期刊文献+
共找到27,799篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis of floc morphology in a continuous-flow flocculation and sedimentation reactor 被引量:4
1
作者 Pengfei Ren Jun Nan +1 位作者 Xinran Zhang Kai Zheng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第2期268-275,共8页
The floc morphology was investigated in a continuous-flow reactor, in order to understand the evolution of flocs in practical flocculation and sedimentation processes in water utilities. Kaolin-humic acid suspension w... The floc morphology was investigated in a continuous-flow reactor, in order to understand the evolution of flocs in practical flocculation and sedimentation processes in water utilities. Kaolin-humic acid suspension was used as the test water, and polyaluminum chloride was chosen as the coagulant. An in-situ recognition system was applied to analyze the floc size, boundary fractal dimension, and eccentricity ratios. Particle numbers and turbidity were also determined in the sedimentation stage. At a coagulant dose of 1 mg/L as Al, the average floc size increased from 62 to 78 μm and the boundary fractal dimension was around 1.14, suggesting that flocs were compact and continuously grew during the entire flocculation process. However, with the dose increased to 5 mg/L, the average floc size decreased and stabilized at around 65 μm, with the fractal dimension of 1.20. It can be concluded that the excess coagulant doses resulted in the formation of chain-shaped, lower density, and more branched structure flocs, thereby restricting flocs’ further growth in the subsequent flocculation. Floc morphology analysis suggested that charge neutralization dominated in the initial flocculation stage, then the bridge and sweep mechanisms were dominant in the subsequent flocculation. In addition, compared with the traditional inclined plate settler, a novel V-shaped plate settler introduced in this study had an advantage in small size floc(less than 5 μm) removal. The V-shaped region could promote aggregate restructuring and re-flocculation; therefore, the V-shaped plate settler provides an alternative method for sedimentation. 展开更多
关键词 FLOCCULATION SEDIMENTATION continuous-flow reactor In-situ recognition system V-shaped plate settler tank
原文传递
Ultrasmall high-entropy alloy nanoparticles with 1 nm size by continuous-flow reactor
2
作者 Li Li Zhicheng Zhang 《SmartMat》 2024年第4期1-3,共3页
High-entropy alloys(HEAs)have been widely applied in the field of catalysis due to their unique physicochemical properties.Nevertheless,it still remains a big challenge to prepare HEA nanoparticles(NPs)with ultrasmall... High-entropy alloys(HEAs)have been widely applied in the field of catalysis due to their unique physicochemical properties.Nevertheless,it still remains a big challenge to prepare HEA nanoparticles(NPs)with ultrasmall particle size and uniform size distribution.Recently,Kohei Kusada and Hiroshi Kitagawa's team reported a continuous-flow reactor-based liquid-phase reduction method for the preparation of ultrafine homogeneous HEA NPs,providing an effective strategy for the rational construction of high-efficiency HEA catalysts. 展开更多
关键词 CATALYSIS continuous-flow reactor high-entropy alloys NANOPARTICLES
原文传递
Control of fermentation types in continuous-flow acidogenic reactors:effects of pH and redox potential 被引量:13
3
作者 任南琪 陈小蕾 赵丹 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2001年第2期116-119,共4页
The experiments were carried out in continuous flow acidogenic reactors with molasses used as substrate to study the effects of pH and redox potential on fermentation types. The conditions for each fermentation type w... The experiments were carried out in continuous flow acidogenic reactors with molasses used as substrate to study the effects of pH and redox potential on fermentation types. The conditions for each fermentation type were investigated at different experimental stages of start up, pH regulating and redox potential regulating. The experiments confirmed that butyric acid type fermentation would occur at pH > 6, the propionic acid type fermentation at pH about 5.5 with E h> -278 mV, and the ethanol type fermentation at pH < 4.5. A higher redox potential will lead to propionic acid type fermentation because propionogens are facultative anaerobic bacteria. 展开更多
关键词 wastewater anaerobic treatment acidogenic reactor fermentation types redox potential(OR)
在线阅读 下载PDF
Aerobic granules cultivated and operated in continuous-flow bioreactor under particle-size selective pressure 被引量:19
4
作者 Hongbo Liu Hang Xiao +2 位作者 Shuai Huang Huijun Ma He Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第11期2215-2221,共7页
