This study focuses on empirical modeling of the strength characteristics of urban soils contaminated with heavy metals using machine learning tools and their subsequent stabilization with ordinary Portland cement(OPC)...This study focuses on empirical modeling of the strength characteristics of urban soils contaminated with heavy metals using machine learning tools and their subsequent stabilization with ordinary Portland cement(OPC).For dataset collection,an extensive experimental program was designed to estimate the unconfined compressive strength(Qu)of heavy metal-contaminated soils collected from awide range of land use pattern,i.e.residential,industrial and roadside soils.Accordingly,a robust comparison of predictive performances of four data-driven models including extreme learning machines(ELMs),gene expression programming(GEP),random forests(RFs),and multiple linear regression(MLR)has been presented.For completeness,a comprehensive experimental database has been established and partitioned into 80%for training and 20%for testing the developed models.Inputs included varying levels of heavy metals like Cd,Cu,Cr,Pb and Zn,along with OPC.The results revealed that the GEP model outperformed its counterparts:explaining approximately 96%of the variability in both training(R2=0.964)and testing phases(R^(2)=0.961),and thus achieving the lowest RMSE and MAE values.ELM performed commendably but was slightly less accurate than GEP whereas MLR had the lowest performance metrics.GEP also provided the benefit of traceable mathematical equation,enhancing its applicability not just as a predictive but also as an explanatory tool.Despite its insights,the study is limited by its focus on a specific set of heavy metals and urban soil samples of a particular region,which may affect the generalizability of the findings to different contamination profiles or environmental conditions.The study recommends GEP for predicting Qu in heavy metal-contaminated soils,and suggests further research to adapt these models to different environmental conditions.展开更多
Microbe-assisted phytoremediation is of great significance for the remediation of soil contaminated with heavy metals(HMs),and probiotics are beneficial microorganisms that can improve soil structure and fertility and...Microbe-assisted phytoremediation is of great significance for the remediation of soil contaminated with heavy metals(HMs),and probiotics are beneficial microorganisms that can improve soil structure and fertility and promote plant growth.However,there are few studies on probiotics applied to remediate soil contaminated with HMs,and whether probiotics can improve the efficiency of phytoremediation still needs to be further investigated.This study aimed to investigate the effects of two kinds of probiotics,Lactobacillus casei(Lc)and Bacillus licheniformis(Bl),on activating the remediation potential of leaf mustard,Brassica juncea(L.)Czerniak.,for soil contaminated with Cd and Zn using incubation and pot experiments.The results showed that the addition of the two probiotics significantly reduced soil pH by 0.05–0.32 units and improved the available contents of soil HMs(by 15.3%–60.0%and 7.1%–23.8%for Cd and Zn,respectively)in the incubation experiment.After probiotic addition,available Cd and Zn contents in soil treated with 1×10^(9) colony forming units(cfu)mL^(-1) Bl were 1.65-and 1.66-folds of those in the control without probiotic,respectively,in the pot experiment.Meanwhile,soil alkaline phosphatase,urease,and sucrose activities were increased,indicating that soil microbial metabolic activities were also stimulated.Addition of Lc and Bl significantly improved the biomass and chlorophyll contents of leaf mustard.The contents of Cd and Zn in shoots and roots were significantly increased in the treatment with 1×10^(5) cfu mL^(-1) Lc.Furthermore,the activities of plant antioxidant enzymes,including superoxide dismutase,peroxidase,and catalase,were increased,and the content of plant malondialdehyde was reduced,indicating that the resistance of plants to HMs was enhanced.These results indicated that these two kinds of probiotics could enhance the availability of Cd and Zn directly in soil and promote the growth of leaf mustard,thereby increasing the efficiency of phytoremediation for HMs.The study provides a useful reference for probiotic-assisted phytoremediation of soil contaminated with HMs.展开更多
Cadmium(Cd)contamination of soil is a global environmental issue.Traditional remediation techniques such as immobilization,leaching,and phytoextraction have numerous shortcomings,which has led to growing interest in t...Cadmium(Cd)contamination of soil is a global environmental issue.Traditional remediation techniques such as immobilization,leaching,and phytoextraction have numerous shortcomings,which has led to growing interest in the development of low-cost,high-efficiency,and environmentally friendly agents for removing Cd from soil.In this study,four magnetite(Fe_(3)O_(4))/polyaniline(PANI)nanocomposites,Fe_(3)O_(4)(1.0)/PANI,Fe_(3)O_(4)(1.5)/PANI,Fe_(3)O_(4)(2.0)/PANI,and Fe_(3)O_(4)(2.5)/PANI,were developed using 4 mL aniline monomer and 1.0,1.5,2.0,and 2.5 g Fe_(3)O_(4),respectively,and used as remediation agents with magnetic separation and regeneration capabilities.The Cd adsorption isotherms showed a better fit to the Langmuir model,with Fe_(3)O_(4)(1.5)/PANI exhibiting the highest Cd adsorption capacity of 47.62 mg g^(-1) at 25℃.Then,Fe_(3)O_(4)(1.5)/PANI was used to remediate four Cd-contaminated soils typical in China(black,brown,cinnamon,and red),all with a Cd content of 180 mg kg^(-1) after spiking.The results showed that the total Cd removal efficiency was satisfactory at 25.25%–38.91%and the exchangeable Cd removal efficiency was 36.03%on average.In addition,soil basic properties did not show significant changes after remediation.Regarding the regeneration performance,a higher total Cd removal efficiency(27.89%–44.96%)was achieved after the first regeneration cycle of Fe_(3)O_(4)(1.5)/PANI.After two regeneration cycles,Fe_(3)O_(4)(1.5)/PANI exhibited decreased total Cd removal efficiency compared to after the first regeneration,but its efficiency remained above 95%of or higher than those of virgin Fe_(3)O_(4)(1.5)/PANI.The synthetic process of Fe_(3)O_(4)/PANI was simple and cost-effective,and Fe_(3)O_(4)/PANI exhibited a high Cd removal efficiency with easy recovery and recyclability.Therefore,Fe_(3)O_(4)/PANI is a promising solution for the sustainable and efficient remediation of Cd-contaminated soils,especially for the reclamation of highly contaminated development land.展开更多
