driven by a classical field. Our scheme is valid even if the cavity decay rate is larger than the effective coupling strength, which is important for experiment. The generation of entangled states is conditional on the detection of a photon decaying from the cavity and thus the fidelity of the entangled state is insensitive to the detection inefficiency. Furthermore, the scheme can be applied to the case with any number of atoms in principle.展开更多
基金Project supported by the National Natural Science Foundation of China (Grants Nos. 10674009,10874004 and 10821062)the National Key Basic Research Program of China (Grant No. 2006CB921601)
文摘We demonstrate that the n-partite continuous-variable entanglement can be unconditionally prepared among n parties that share no common past, from n two-mode squeezed states. Both CHZ-like and cluster-like states can be generated for any nonzero squeezing in the entangled sources. An application of the resulting multipartite entangled state to a teleportation network is illustrated.
基金supported by the National Fundamental Research Program under Grant No.2006CB921104National Natural Science Foundation of China under Grant No.60708003
文摘We obtain an explicit formula to calculate the entanglement entropy of bipartite entangled state of general two-mode boson exponential quadratic operator with continuous variables in Fock space. The simplicity and generality of our formula are shown by some examples.
基金supported by the National Natural Science Foundation of China (Grant No. 12005106)support from the National Natural Science Foundation of China (Grant No. 11974189)+1 种基金support from the National Natural Science Foundation of China (Grant No. 12175106)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. JSCX23-0260)。
文摘We propose a quantum-enhanced metrological scheme utilizing unbalanced entangled coherent states(ECSs) generated by passing a coherent state and a coherent state superposition through an unbalanced beam splitter(BS). We identify the optimal phase sensitivity of this scheme by maximizing the quantum Fisher information(QFI) with respect to the BS transmission ratio. Our scheme outperforms the conventional scheme with a balanced BS, particularly in the presence of single-mode photon loss. Notably, our scheme retains quantum advantage in phase sensitivity in the limit of high photon intensity, where the balanced scheme offers no advantage over the classical strategy.
基金supported by the Natural Science Foundation of Jiangxi Province,China (Grant No 2007GZW0171)the Foundation of Education Department of Jiangxi Province,China (Grant No [2007] 136)
文摘We introduce a new kind of four-mode continuous variable entangled state in Fock space. The completeness relation and the partly nonorthonormal property of such a state are proven. The scheme to generate this state is presented by combining a symmetrical beamsplitter, a parametric down-conversion and a polarizer. After making a single-mode quadrature amplitude measurement, the remaining three modes are kept in entanglement. And its applications are also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.62071363)the Key Research and Development Projects of Shaanxi Province,China(Grant No.2021LLRH-06)。
文摘We present a quantum ranging protocol that overcomes photon-loss limitations using optimized partially frequencyentangled states.By establishing the fundamental relationship between the degree of entanglement,channel transmission efficiency and measurement precision,we demonstrate superclassical timing resolution in both lossless and lossy regimes.Theoretical analysis and numerical simulations reveal that,under a lossless channel,the precision gain increases with the degree of entanglement,approaching the Heisenberg limit.Importantly,in lossy channels,the precision gain is significantly influenced by both the channel transmission efficiency and the degree of entanglement.For transmission efficiencies above50%,the proposed method provides up to 1.5 times the precision gain of classical methods when entanglement parameters are optimized.Moreover,by optimizing intra-group and inter-group covariances in the multi-structured entangled state,we achieve substantial precision gains even at low transmission efficiencies(~30%),demonstrating its robustness against loss.This study resolves the critical trade-off between entanglement-enhanced precision and loss-induced information degradation.Future implementation could extend to satellite-based quantum positioning,remote sensing,quantum illumination,and other fields that require high-precision ranging in lossy environments.The protocol establishes a universal framework for loss-tolerant quantum metrology,advancing the practical deployment of quantum-enhanced sensing in real-world applications.