A novel method based on the selective pressure of particle size (particle-size cultivation method, PSCM) was developed for the cultivation and operation of aerobic granular sludge in a continuous-flow reactor, and c... A novel method based on the selective pressure of particle size (particle-size cultivation method, PSCM) was developed for the cultivation and operation of aerobic granular sludge in a continuous-flow reactor, and compared with the conventional method based on the selective pressure of settling velocity (settling-velocity cultivation method, SVCM). Results indicated that aerobic granules could be cultivated in continuous operation mode by this developed method within 14 days. Although in the granulation process, under particle-size selective pressure, mixed liquor suspended solids (MLSS) in the reactor fluctuated greatly and filamentous bacteria dominated the sludge system during the initial operation days, no obvious difference in profile was found between the aerobic granules cultivated by PSCM and SVCM. Moreover, aerobic granules cultivated by PSCM presented larger diameter, lower water content and higher specific rates of nitrification, denitrifieation and phosphorus removal, but lower settling velocity. Under long term operation of more than 30 days, aerobic granules in the continuous-flow reactor could remain stable and obtain good chemical oxygen demand (COD), NH4^+-N, total nitrogen (TN) and total phosphorus (TP) removal. The results indicate that PSCM was dependent on the cultivation and maintenance of the stability of aerobic granules in continuous-flow bioreactors. 展开更多
关键词 Aerobic granular sludge Batch reactor Continuous flow Selective pressure Long-term operation
原文传递
Egg-like magnetically immobilized nanospheres: A long- lived catalyst model for the hydrogen transfer reaction in a continuous-flow reactor 被引量:2
5
作者 Yongjian Ai Zenan Hu +5 位作者 Zixing Shao Li Qi Lei Liu Junjie Zhou Hongbin Sun Qionglin Liang 《Nano Research》 SCIE EI CAS CSCD 2018年第1期287-299,共13页
A novel egg-like nanosphere was designed as a long-lived catalyst and is described as F%O4@nSiO2-NHa-Fe2O3.xBi2O3@mSiO2. The catalyst was prepared using a modified Stober method with template-free surface-protected et... A novel egg-like nanosphere was designed as a long-lived catalyst and is described as F%O4@nSiO2-NHa-Fe2O3.xBi2O3@mSiO2. The catalyst was prepared using a modified Stober method with template-free surface-protected etching. The catalyst particle consists of a magnetic Fe3O4 core as the "yolk", an inner silica shell bearing active Fe2O3"xBi2O3 species as the "egg white", and outer mesoporous silica as the "egg shell". It exhibits an excellent performance in the catalytic reduction of nitro aromatics to corresponding anilines in a fixed-bed continuous-flow reactor. The reaction could be performed at 80 ~C and could reach complete conversion in less than I rain with only a 7% excess of hydrazine hydrate. The catalyst bed could be easily shifted between different substrates without cross-contamination because of the uniformity of the catalyst particles. This catalyst exhibited very good stability in the continuous-flow protocol. In the long-term reduction of p-nitrophenol with 0.5 mmol.min-1 productivity, it worked for more than 1,500 cycles without any catalytic activity loss. 展开更多
关键词 magnetically immobilized continuous-flow egg-like catalytic reduction nitro compounds
原文传递
Continuous-flow enzymatic synthesis of chiral lactones in a three-dimensional microfluidic reactor 被引量:1
6
作者 Xuelei Deng Meng Fan +7 位作者 Miao Wu Xiaoyan Zhang Ya Cheng Jianye Xia Yingping Zhuang Weiping Zhu Xuhong Qian Yunpeng Bai 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第3期299-303,共5页
A new continuous-flow process for the enzymatic synthesis of optically pureγ-lactones,which are used as flavors and fragrances in the food and cosmetic industries,was developed in a three-dimensional microfluidic rea... A new continuous-flow process for the enzymatic synthesis of optically pureγ-lactones,which are used as flavors and fragrances in the food and cosmetic industries,was developed in a three-dimensional microfluidic reactor.The microchannels(175 mm in length,0.9 mm in depth,and 1.72 mL in volume)were carved precisely inside a single borosilicate glass(90 mm×75 mm×12 mm)with ultrafast femtosecond laser micromachining.The flow field analysis and reaction simulation showed that the mixing of substrates and enzymes was enhanced,allowing the adjustment of residence time in a wide window.SmCR_(V4),a carbonyl reductase with excellent catalytic activity and enantioselectivity towardγ/δ-keto acids,was employed for the asymmetric synthesis of various chiral lactones.30 mmol/L(R)-γ-decalactone(3g)can be obtained in 26 s with a space-time yield(STY)up to 16,877 g L^(-1)d^(-1),which is 14.4 times higher than the highest STY of batch reaction reported previously.This continuous-flow process was applied to the synthesis of 6 chiral lactones.In addition,the scaled-up synthesis of 3g was carried out in 6 cascade microreactors continuously for 6 h,demonstrating the feasibility and stability of the 3D continuous-flow process in enzymatic synthesis of optically pure compounds. 展开更多