In recent years,there has been an intensifying focus within the soil contamination prevention and remediation sector,both domestically and internationally,on the off-site disposal of contaminated soils.The United Stat...In recent years,there has been an intensifying focus within the soil contamination prevention and remediation sector,both domestically and internationally,on the off-site disposal of contaminated soils.The United States and Japan,as pioneers in this field,have formulated and implemented a suite of policy standards and practical measures for the regional collaborative management of off-site soil disposal.This paper meticulously reviews and evaluates the existing research on the regional collaborative management of off-site soil disposal,analyzing the experiences and strategies of the United States and Japan from the perspectives of regulatory systems and practical implementation.In light of China’s specific circumstances,it proposes a series of strategic recommendations for the adaptation of these international experiences to the Chinese context.These include enhancement of Chinese legal standards for the regional collaborative management of contaminated land soil off-site disposal,improvement of risk control standards for soil pollution and specific regulations for off-site disposal,as well as delineation of objective criteria to define the scope of collaborative management.展开更多
Persulfate is considered a convenient and efficient remediation agent for organic contaminated soil.However,the potential risk of sulfur into the soil remediation by persulfate remains ignored.In this study,glass bott...Persulfate is considered a convenient and efficient remediation agent for organic contaminated soil.However,the potential risk of sulfur into the soil remediation by persulfate remains ignored.In this study,glass bottles with different persulfate dosages and groundwater tables were set up to simulate persulfate remediation of organic pollutants(aniline).The results found sulfate to be the main end-product(83.0%–99.5%)of persulfate remediation after10 days.Moreover,H_(2)S accounted for 93.4%–99.4%of sulfur reduction end-products,suggesting that H_(2)S was the final fate of sulfur.H_(2)S was released rapidly after one to three days at a maximum concentration of 33.0 ppm,which is sufficient to make a person uncomfortable.According to the fitted curve results,H_(2)S concentration decreased to a safe concentration(0.15 ppm)after 20–85 days.Meanwhile,the maximum concentration of methanethiol reached 0.6 ppm.These results indicated that secondary pollution from persulfate remediation could release harmful gases over a long time.Therefore,persulfate should be used more carefully as a remediation agent for soil contamination.展开更多
Global industrialization over the past centuries has resulted in widespread contamination of the environment with organic and inorganic wastes and their pattern of disposal.The study aimed at isolating fungi from spen...Global industrialization over the past centuries has resulted in widespread contamination of the environment with organic and inorganic wastes and their pattern of disposal.The study aimed at isolating fungi from spent diesel contaminated soil around Ministry of Works in Aba,Abia State for biodegradation potentials on the soil properties.About four(4)fungal species were isolated from the five(5)sites using cultural and biochemical characteristics.The isolate was screened,and optical density measured using spectrophotometer.A total of 5 soil samples from each location(0-15 cm and 15-30 cm)were collected and homogenized to have composite sample.Samples were taken to the laboratory for analysis of soil physiochemical parameters,fungi count and biodegradable potential of the fungi using standard methods.Data obtained revealed that,physical property of the soil such as sand(85.20%±0.01%),silk(6.4%±0.01%)were lower than the control location except clay(17.39%±0.01%).Chemical properties revealed highest concentration of element such as pH(4.76±0.01),total nitrogen(0.18%±0.011%),total organic carbon(3.41±0.01),sodium(0.21±0.01),potassium(0.24±0.001),magnesium(4.41±0.015),calcium(5.21±0.015),organic matter(6.18±0.011),and available phosphorus(30.99±0.01).All elements in the study site were higher than the control site with an exception to sodium(Na),which was lower.Fungi isolate identified were Aspergillus niger,Trichoderma virdae,Aspergillus flavus,and Pencillum corylophlum.The degradation potential of fungi identified shows that consortium degraded 29%of diesel oil from the soil followed by A.flavus,T.virdae,A.niger and the least was T.corylophlum.The study concludes that despite indiscriminate disposal of spent diesel oil,the nutrient content was still higher than control and consortium performed well in degradation.展开更多
Heavy metals have been viewed as hazardous environmental pollutants, and anthropogenic activities due to their high toxicity and persistent nature in the environment. Anthropogenic activities such as artisanal mining,...Heavy metals have been viewed as hazardous environmental pollutants, and anthropogenic activities due to their high toxicity and persistent nature in the environment. Anthropogenic activities such as artisanal mining, industrial activities, improper usage of fertilizers and pesticides, and indiscriminate open waste disposal bring about an increase in the presence of heavy metals in the environment. In the Keffi Metropolis, different elements lead to land contamination which debilitates soil quality, plant survival, human well-being, and the environment as a result of extensive dispersion or quantity of heavy metals in the soil and water. In recent years, biochar has emerged as a promising soil amendment for mitigating heavy metal pollution due to its unique physicochemical properties. This paper provides the effects of softwood pellet biochar on the retention of heavy metals in contaminated soils. A microcosm experiment was carried out to investigate the effects of biochar on the retention of heavy metals in contaminated soils. This research aimed to give an overview of the effects of softwood biochar at different temperatures (550˚C and 700˚C) on the retention of heavy metals and metalloids released from the soil during water inundation. The results show that the addition of organic matter (grass chippings) minimizes heavy metal mobilization. Also, biochar at high temperatures is more effective than those at low temperatures. The expected outcome of the research analysis includes providing insights into the role of biochar in retaining heavy metal contamination and further understanding the use of biochar as a sorbent for the management of contaminated soil.展开更多