文摘The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented. In these proposals, the entanglement between two coherent states, |α〉 and |-α〉, with the same amplitude but a phase difference of π is utilized as a quantum channel. The processes of the entanglement diversion and the teleportation are achieved by using the 50/50 symmctric beam splitters, the phase shifters and the photodetectors with the help of classical information.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and the Beijing Education Committee (Grant No XK100270454).
文摘This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.
基金Supported by the National Nature Science Foundation of China under Grant Nos.61103235,61170321,61373016 and 61373131the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Practice Inovation Trainng Program Projects for the Jiangsu College Students(201310300018Z)
文摘Recently, Liu et al. [Commun. Theor. Phys. 57(2012) 583] proposed a quantum private comparison protocol based on entanglement swapping of Bell states, which aims to securely compare the equality of two participants' information with the help of a semi-honest third party(TP). However, the present study points out there is a fatal loophole in Liu et al.'s protocol, and TP can make Bell-basis measurement to know all the participants' secret inputs without being detected. To fix the problem, a simple solution, which uses one-time eavesdropper checking with decoy photons instead of twice eavesdropper checking with Bell states, is demonstrated. Compared with the original protocol,it not only reduces the Bell states consumption but also simplifies the protocol steps.
基金Project supported by NSFC(Grant Nos.61671087,61272514,61170272,61003287,61571335,61628209)the Fok Ying Tong Education Foundation(Grant No.131067)+2 种基金the National Key R&D Program of China under Grant 2017YFB0802300the Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(2018BDKFJJ016)Hubei Science Foundation(2016CFA030,2017AAA125)。
文摘In this paper,we first re-examine the previous protocol of controlled quantum secure direct communication of Zhang et al.’s scheme,which was found insecure under two kinds of attacks,fake entangled particles attack and disentanglement attack.Then,by changing the party of the preparation of cluster states and using unitary operations,we present an improved protocol which can avoid these two kinds of attacks.Moreover,the protocol is proposed using the three-qubit partially entangled set of states.It is more efficient by only using three particles rather than four or even more to transmit one bit secret information.Given our using state is much easier to prepare for multiqubit states and our protocol needs less measurement resource,it makes this protocol more convenient from an applied point of view.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025).
文摘We propose a most simple and experimentally feasible scheme for teleporting unknown atomic entangled states in driven cavity quantum electrodynamics (QED). In our scheme, the joint Bell-state measurement (BSM) is not required, and the successful probability can reach 1.0. Furthermore, the scheme is insensitive to the cavity decay and the thermal field.
基金The project supported by National Natural Science Foundation of China under Grant No. 10575017
文摘We present a controlled secure quantum dialogue protocol using a non-maximally (pure) entangled Greenberger-Horne-Zeibinger (GHZ) states at first, and then discuss the requirements for a real quantum dialogue. We show that the authorized two users can exchange their secret messages after purifying the non-maximally entangled GHZ states quantum channel unconditionally securely and simultaneously under the control of a third party.
基金Supported by the High Technology Research and Development Program of China (863 Program,2011AA01A107)Beijing Municipal Special Fund for Cultural and Creative Industries(2009)the Beijing Municipal Natural Science Foundation (4112052)
文摘In this paper,a quantum private comparison protocol is proposed based on bell entangled states.In our protocol,two parties can compare the equality of their information with the help of a semi-honest third party.The correctness and security of our protocol are discussed.One party cannot learn the other's private information and the third party also cannot learn any information about the private information.
文摘In this paper, by using the parity operator as well as the nonlinear displacement-type operator, we define new operators which by the action of them on the vacuum state of the radiation field, superposition of two nonlinear coherent states and two-mode entangled nonlinear coherent states are generated. Also, we show that via the generalization of the presented method, the superposition of more than two nonlinear coherent states and n-mode entangled nonlinear coherent states can be generated.