关键词 continuous-flow Flow chemistry MICROreactor BIOCATALYSIS Carbonyl reductase Asymmetric reduction
原文传递
Intelligent path planning for small modular reactors based on improved reinforcement learning
7
作者 DONG Yun-Feng ZHOU Wei-Zheng +1 位作者 WANG Zhe-Zheng ZHANG Xiao 《四川大学学报(自然科学版)》 北大核心 2025年第4期1006-1014,共9页
Small modular reactor(SMR)belongs to the research forefront of nuclear reactor technology.Nowadays,advancement of intelligent control technologies paves a new way to the design and build of unmanned SMR.The autonomous... Small modular reactor(SMR)belongs to the research forefront of nuclear reactor technology.Nowadays,advancement of intelligent control technologies paves a new way to the design and build of unmanned SMR.The autonomous control process of SMR can be divided into three stages,say,state diagnosis,autonomous decision-making and coordinated control.In this paper,the autonomous state recognition and task planning of unmanned SMR are investigated.An operating condition recognition method based on the knowledge base of SMR operation is proposed by using the artificial neural network(ANN)technology,which constructs a basis for the state judgment of intelligent reactor control path planning.An improved reinforcement learning path planning algorithm is utilized to implement the path transfer decision-makingThis algorithm performs condition transitions with minimal cost under specified modes.In summary,the full range control path intelligent decision-planning technology of SMR is realized,thus provides some theoretical basis for the design and build of unmanned SMR in the future. 展开更多
关键词 Small modular reactor Operating condition recognition Path planning Reinforcement learning
在线阅读 下载PDF
A composite controller for reactor core combining artificial neural network and fractional-order PID controller
8
作者 WANG Zhe-Zheng ZHANG Xiao DENG Ke 《四川大学学报(自然科学版)》 北大核心 2025年第4期1015-1024,共10页
Core power is a key parameter of nuclear reactor.Traditionally,the proportional-integralderivative(PID)controllers are used to control the core power.Fractional-order PID(FOPID)controller represents the cutting edge i... Core power is a key parameter of nuclear reactor.Traditionally,the proportional-integralderivative(PID)controllers are used to control the core power.Fractional-order PID(FOPID)controller represents the cutting edge in core power control research.In comparing with the integer-order models,fractional-order models describe the variation of core power more accurately,thus provide a comprehensive and realistic depiction for the power and state changes of reactor core.However,current fractional-order controllers cannot adjust their parameters dynamically to response the environmental changes or demands.In this paper,we aim at the stable control and dynamic responsiveness of core power.Based on the strong selflearning ability of artificial neural network(ANN),we propose a composite controller combining the ANN and FOPID controller.The FOPID controller is firstly designed and a back propagation neural network(BPNN)is then utilized to optimize the parameters of FOPID.It is shown by simulation that the composite controller enables the real-time parameter tuning via ANN and retains the advantage of FOPID controller. 展开更多
关键词 Nuclear reactor Core power Fractional PID controller Artificial neural network
在线阅读 下载PDF
Photocatalytic C−C coupling of acetonitrile into succinonitrile over hydrophobic TiO_(2) in a flow reactor
9
作者 GONG Kun HUANG Min +4 位作者 LI Ruitao DAI Yuanyuan NIU Qiang LIN Tiejun ZHONG Liangshu 《燃料化学学报(中英文)》 北大核心 2025年第12期1807-1816,共10页