[Objective] The aim was to study on in-situ elimination effect on heavy metals in soil of the mining area by ramie (Boehmeria nivea (L.) Gaud.). [Methods] Based on Xiangzhu No.3 and Zhongzhu No.1, we conducted res...[Objective] The aim was to study on in-situ elimination effect on heavy metals in soil of the mining area by ramie (Boehmeria nivea (L.) Gaud.). [Methods] Based on Xiangzhu No.3 and Zhongzhu No.1, we conducted research on heavy metals contents of plants growing in soil of Qibao Mountain orefield in Liuyang, Hunan Province, and on characteristics of enrichment and transfer of heavy metals (Cu, Pb, Cd, Zn) under influence of the two ramie species. [Result] It was concluded that trend of Cu content in different parts of ramie was as follows: rootskinleafbone; trend of Pb was rootleafskinbone; trend of Cd was rootskinboneleaf; the trend of Zn was rootskinboneleaf. In farmland A (with low content of heavy metal), for per square meter of plough horizon, effect of Zhong 1 on heavy metals transferring volume and the period for restoration of the soil into national standard one (Category Ⅲ of Environmental Quality Standard for Soil) have been concluded. Specifically, for Cu, the corresponding values were 3 404.44 mg and 8.59 y, respectively; for Pb, the values were 3 638.5 mg and 13.52 y; for Cd, the values were 720.48 mg and 1.49 y; for Zn, the values were 37 324.8 mg and 0.67 y. [Conclusion] Soil contaminated by Cu, Pb, Cd, and Zn in orefield can be rapidly restored by growing ramie.展开更多
Cement-based composite grouting materials were used to construct grouting cutoff wall for heavy metal contaminated soil in non-ferrous metal mining areas. Cement, fly ash, and slag as principal ingredients were mixed ...Cement-based composite grouting materials were used to construct grouting cutoff wall for heavy metal contaminated soil in non-ferrous metal mining areas. Cement, fly ash, and slag as principal ingredients were mixed with water glass in different ways to produce three composite grouting materials. In order to investigate the effect of water glass mixing ratio, Baume degree, fly ash and slag contents on the mechanical properties of the composite grouting materials, particularly their gel time and compressive strength, the beaker-to-beaker method of gel time test and unconfined compressive strength test were conducted. In addition, the phase composition and microstructure of the composite grouting materials were analyzed by the X-ray diffraction(XRD) and scanning electron microscope(SEM) techniques. The test results show that their gel time increases when water glass mixing ratio and Baume degree increase. The gel time increases dramatically when fly ash is added, but decreases slightly if fly ash is partly replaced by slag. When the mixing ratio of water glass is below 20%, their compressive strength increases with the increases of the ratio; when the ratio is above 20%, it significantly decreases. The compressive strength also tends to increase as Baume degree increases, and improves if fly ash and slag are added.展开更多
[Objective] The remediation effect of the plant to Cd-contaminated soil was studied. [Method] By taking simulation test and field test, the ryegrass (Lolium perenne L.) was planted, and the remediation effect of the...[Objective] The remediation effect of the plant to Cd-contaminated soil was studied. [Method] By taking simulation test and field test, the ryegrass (Lolium perenne L.) was planted, and the remediation effect of the plant to contaminated sites was studied. [Result] The ryegrass was planted in the eluotropic soil for 0-60 d, Cd content in the soil showed a rapid decreasing trend; after 60 d, the enrich- ment ability of the plant to Cd gradually weakened over time; after 75 d of phytore- mediation, the Cd content in the soil decreased greatly, and the remediation effi- ciency was 90.66%. [Conclusion] Ryegrass remediation technology had good reme- diation effect to Cd-contaminated soil.展开更多
There is limited information on the release behavior of heavy metals fromnatural soils by organic acids. Thus, cadmium release, due to two organic acids (tartrate andcitrate) that are common in the rhizosphere, from s...There is limited information on the release behavior of heavy metals fromnatural soils by organic acids. Thus, cadmium release, due to two organic acids (tartrate andcitrate) that are common in the rhizosphere, from soils polluted by metal smeltersor tailings andsoils artificially contaminated by adding Cd were analyzed. The presence of tartrate or citrate at alow concentration (<= 6 mmol L^(-1) for tartrate and <= 0.5 mmol L^(-1) for citrate) inhibited Cdrelease, whereas the presence of organic acids in high concentrations (>= 2 mmol L^(-1) for citrateand >= 15 mmol L^(-1) for tartrate) apparently promoted Cd release. Under the same conditions, theCd release in naturally polluted soils was less than that of artificially contaminatedsoils.Additionally, as the initial pH rose from 2 to 8 in the presence of citrate, a sequentialvalley and then peak appeared in the Cd release curve, while in the presence of tartrate the Cdrelease steadily decreased. In addition, Cd release was clearly enhanced as the electrolyteconcentration of KNO_3 or KC1 increased in the presence of 2 mmol L^(-1) tartrate. Moreover, ahigher desorption of Cd was shown with the KCl electrolyte compared to KNO_3 for the sameconcentration levels. This implied that the bioavailability of heavy metals could be promoted withthe addition of suitable types and concentrations of organic acids as well as reasonable fieldconditions.展开更多