基金Project supported by the National Natural Science Foundation of China (Grant No 10774088)the Key Program of National Natural Science Foundation of China (Grant No 10534030)the Funds from Qufu Normal University, China (Grant No XJ0621)
文摘We propose the methods of generating multipartite entanglement by considering the interaction of a system of N two-level atoms in M cavities of high quality factor with a strong classical driving field. It is shown that, with the cavity detuning, the applied driving field detuning and vacuum Rabi coupling, we can produce an entangled coherent state in two single-mode cavities and generate the entangled coherent cluster states in two bimodal vacuum cavities. Tuning these parameters also allows us to acquire the anti-Jaynes-Cummings (AJC) interaction, with which we can generate the maximally two-photon entangled states, and the two-atom and the two-photon entangled cluster states.
基金supported by the National Natural Science Foundation of China(Grant No.11264015)
文摘Although the multi-level structure of superconducting qubits may result in calculation errors, it can be rationally used to effectively improve the speed of gate operations. Utilizing a current-biased Josephson junction (A-type rf-SQUID) as a tunable coupler for superconducting transmission line resonators (TLRs), under the large detuning condition, we demonstrate the controllable generation of entangled coherent states in circuit quantum electrodynamics (circuit QED). The coupling between the TLRs and the qubit can be effectively regulated by an external bias current or coupling capacitor. Further investigations indicate that the maximum entangled state can be obtained through measuring the excited state of the superconducting qubits. Then, the influence of the TLR [tecay on the prepared entangled states is analyzed.
文摘We propose two schemes for splitting single- and two-qubit states by using four-particle genuine entangled state as the quantum channel. After the sender performs Bell-basis (or three-partite GHZ- basis) measurements on her particles, and the cooperators operate single-particle measurements on their particles, the state receiver can reconstruct the original state of the sender by applying the appropriate unitary operation. In particular, in the scheme for splitting two-qubit state, the receiver needs to introduce an auxiliary particle and carries out a C-NOT operation.
基金The project supported by Natural Science Foundation of Fujian Province of China under Grant No. JB05065
文摘A scheme is proposed for the generation of two-atom maximally entangled states and multi-atom maximally entangled states of W class. The scheme is based on the simultaneous resonant interaction of atoms with a single-mode cavity field. It does not require accurate adjustment of the interaction time. The time needed to complete the generation does not increase with the number of the atom.
基金Project supported by funds from the State Key Laboratory Breeding Base of Photocatalysis,Fuzhou University
文摘This paper proposes a decoherence-immune scheme for generating highly entangled states for two atoms trapped in a cavity. The scheme is based on two resonant atom-cavity interactions. Conditional upon the detection of no photon, the two atoms may exchange an excitation via the first resonant interaction, which leads to entanglement. Due to the loss of the excitation, the two atoms are in a mixed entangled state. With the help of an auxiliary ground state not coupled to the cavity mode, the state related to the excitation loss is eliminated by the detection of a photon resulting from the second resonant interaction. Thus, the fidelity of entanglement is almost not affected by the decoherence.
基金supported by the National Natural Science Foundation of China(Grant No 10774088)
文摘This paper proposes a feasible scheme for the quantum teleportation of tripartite entangled coherent states by using linear optical devices such as beam splitters, phase shifters and photo detectors. The scheme is based on the bipartite maximally entangled coherent state and the tripartite entangled coherent state with bipartite maximal entanglement as quantum channels. It shows that when the mean number of photons is equal to 2, the total minimum of the average fidelity for an arbitrary tripartite entangled state is 1 - 0.67 ×10^-3.
基金supported by the Doctorate Foundation of the State Education Ministry of China (Grant No 20070386002)
文摘A scheme is presented for generating entangled states of multiple atoms in a cavity. In the scheme the atoms simultaneously interact with a cavity mode, with the first atom driven by two classical fields and the other atoms driven by a classical field. Our scheme is valid even if the cavity decay rate is larger than the effective coupling strength, which is important for experiment. The generation of entangled states is conditional on the detection of a photon decaying from the cavity and thus the fidelity of the entangled state is insensitive to the detection inefficiency. Furthermore, the scheme can be applied to the case with any number of atoms in principle.