A radical C−C-coupling reaction of acetonitrile into succinonitrile over hydrophobic TiO_(2) photocatalyst with enhanced catalytic activity was developed.In addition,the usage of a flow reactor further improved the ph... A radical C−C-coupling reaction of acetonitrile into succinonitrile over hydrophobic TiO_(2) photocatalyst with enhanced catalytic activity was developed.In addition,the usage of a flow reactor further improved the photon utilization efficiency for succinonitrile synthesis at room temperature.The space time yield of succinonitrile reached 55.59μmol/(g·h)over hydrophobic TiO_(2) catalyst,which was much higher than that of pristine TiO_(2)(4.23μmol/(g·h)).Mechanistic studies revealed that the hydrophobic modification of TiO_(2) promoted the separation and transfer of photogenerated carriers,as well as suppressed their recombination.Hydrophobic TiO_(2) also enhanced the adsorption of−CH3 of acetonitrile,thus facilitating the activation of C−H bond and the utilization efficiency of photocarriers. 展开更多
关键词 photocatalysis SUCCINONITRILE C−C coupling hydrophobic TiO_(2) flow reactor
在线阅读 下载PDF
Densification and thermal properties of cylindrical graphite-based fuel elements used in a molten salt reactor
10
作者 WANG Gan WANG Hao-ran +5 位作者 LU Lin-yuan LI Wan-lin CHEN Nan-nan HE Yun ZHONG Ya-juan LIN Jun 《新型炭材料(中英文)》 北大核心 2025年第6期1362-1376,I0059,共16页
Based on the service characteristics of fuel elements for molten salt reactors,they need to have a high power density,resistance to coolant infiltration,and excellent thermodynamic properties.To solve the problem of t... Based on the service characteristics of fuel elements for molten salt reactors,they need to have a high power density,resistance to coolant infiltration,and excellent thermodynamic properties.To solve the problem of the graphite used in the fuel element for these reactors being susceptible to molten salt infiltration,carbon black(CB)was added to increase the density of the graphite,and a fuel element(TRISO(tri-structural isotropic)fuel particles were randomly distributed in the modified graphite matrix)was prepared by cold isostatic pressing process.An out-of-pile performance study shows that the densification and pore structure of the modified graphite matrix were improved,as was the resistance to molten salt infiltration.The median pore size of the modified graphite was reduced from 673 to 433 nm and the threshold pressure for molten salt(FLiBe,66%(molar fraction)LiF and 34%BeF_(2))infiltration was increased from 0.88 to 1.37 MPa.The isotropic CB made the graphite matrix less anisotropic,while its thermal conductivity and compressive strength were reduced due to the difficult graphitization of CB.Fuel elements containing 20%(volume fraction)TRISO particles were prepared.Numerical simulations show that the power and temperature distribution of the fuel were in line with the design requirements.The modified graphite matrix had a higher density,smaller pores,a lower anisotropy and a greater resistance to FLiBe infiltration. 展开更多
关键词 Molten salt reactor Cylindrical fuel element Graphite matrix Thermal properties Molten salt infiltration
在线阅读 下载PDF
Ambient CO_(2) Capture and Valorization Enabled by Tandem Electrolysis Using Solid-State Electrolyte Reactor
11
作者 Yan-Bo Hua Bao-Xin Ni Kun Jiang 《电化学(中英文)》 北大核心 2025年第6期38-50,共13页
Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-inten... Electrocatalytic carbon dioxide reduction is a promising technology for addressing global energy and environmental crises. However, its practical application faces two critical challenges: the complex and energy-intensive process of separat-ing mixed reduction products and the economic viability of the carbon sources (reactants) used. To tackle these challenges simultaneously, solid-state electrolyte (SSE) reactors are emerging as a promising solution. In this review, we focus on the feasibility of applying SSE for tandem electrochemical CO_(2) capture and conversion. The configurations and fundamental principles of SSE reactors are first discussed, followed by an introduction to its applications in these two specific areas, along with case studies on the implementation of tandem electrolysis. In comparison to conventional H-type cell, flow cell and membrane electrode assembly cell reactors, SSE reactors incorporate gas diffusion electrodes and utilize a solid electro-lyte layer positioned between an anion exchange membrane (AEM) and a cation exchange membrane (CEM). A key inno-vation of this design is the sandwiched SSE layer, which enhances efficient ion transport and facilitates continuous product extraction through a stream of deionized water or humidified nitrogen, effectively separating ion conduction from product collection. During electrolysis, driven by an electric field and concentration gradient, electrochemically generated ions (e.g., HCOO- and CH3COO-) migrate through the AEM into the SSE layer, while protons produced from water oxidation at the anode traverse the CEM into the central chamber to maintain charge balance. Targeted products like HCOOH can form in the middle