Cadmium contamination of soil is a global issue and in-situ remediation technology as a promising mitigation strategy has attracted more and more attention.Many nanomaterials have been applied for the in-situ remediat...Cadmium contamination of soil is a global issue and in-situ remediation technology as a promising mitigation strategy has attracted more and more attention.Many nanomaterials have been applied for the in-situ remediation of cadmium-contaminated soil due to their excellent properties of the nano-scale size effect.In this work,recent research progress of various nanomaterials,including carbon nanomaterials,metal-based nanomaterials and nano mineral materials,in the removal of cadmium and in-situ remediation of cadmiumcontaminated soil were systematically discussed.Additional emphases were particularly laid on both laboratory and field restoration effects.Moreover,the factors which can affect the stability of cadmium,main interaction mechanisms between nanomaterials and cadmium in the soil,and potential future research direction were also provided.Therefore,it is believed that this work will ultimately contribute to the myriad of environmental cleanup advances,and further improve human health and sustainable development.展开更多
Graded modified Fenton’s (MF) oxidation is a strategy in which H 2 O 2 is added intermittently to prevent a sharp temperature increase and undesired soil sterilization at soil circumneutral pH versus adding the sam...Graded modified Fenton’s (MF) oxidation is a strategy in which H 2 O 2 is added intermittently to prevent a sharp temperature increase and undesired soil sterilization at soil circumneutral pH versus adding the same amount of H 2 O 2 continuously.The primary objective of the present study was to investigate whether a mild MF pre-oxidation such as a stepwise addition of H 2 O 2 can prevent sterilization and achieve a maximum degradation of tank oil in soil.Optimization experiments of graded MF oxidation were conducted using citric acid,oxalic acid and SOLV-X as iron chelators under different frequencies of H 2 O 2 addition.The results indicated that the activity order of iron chelates decreased as:citric acid (51%) SOLV-X (44%) oxalic acid (9%),and citric acid was found to be an optimized iron chelating agent of graded MF oxidation.Three-time addition of H 2 O 2 was found to be favorable and economical due to decreasing total petroleum hydrocarbon removal from three time addition (51%) to five time addition (59%).Biological experiments were conducted after graded MF oxidation of tank oil completed under optimum conditions mentioned above.After graded oxidation,substantially higher increase (31%) in microbial activity was observed with excessive H 2 O 2 (1470 mmol/L,the mol ratio of H 2 O 2:Fe 2+ was 210:1) than that of non-oxidized soil.Removal efficiency of tank oil was up to 93% after four weeks.Especially,the oil fraction (C 10 –C 40 ) became more biodagradable after graded MF oxidation than its absence.Therefore,graded MF oxidation is a mild pretreatment to achieve an effective bioremediation of oil contaminated soil.展开更多
The use of surfactants to enhance plant-microbe associated dissipation in soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is a promising bioremediation technology. This comparative study was conducte...The use of surfactants to enhance plant-microbe associated dissipation in soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is a promising bioremediation technology. This comparative study was conducted on the effects of plant-microbe treatment on the removal of phenanthrene and pyrene from contaminated soil, in the presence of low concentration single anionic, nonionic and anionic-nonionic mixed surfactants. Sodium dodecyl benzene sulfonate (SDBS) and Tween 80 were chosen as representative anionic and nonionic surfactants, respectively. We found that mixed surfactants with concentrations less than 150 mg/kg were more effective in promoting plant-microbe associated bioremediation than the same amount of single surfactants. Only about (m/m) of mixed surfactants was needed to remove the same amount of phenanthrene and pyrene from either the planted or unplanted soils, when compared to Tween 80. Mixed surfactants (〈 150 mg/kg) better enhanced the degradation efficiency of phenanthrene and pyrene via microbe or plant-microbe routes in the soils. In the concentration range of 60-150 mg/kg, both ryegrass roots and shoots could accumulate 2-3 times the phenanthrene and pyrene with mixed surfactants than with Tween 80. These results may be explained by the lower sorption loss and reduced inteffacial tension of mixed surfactants relative to Tween 80, which enhanced the bioavailability of PAHs in soil and the microbial degradation efficiency. The higher remediation efficiency of low dosage SDBS-Tween 80 mixed surfactants thus advanced the technology of surfactant-enhanced plant-microbe associated bioremediation.展开更多
Risk associated with heavy metals in soil has been received widespread attention.In this study,a porous biochar supported nanoscale zero-valent iron(BC-nZVI)was applied to immobilize cadmium(Cd)and lead(Pb)in clayey s...Risk associated with heavy metals in soil has been received widespread attention.In this study,a porous biochar supported nanoscale zero-valent iron(BC-nZVI)was applied to immobilize cadmium(Cd)and lead(Pb)in clayey soil.Experiment results indicated that the immobilization of Cd or Pb by BC-nZVI process was better than that of BC or nZVI process,and about 80%of heavy metals immobilization was obtained in BC-nZVI process.Addition of BC-nZVI could increase soil pH and organic matter(SOM).Cd or Pb immobilization was inhibited with coexisting organic compound 2,4-dichlorophenol(2,4-DCP),but 2,4-DCP could be removed in a simultaneous manner with Cd or Pb immobilization at low concentration levels.Simultaneous immobilization of Cd and Pb was achieved in BC-nZVI process,and both Cd and Pb availability significantly decreased.Stable Cd species inculding Cd(OH)_(2),CdCO_(3)and CdO were formed,whereas stable Pb species such as PbCO_(3),PbO and Pb(OH)_(2)were produced with BC-nZVI treatment.Simultaneous immobilization mechanism of Cd and Pb in soil by BC-nZVI was thereby proposed.This study well demonstrates that BC-nZVI has been emerged as a potential technology for the remediation of multiple heavy metals in soil.展开更多
The use of a biodegradable natural plant-based surfactant extracted from soapberry is proposed for the remediation of Ni, Cr and Mn from industrial soil site in Hai-Pu, Taiwan. Batch experiments were performed under v...The use of a biodegradable natural plant-based surfactant extracted from soapberry is proposed for the remediation of Ni, Cr and Mn from industrial soil site in Hai-Pu, Taiwan. Batch experiments were performed under variation of fundamental factors (saponin concentration, pH, and incubation time) for metal remediation. Removal of Ni and Mn were increased with increasing saponin concentration (0.015-0.150 g/L), whereas the removal of Cr was increased upto 0.075 g/L saponin. The Ni, Cr and Mn were removed significantly (p 〈 0.05) at near to the neutral and slightly acidic (pH 5 to 8) conditions. Removal efficiency of Ni (99%) from the soil was found to be greater than that of Cr (73%) or Mn (25%) in the presence of saponin at a concentration of 0.150 g/L at pH 5. The removal percentage increased with incubation time where the removal of Ni was faster than that of Cr and Mn. The result indicates the feasibility of cco-friendly removal of heavy metal (Ni, Cr and Mn) from industrial soil by soil washing process in presence of plant derived saponin.展开更多
The treatment of contaminated soil is a crucial issue in geotechnical and environmental engineering.This study proposes to incorporate appropriate polypropylene fibers and cements as an effective method to treat heavy...The treatment of contaminated soil is a crucial issue in geotechnical and environmental engineering.This study proposes to incorporate appropriate polypropylene fibers and cements as an effective method to treat heavy metal contaminated soil(HMCS).The objective of this paper is to investigate the effects of fiber content,fiber length,cement content,curing time,heavy metal types and concentration on the mechanical properties of soils.To this end,a series of direct shear test,unconfined compression strength(UCS)test,dry-wet cycle and freeze-thaw cycle test are performed.The results confirm that the appropriate reinforcement of polypropylene fibers and cement is an effective way to recycle HMCS as substitutable fillers in roadbed,which exhibits benefits in environment and economy development.展开更多
This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitroge...This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitrogen; to be specific, the concentration of nitrate nitrogen in soil planted with wheat was reduced from 692.19 mg/kg to lower than 100 mg/kg; when the mass ratio of amendment to soil reached 3:50 and the amendment particle size was 1-2 mm, the concentration of nitrate ni-trogen in soil planted with wheat was reduced to 43 mg/kg. The amendment type exhibited extremely significant effects on the concentration of ammonium nitrogen; to be specific, when the mass ratio of amendment to soil reached 10:50, the concen-tration of ammonium nitrogen in soil added with 2-3 mm zeolite was reduced from 23 593.75 to 3 300 mg/kg on day 15. Amendments and plants mainly exhibited desorption performance for sulfate radical in soil, and the amendment type extreme-ly significantly affected the concentration of sulfate radical; to be specific, the con-centration of sulfate radical in soil added with limestone increased from 370 mg/kg to 900 mg/kg on day 7.展开更多
The effects of different phosphate-amendments on lead (Pb) uptake, the activities of superoxide dismutase (SOD) and the level of malondialdehyde (MDA) in cauliflower (Brassica oleracea L.) in contaminated soil...The effects of different phosphate-amendments on lead (Pb) uptake, the activities of superoxide dismutase (SOD) and the level of malondialdehyde (MDA) in cauliflower (Brassica oleracea L.) in contaminated soils with 2500, or 5000 mg P2O5/kg soil of hydroxyapatite (HA), phosphate rock (PR), single-superphosphate (SSP) and the mix of HA/SSP (HASSP) were evaluated in pot experiments. Results showed that the Pb concentrations in shoots and roots decreased by 18.3%-51.6% and 16.8%-57.3% among the treatments respectively compared to the control samples. The efficiency order of these phosphate-amendments in reducing Pb uptake was as follows: HASSP= HA 〉 SSP ,= PR. With the addition of SSP, HA and the mix of HA/SSP, the SOD activity in shoot was reduced markedly (P 〈 0.05) compared with that in the control group. For example, the SOD activities in shoot by the treatments of HASSP, SSP, and HA in 5000 mg P2O5/kg were found to be only 51.3%, 56.2%, and 56.7%, respectively. Similar effects were also observed on the level of MDA in the shoots with a decrease in 24.5%-56.3%. The results verified the inference that phosphate compounds could be used to reduce the plant uptake of Pb and resist the Pb stress in the plant vegetated in Pb-contaminated soils.展开更多
Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were inves...Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were investigated. A series of test program, unconfined compressive strength (UCS) test, TCLP leaching test and scanning electron microscopy (SEM) test, were performed on lead and zinc contaminated soils solidified/stabilized by fly ash. Test results show that UCS and the leaching characteristics of heavy metal ions of S/S contaminated soils are significantly improved with the increase of fly ash content. UCS of S/S soils firstly increases with the increase of the times of drying and wetting cycles, after reaching the peak, it decreases with it. When the pollutant content is lower (1 000 mg/kg), the TCLP concentration first slightly decreases under cyclic drying and wetting, then increases, but the change is minor. The TCLP concentration is higher under a high pollutant content of 5 000 mg/kg, and increases with the increase of the times of drying and wetting cycles. The results of scanning electron microscopy (SEM) test are consistent with UCS tests and TCLP leaching tests, which reveals the micro-mechanism of the variations of engineering properties of stabilized contaminated soils after drying and wetting cycles.展开更多
基金funded by the Natural Science Foundation of China(Grant No.52090084)was partially supported by the Sand Hazards and Opportunities for Resilience,Energy,and Sustainability(SHORES)Center,funded by Tamkeen under the NYUAD Research Institute Award CG013.