layer through ionic recombination and are efficiently carried away by the flowing medium through the porous SSE layer, in the absence of electrolyte salt impurities. As CO_(2)RR can generate a series of liquid products, advancements in catalyst discovery over the past several years have facilitated the industrial application of SSE for more efficient chemicals production. Also noteworthy, the cathode reduction reaction can readily consume protons from water, creating a highly al-kaline local environment. SSE reactors are thereby employed to capture acidic CO_(2), forming CO_(3)^(2-) from various gas sources including flue gases. Driven by the electric field, the formed CO_(3)^(2-) can traverse through the AEM and react with protons originating from the anode, thereby regenerating CO_(2). This CO_(2) can then be collected and utilized as a low-cost feedstock for downstream CO_(2) electrolysis. Based on this principle, several cell configurations have been proposed to enhance CO_(2) capture from diverse gas sources. Through the collaboration of two SSE units, tandem electrochemical CO_(2) capture and con-version has been successfully implemented. Finally, we offer insights into the future development of SSE reactors for prac-tical applications aimed at achieving carbon neutrality. We recommend that greater attention be focused on specific aspects, including the fundamental physicochemical properties of the SSE layer, the electrochemical engineering perspective related to ion and species fluxes and selectivity, and the systematic pairing of consecutive CO_(2) capture and conversion units. These efforts aim to further enhance the practical application of SSE reactors within the broader electrochemistry community. 展开更多
关键词 ELECTROCATALYSIS ELECTROLYSIS CO_(2)capture CO_(2)reduction Solid-state electrolyte reactor
在线阅读 下载PDF
Validation and application of a coupled xenon-transport and reactor dynamic model of Molten-salt reactor experiment
12
作者 Jia-Qi Chen Caleb S.Brooks 《Nuclear Science and Techniques》 2025年第6期156-175,共20页
Liquid-fueled molten-salt reactors have dynamic features that distinguish them from solid-fueled reactors,such that conventional system-analysis codes are not directly applicable.In this study,a coupled dynamic model ... Liquid-fueled molten-salt reactors have dynamic features that distinguish them from solid-fueled reactors,such that conventional system-analysis codes are not directly applicable.In this study,a coupled dynamic model of the Molten-Salt Reactor Experiment(MSRE)is developed.The coupled model includes the neutronics and single-phase thermal-hydraulics modeling of the reactor and validated xenon-transport modeling from previous studies.The coupled dynamic model is validated against the frequency-response and transient-response data from the MSRE.The validated model is then applied to study the effects of xenon and void transport on the dynamic behaviors of the reactor.Plant responses during the unique initiating events such as off-gas system blockages and loss of circulating voids are investigated. 展开更多
关键词 Nuclear-reactor dynamics Molten-salt reactor experiment Frequency response Molten-salt reactor XENON
在线阅读 下载PDF
Continuous-flow synthesis of pentaerythritol:Alkalinity release of sodium solvation cage to control aldol and Cannizzaro reactions
13
作者 Zhengguang Wang Xin Qu +6 位作者 Xingke Yuan Zhanpeng Gao Niu Hu Jiansheng Wei Wenpeng Li Zhirong Yang Jingtao Wang 《Chinese Journal of Chemical Engineering》 2025年第3期23-29,共7页
Continuous-flow upgrading of pentaerythritol synthesis technology via base-catalyzed aldol and Cannizzaro reactions of formaldehyde and acetaldehyde faces the challenge of effectively controlling the critical side rea... Continuous-flow upgrading of pentaerythritol synthesis technology via base-catalyzed aldol and Cannizzaro reactions of formaldehyde and acetaldehyde faces the challenge of effectively controlling the critical side reaction of hydroxymethyl acetaldehyde(HA)to the acrolein intermediate.Here,we first identified the forms of industrial formaldehyde as methane diol that easily converts to the alkaline formaldehyde under alkaline(NaOH)environment.The carbonyl group of alkaline formaldehyde induces deprotonation of acetaldehyde instead of the recognized base-hydroxyl group-induced deprotonation,and it needs to overcome only 18.31 kcal·mol^(-1)(1 kcal=4.186 kJ)energy barrier to form key intermediates of HA.The sodium solvation cage formed by NaOH hexa-coordinated formaldehyde effectively inhibits the alkalinity,thus contributing to a high energy barrier(46.21 kcal·mol^(-1))to unwanted acrolein formation.In addition,the solvation cage gradually opens to increase the alkalinity with the consumption of formaldehyde,thus facilitating the subsequent Cannizzaro reaction(to overcome 11.77 kcal·mol^(-1)).In comparison,strong alkalinity promotes the formation of acrolein(36.65 kcal·mol^(-1))to initiate the acetal side reaction,while weak alkalinity reduces the possibility of the Cannizzaro reaction(to overcome 20.44 kcal·mol^(-1)).This theoretically reveals the importance of the segmented feeding of weak and strong bases to successively control the aldol reaction and Cannizzaro reaction,and the combination of Na_(2)CO_(3) or HCOONa with NaOH improves the pentaerythritol yield by 7%to 13%compared to that of NaOH alone(70%yield)within 1 min at a throughput of 155.7 ml·min^(-1). 展开更多
关键词 Alkaline formaldehyde Sodium solvation cage Aldol reaction Cannizzaro reaction continuous-flow PENTAERYTHRITOL
在线阅读 下载PDF
Uncertainty and sensibility analysis of loss-of-forced-cooling accidents for 150-MWt molten salt reactors
14
作者 Kai Wang Chao-Qun Wang +2 位作者 Qun Yang Zhao-Zhong He Na-Xiu Wang 《Nuclear Science and Techniques》 2025年第6期228-239,共12页
Molten salt reactors(MSRs)are a promising candidate for Generation IV reactor technologies,and the small modular molten salt reactor(SM-MSR),which utilizes low-enriched uranium and thorium fuels,is regarded as a wise ... Molten salt reactors(MSRs)are a promising candidate for Generation IV reactor technologies,and the small modular molten salt reactor(SM-MSR),which utilizes low-enriched uranium and thorium fuels,is regarded as a wise development path to accelerate deployment time.Uncertainty and sensitivity analyses of accidents guide nuclear reactor design and safety analyses.Uncertainty analysis can ascertain the safety margin,and sensitivity analysis can reveal the correlation between accident consequences and input parameters.Loss of forced cooling(LOFC)represents an accident scenario of the SM-MSR,and the study of LOFC could offer useful information to improve physical thermohydraulic and structural designs.Therefore,this study investigates the uncertainty of LOFC consequences and the sensitivity of related parameters.The uncertainty of the LOFC consequences was analyzed using the Monte Carlo method,and multiple linear regression was employed to analyze the sensitivity of the input parameters.The uncertainty and sensitivity analyses showed that the maximum reactor outlet fuel salt temperature was 725.5℃,which is lower than the acceptable criterion,and five important parameters influencing LOFC consequences were identified. 展开更多
关键词 Molten salt reactor LOFC Uncertainty analysis Sensibility analysis
在线阅读 下载PDF
Microfluidic reactors for paired electrosynthesis:Fundamentals,applications and future prospects
15
作者 Hao Xue Zhi-Hao Zhao +1 位作者 Menglei Yuan Guangjin Zhang 《Green Energy & Environment》 2025年第3期471-499,共29页
Paired electrosynthesis has received considerable attention as a consequence of simultaneously synthesizing target products at both cathode and anode,whereas the related synthetic efficiency in batch reactors is still... Paired electrosynthesis has received considerable attention as a consequence of simultaneously synthesizing target products at both cathode and anode,whereas the related synthetic efficiency in batch reactors is still undesirable under certain circumstances.Encouragingly,laminar microfluidic reactor offers prospective options that possess controllable flow characteristics such as enhanced mass transport,precise laminar flow control and the ability to expand production scale progressively.In this comprehensive review,the underlying fundamentals of the paired electrosynthesis are initially summarized,followed by categorizing the paired electrosynthesis including parallel paired electrosynthesis,divergent paired electrosynthesis,convergent paired electrosynthesis,sequential paired electrosynthesis and linear paired electrosynthesis.Thereafter,a holistic overview of microfluidic reactor equipment,integral fundamentals and research methodology as well as channel extension and scale-up strategies is proposed.The established fundamentals and evaluated metrics further inspired the applications of microfluidic reactors in paired electrosynthesis.This work stimulated the overwhelming investigation of mechanism discovery,material screening strategies,and device assemblies. 展开更多
关键词 Paired electrosynthesis Microfluidic reactor Laminar flow Scaling-up strategy
在线阅读 下载PDF
Ray-tracing analysis of Doppler backscattering diagnostic for tokamak with reactor technologies
16
作者 Alexander YASHIN Anna PONOMARENKO +1 位作者 Arseny TOKAREV Eugeniy KISELEV 《Plasma Science and Technology》 2025年第5期72-80,共9页