文摘This study focuses on empirical modeling of the strength characteristics of urban soils contaminated with heavy metals using machine learning tools and their subsequent stabilization with ordinary Portland cement(OPC).For dataset collection,an extensive experimental program was designed to estimate the unconfined compressive strength(Qu)of heavy metal-contaminated soils collected from awide range of land use pattern,i.e.residential,industrial and roadside soils.Accordingly,a robust comparison of predictive performances of four data-driven models including extreme learning machines(ELMs),gene expression programming(GEP),random forests(RFs),and multiple linear regression(MLR)has been presented.For completeness,a comprehensive experimental database has been established and partitioned into 80%for training and 20%for testing the developed models.Inputs included varying levels of heavy metals like Cd,Cu,Cr,Pb and Zn,along with OPC.The results revealed that the GEP model outperformed its counterparts:explaining approximately 96%of the variability in both training(R2=0.964)and testing phases(R^(2)=0.961),and thus achieving the lowest RMSE and MAE values.ELM performed commendably but was slightly less accurate than GEP whereas MLR had the lowest performance metrics.GEP also provided the benefit of traceable mathematical equation,enhancing its applicability not just as a predictive but also as an explanatory tool.Despite its insights,the study is limited by its focus on a specific set of heavy metals and urban soil samples of a particular region,which may affect the generalizability of the findings to different contamination profiles or environmental conditions.The study recommends GEP for predicting Qu in heavy metal-contaminated soils,and suggests further research to adapt these models to different environmental conditions.
基金supported by the Science and Technology Overall Innovation Project of Shaanxi Province,China(No.2016 KTCQ03-20)the Scientific Research Foundation Project of Quzhou University,China(No.KYQD006224002).
文摘Microbe-assisted phytoremediation is of great significance for the remediation of soil contaminated with heavy metals(HMs),and probiotics are beneficial microorganisms that can improve soil structure and fertility and promote plant growth.However,there are few studies on probiotics applied to remediate soil contaminated with HMs,and whether probiotics can improve the efficiency of phytoremediation still needs to be further investigated.This study aimed to investigate the effects of two kinds of probiotics,Lactobacillus casei(Lc)and Bacillus licheniformis(Bl),on activating the remediation potential of leaf mustard,Brassica juncea(L.)Czerniak.,for soil contaminated with Cd and Zn using incubation and pot experiments.The results showed that the addition of the two probiotics significantly reduced soil pH by 0.05–0.32 units and improved the available contents of soil HMs(by 15.3%–60.0%and 7.1%–23.8%for Cd and Zn,respectively)in the incubation experiment.After probiotic addition,available Cd and Zn contents in soil treated with 1×10^(9) colony forming units(cfu)mL^(-1) Bl were 1.65-and 1.66-folds of those in the control without probiotic,respectively,in the pot experiment.Meanwhile,soil alkaline phosphatase,urease,and sucrose activities were increased,indicating that soil microbial metabolic activities were also stimulated.Addition of Lc and Bl significantly improved the biomass and chlorophyll contents of leaf mustard.The contents of Cd and Zn in shoots and roots were significantly increased in the treatment with 1×10^(5) cfu mL^(-1) Lc.Furthermore,the activities of plant antioxidant enzymes,including superoxide dismutase,peroxidase,and catalase,were increased,and the content of plant malondialdehyde was reduced,indicating that the resistance of plants to HMs was enhanced.These results indicated that these two kinds of probiotics could enhance the availability of Cd and Zn directly in soil and promote the growth of leaf mustard,thereby increasing the efficiency of phytoremediation for HMs.The study provides a useful reference for probiotic-assisted phytoremediation of soil contaminated with HMs.
基金financially supported by the National Natural Science Foundation of China(No.41807116)the Natural Science Foundation of Fujian Province,China(Nos.2023J01418,2019J05035,and 2022N0024)+2 种基金the Scientific and Technological Innovation Project of China Metallurgical Geology Bureau(No.CMGBKY202301)the Independent Innovation Foundation of Tianjin University and Fuzhou University,China(No.TF2023-3)the Fuzhou University Testing Fund of Precious Apparatus,China(No.2023T014).
文摘Cadmium(Cd)contamination of soil is a global environmental issue.Traditional remediation techniques such as immobilization,leaching,and phytoextraction have numerous shortcomings,which has led to growing interest in the development of low-cost,high-efficiency,and environmentally friendly agents for removing Cd from soil.In this study,four magnetite(Fe_(3)O_(4))/polyaniline(PANI)nanocomposites,Fe_(3)O_(4)(1.0)/PANI,Fe_(3)O_(4)(1.5)/PANI,Fe_(3)O_(4)(2.0)/PANI,and Fe_(3)O_(4)(2.5)/PANI,were developed using 4 mL aniline monomer and 1.0,1.5,2.0,and 2.5 g Fe_(3)O_(4),respectively,and used as remediation agents with magnetic separation and regeneration capabilities.The Cd adsorption isotherms showed a better fit to the Langmuir model,with Fe_(3)O_(4)(1.5)/PANI exhibiting the highest Cd adsorption capacity of 47.62 mg g^(-1) at 25℃.Then,Fe_(3)O_(4)(1.5)/PANI was used to remediate four Cd-contaminated soils typical in China(black,brown,cinnamon,and red),all with a Cd content of 180 mg kg^(-1) after spiking.The results showed that the total Cd removal efficiency was satisfactory at 25.25%–38.91%and the exchangeable Cd removal efficiency was 36.03%on average.In addition,soil basic properties did not show significant changes after remediation.Regarding the regeneration performance,a higher total Cd removal efficiency(27.89%–44.96%)was achieved after the first regeneration cycle of Fe_(3)O_(4)(1.5)/PANI.After two regeneration cycles,Fe_(3)O_(4)(1.5)/PANI exhibited decreased total Cd removal efficiency compared to after the first regeneration,but its efficiency remained above 95%of or higher than those of virgin Fe_(3)O_(4)(1.5)/PANI.The synthetic process of Fe_(3)O_(4)/PANI was simple and cost-effective,and Fe_(3)O_(4)/PANI exhibited a high Cd removal efficiency with easy recovery and recyclability.Therefore,Fe_(3)O_(4)/PANI is a promising solution for the sustainable and efficient remediation of Cd-contaminated soils,especially for the reclamation of highly contaminated development land.
基金supported by the National Social Science Foundation of China(Grant No.20&ZD091)the National Social Science Fund on the Spirit of the Sixth Plenary Session of the 19th Central Committee of the Communist Party of China(Grant No.22ZDA109)+1 种基金the 2024 Innovative Talents International Cooperation Training Program of the China Scholarship Council(Grant No.202406720002)the the 2024 Hunan Provincial Education Department Graduate Innovation Research Project(Grant No.CX20240485).
文摘In recent years,there has been an intensifying focus within the soil contamination prevention and remediation sector,both domestically and internationally,on the off-site disposal of contaminated soils.The United States and Japan,as pioneers in this field,have formulated and implemented a suite of policy standards and practical measures for the regional collaborative management of off-site soil disposal.This paper meticulously reviews and evaluates the existing research on the regional collaborative management of off-site soil disposal,analyzing the experiences and strategies of the United States and Japan from the perspectives of regulatory systems and practical implementation.In light of China’s specific circumstances,it proposes a series of strategic recommendations for the adaptation of these international experiences to the Chinese context.These include enhancement of Chinese legal standards for the regional collaborative management of contaminated land soil off-site disposal,improvement of risk control standards for soil pollution and specific regulations for off-site disposal,as well as delineation of objective criteria to define the scope of collaborative management.
基金supported by the National Key R&D Program of China (No.2018YFC1800506)the Key R&D Program of Zhejiang Province (No.2020C03083)。
文摘Persulfate is considered a convenient and efficient remediation agent for organic contaminated soil.However,the potential risk of sulfur into the soil remediation by persulfate remains ignored.In this study,glass bottles with different persulfate dosages and groundwater tables were set up to simulate persulfate remediation of organic pollutants(aniline).The results found sulfate to be the main end-product(83.0%–99.5%)of persulfate remediation after10 days.Moreover,H_(2)S accounted for 93.4%–99.4%of sulfur reduction end-products,suggesting that H_(2)S was the final fate of sulfur.H_(2)S was released rapidly after one to three days at a maximum concentration of 33.0 ppm,which is sufficient to make a person uncomfortable.According to the fitted curve results,H_(2)S concentration decreased to a safe concentration(0.15 ppm)after 20–85 days.Meanwhile,the maximum concentration of methanethiol reached 0.6 ppm.These results indicated that secondary pollution from persulfate remediation could release harmful gases over a long time.Therefore,persulfate should be used more carefully as a remediation agent for soil contamination.
文摘Global industrialization over the past centuries has resulted in widespread contamination of the environment with organic and inorganic wastes and their pattern of disposal.The study aimed at isolating fungi from spent diesel contaminated soil around Ministry of Works in Aba,Abia State for biodegradation potentials on the soil properties.About four(4)fungal species were isolated from the five(5)sites using cultural and biochemical characteristics.The isolate was screened,and optical density measured using spectrophotometer.A total of 5 soil samples from each location(0-15 cm and 15-30 cm)were collected and homogenized to have composite sample.Samples were taken to the laboratory for analysis of soil physiochemical parameters,fungi count and biodegradable potential of the fungi using standard methods.Data obtained revealed that,physical property of the soil such as sand(85.20%±0.01%),silk(6.4%±0.01%)were lower than the control location except clay(17.39%±0.01%).Chemical properties revealed highest concentration of element such as pH(4.76±0.01),total nitrogen(0.18%±0.011%),total organic carbon(3.41±0.01),sodium(0.21±0.01),potassium(0.24±0.001),magnesium(4.41±0.015),calcium(5.21±0.015),organic matter(6.18±0.011),and available phosphorus(30.99±0.01).All elements in the study site were higher than the control site with an exception to sodium(Na),which was lower.Fungi isolate identified were Aspergillus niger,Trichoderma virdae,Aspergillus flavus,and Pencillum corylophlum.The degradation potential of fungi identified shows that consortium degraded 29%of diesel oil from the soil followed by A.flavus,T.virdae,A.niger and the least was T.corylophlum.The study concludes that despite indiscriminate disposal of spent diesel oil,the nutrient content was still higher than control and consortium performed well in degradation.