This study discusses the scope of application of the Doppler backscattering(DBS)diagnostic for the tokamak with reactor technologies(TRT)project.This involved numerical modeling of the three-dimensional(3D)beam trajec... This study discusses the scope of application of the Doppler backscattering(DBS)diagnostic for the tokamak with reactor technologies(TRT)project.This involved numerical modeling of the three-dimensional(3D)beam trajectories.Calculations were performed to investigate the propagation of microwaves in the V(40–75 GHz)and W(75–110 GHz)frequency ranges with O-mode polarization for the density profile of the base TRT scenario.Our analysis showed that the DBS system antenna on the TRT would need to be tilted in both the poloidal and toroidal directions in order to meet the condition Kperp/Kpar<10%..For the DBS system located in the equatorial plane it was shown that a wide range of poloidal and toroidal angles is available for the successful implementation of the diagnostic to study the core,pedestal and scrape-off layer(SOL)regions.The DBS system located at 35 cm above the equatorial plane would be more limited in measurements only covering the SOL and pedestal regions.A shift of the cut-offs in the toroidal direction highlighted the need for 3D analysis of the DBS data. 展开更多
关键词 plasma diagnostics Doppler backscattering Doppler reflectometry reactor tokamak TRT
在线阅读 下载PDF
Low-energy and accelerated hydrogen release from MgH_(2)-5 wt% NaTiO_(x)H catalyzed hydrogen storage reactor by graphite responsive microwave
17
作者 Bofei Wang Zhen Wu +6 位作者 Honghao Liu Fusheng Yang Zaoxiao Zhang Jing Yao Qian Li Hujun Cao Bo Li 《Journal of Magnesium and Alloys》 2025年第8期3864-3879,共16页
Owing to high thermal stability and large reaction enthalpy,Mg H_(2) has high reaction temperatures and sluggish reaction kinetics in the dehydrogenation process,which consumes lots of energy.To achieve hydrogen relea... Owing to high thermal stability and large reaction enthalpy,Mg H_(2) has high reaction temperatures and sluggish reaction kinetics in the dehydrogenation process,which consumes lots of energy.To achieve hydrogen release with low energy consumption,accelerated reaction rate,and high heating uniformity,this paper proposes a novel method of graphite responsive microwave-assisted thermal management with NaTiO_(x)H catalyst.A multi-physics model of the 5 wt%NaTiO_(x)H catalyzed Mg H_(2) reactor integrated with a microwave generator is developed to investigate the reaction,heat and mass transfer process of hydrogen release.It is found that the graphite responsive microwave heating method could improve the temperature uniformity of reaction bed,reduce the energy consumption by at least 10.71%and save the hydrogen release time by 53.49% compared with the traditional electric heating method.Moreover,the hydrogen desorption thermodynamics could be improved with the increase of microwave power.The hydrogen release time is shortened by 19.55%with the increase of 20 W microwave power.Meanwhile,it is also concluded that the microwave excitation frequency of 2.1 GHz and the graphite content of 2 wt%have better heating performance.Therefore,it can be verified that the graphite responsive microwave heating helps to low-energy and accelerated hydrogen release from MgH_(2) hydrogen storage reactor. 展开更多
关键词 Microwave heating DEHYDROGENATION Metal hydride reactor Multi-physics model
在线阅读 下载PDF
Review of the development and application of high flux reactors
18
作者 Jian Li Wei Xu +3 位作者 Ding She Heng Xie Zhi-Hong Liu Lei Shi 《Nuclear Science and Techniques》 2025年第11期45-68,共24页
High flux reactors(HFRs)are a special type of research reactor aimed at providing a high neutron flux.Compared with power reactors and other research reactors,HFRs have unique technical features in terms of reactor co... High flux reactors(HFRs)are a special type of research reactor aimed at providing a high neutron flux.Compared with power reactors and other research reactors,HFRs have unique technical features in terms of reactor core design,irradiation capability,and operating characteristics.They can be applied to the irradiation tests of nuclear fuels and materials,radioisotope production,neutron science,and experiments.This paper reviews HFRs,including their development history,technical features,and application areas,as well as trends in the development of new and advanced HFRs. 展开更多
关键词 High flux reactor Development Design features Application fields REVIEW
在线阅读 下载PDF
Experimental research on the macro-and micro-mixing in the low-density polyethylene autoclave reactor
19
作者 Zhenchao Tang Yuliang Wang +5 位作者 Zhengliang Huang Yao Yang Xiaoqiang Fan Binbo Jiang Jingdai Wang Yongrong Yang 《Chinese Journal of Chemical Engineering》 2025年第6期67-82,共16页
It has been widely recognized that the mixing process has significant impacts on the performance of low-density polyethylene(LDPE)reactors due to the rapid radical polymerization occurred in the reactors,but how the m... It has been widely recognized that the mixing process has significant impacts on the performance of low-density polyethylene(LDPE)reactors due to the rapid radical polymerization occurred in the reactors,but how the macro-and micro-mixing affect the reactor performance was still controversial in publications.In this work,a cold-flow LDPE autoclave with multi-feedings was scaled down(1/2)from an industrial reactor and built to systematically investigate the macro-and micro-mixing characteristics of fluid by experiments.Furthermore,the effects of macro-and micro-mixing on the polymerization were comprehensively analyzed.The results showed that according to the delay time t_(d) and macro-mixing times tM calculated from residence time distribution(RTD)curves,the macro-mixing states are significantly different at various axial positions(h/H),especially at lower agitation Reynolds number Re.But with the increase of Re,since the circulation flow in the reactor is strengthened,the t_(d) for each feed gradually decreases to 0,and the t_(M) at different axial positions tend to be identical.For micro-mixing,the qualities of micro-mixing at different axial positions are similar,and the average micro-mixing time t_(m) in the reactor decreases exponentially with the increase of Re.Moreover,a fitting model was established.Through the comparison of the characteristic times of macro-mixing(t_(d),t_(M)),micro-mixing(t_(m))and elementary reactions within the industrial range of Re,it can be concluded that the properties of LDPE products are dominated by the macro-mixing behavior,and the consumption of initiators is affected by both the macro-and micro-mixing behaviors.This conclusion is of great significance for the design,optimization and operation of LDPE reactors. 展开更多
关键词 Low-density polyethylene(LDPE) Autoclave reactor Macro-mixing MICRO-MIXING Characteristic time
在线阅读 下载PDF
Steady-state and transient investigation of a small pressurized water reactor ACPR50S for different ATFs based on Bamboo-C code
20
作者 Kun Zhuang Ying-Zhen Wang +3 位作者 Li-Na Deng Yong-Zhan Wang Wen Shang Si-Peng Wang 《Nuclear Science and Techniques》 2025年第1期192-206,共15页
Small modular reactors have received widespread attention owing to their inherent safety,low investment,and flexibility.Small pressurized water reactors(SPWRs)have become important candidates for SMRs owing to their h... Small modular reactors have received widespread attention owing to their inherent safety,low investment,and flexibility.Small pressurized water reactors(SPWRs)have become important candidates for SMRs owing to their high technological maturity.Since the Fukushima accident,research on accident-tolerant fuels(ATFs),which are more resistant to serious accidents than conventional fuels,has gradually increased.This study analyzes the neutronics and thermal hydraulics of an SPWR(ACPR50S)for different ATFs,BeO+UO_(2)−SiC,BeO+UO_(2)−FeCrAl,U_(3)Si_(2)−SiC,and U_(3)Si_(2)−FeCrAl,based on a PWR fuel management code,the Bamboo-C deterministic code.In the steady state,the burnup calculations,reactivity coefficients,power and temperature distributions,and control rod reactivity worth were studied.The transients of the control rod ejection accident for the two control rods with the maximum and minimum reactivity worth were analyzed.The results showed that 5%B-10 enrichment in the wet annular burnable absorbers assembly can effectively reduce the initial reactivity and end-of-life reactivity penalty.The BeO+UO2−SiC core exhibited superior neutronic characteristics in terms of burnup and negative temperature reactivity compared with the other three cases owing to the strong moderation ability of BeO+UO_(2)and low neutron absorption of SiC.However,the U_(3)Si_(2)core had a marginally better power-flattening effect than BeO+UO_(2),and the differential worth of each control rod group was similar between different ATFs.During the transient of a control rod ejection,the changes in the fuel temperature,coolant temperature,and coolant density were similar.The maximum difference was less than 10℃ for the fuel temperature and 2℃ for the coolant temperature. 展开更多
关键词 ACPR50S Small pressurized water reactor ATF STEADY Transient
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部