文摘Heavy metals have been viewed as hazardous environmental pollutants, and anthropogenic activities due to their high toxicity and persistent nature in the environment. Anthropogenic activities such as artisanal mining, industrial activities, improper usage of fertilizers and pesticides, and indiscriminate open waste disposal bring about an increase in the presence of heavy metals in the environment. In the Keffi Metropolis, different elements lead to land contamination which debilitates soil quality, plant survival, human well-being, and the environment as a result of extensive dispersion or quantity of heavy metals in the soil and water. In recent years, biochar has emerged as a promising soil amendment for mitigating heavy metal pollution due to its unique physicochemical properties. This paper provides the effects of softwood pellet biochar on the retention of heavy metals in contaminated soils. A microcosm experiment was carried out to investigate the effects of biochar on the retention of heavy metals in contaminated soils. This research aimed to give an overview of the effects of softwood biochar at different temperatures (550˚C and 700˚C) on the retention of heavy metals and metalloids released from the soil during water inundation. The results show that the addition of organic matter (grass chippings) minimizes heavy metal mobilization. Also, biochar at high temperatures is more effective than those at low temperatures. The expected outcome of the research analysis includes providing insights into the role of biochar in retaining heavy metal contamination and further understanding the use of biochar as a sorbent for the management of contaminated soil.
基金Supported by National Programs for High Technology Research and Development of China(2007AA061001)Talent Introduction Project Supported by Hunan Agricultural University Project(07YT03)~~
文摘[Objective] The aim was to study on in-situ elimination effect on heavy metals in soil of the mining area by ramie (Boehmeria nivea (L.) Gaud.). [Methods] Based on Xiangzhu No.3 and Zhongzhu No.1, we conducted research on heavy metals contents of plants growing in soil of Qibao Mountain orefield in Liuyang, Hunan Province, and on characteristics of enrichment and transfer of heavy metals (Cu, Pb, Cd, Zn) under influence of the two ramie species. [Result] It was concluded that trend of Cu content in different parts of ramie was as follows: rootskinleafbone; trend of Pb was rootleafskinbone; trend of Cd was rootskinboneleaf; the trend of Zn was rootskinboneleaf. In farmland A (with low content of heavy metal), for per square meter of plough horizon, effect of Zhong 1 on heavy metals transferring volume and the period for restoration of the soil into national standard one (Category Ⅲ of Environmental Quality Standard for Soil) have been concluded. Specifically, for Cu, the corresponding values were 3 404.44 mg and 8.59 y, respectively; for Pb, the values were 3 638.5 mg and 13.52 y; for Cd, the values were 720.48 mg and 1.49 y; for Zn, the values were 37 324.8 mg and 0.67 y. [Conclusion] Soil contaminated by Cu, Pb, Cd, and Zn in orefield can be rapidly restored by growing ramie.
基金Projects(41472278,41202220)supported by the National Natural Science Foundation of ChinaProject(20120022120003)supported by the Research Fund for the Doctoral Program of Higher Education,China+1 种基金Project(51900265647)supported by the Beijing Higher Education Young Elite Teacher Project,ChinaProject(2652012065)supported by the Fundamental Research Funds for the Central Universities,China
文摘Cement-based composite grouting materials were used to construct grouting cutoff wall for heavy metal contaminated soil in non-ferrous metal mining areas. Cement, fly ash, and slag as principal ingredients were mixed with water glass in different ways to produce three composite grouting materials. In order to investigate the effect of water glass mixing ratio, Baume degree, fly ash and slag contents on the mechanical properties of the composite grouting materials, particularly their gel time and compressive strength, the beaker-to-beaker method of gel time test and unconfined compressive strength test were conducted. In addition, the phase composition and microstructure of the composite grouting materials were analyzed by the X-ray diffraction(XRD) and scanning electron microscope(SEM) techniques. The test results show that their gel time increases when water glass mixing ratio and Baume degree increase. The gel time increases dramatically when fly ash is added, but decreases slightly if fly ash is partly replaced by slag. When the mixing ratio of water glass is below 20%, their compressive strength increases with the increases of the ratio; when the ratio is above 20%, it significantly decreases. The compressive strength also tends to increase as Baume degree increases, and improves if fly ash and slag are added.
基金Supported by the Prospective Research Project of Industry-University-Research Cooperation in Jiangsu Province(BY2014037-21)~~
文摘[Objective] The remediation effect of the plant to Cd-contaminated soil was studied. [Method] By taking simulation test and field test, the ryegrass (Lolium perenne L.) was planted, and the remediation effect of the plant to contaminated sites was studied. [Result] The ryegrass was planted in the eluotropic soil for 0-60 d, Cd content in the soil showed a rapid decreasing trend; after 60 d, the enrich- ment ability of the plant to Cd gradually weakened over time; after 75 d of phytore- mediation, the Cd content in the soil decreased greatly, and the remediation effi- ciency was 90.66%. [Conclusion] Ryegrass remediation technology had good reme- diation effect to Cd-contaminated soil.
基金Project supported by the National Key Basic Research Support Foundation of China (No. 2002CB410804) and the National Natural Science Foundation (No. 40201026).
文摘There is limited information on the release behavior of heavy metals fromnatural soils by organic acids. Thus, cadmium release, due to two organic acids (tartrate andcitrate) that are common in the rhizosphere, from soils polluted by metal smeltersor tailings andsoils artificially contaminated by adding Cd were analyzed. The presence of tartrate or citrate at alow concentration (<= 6 mmol L^(-1) for tartrate and <= 0.5 mmol L^(-1) for citrate) inhibited Cdrelease, whereas the presence of organic acids in high concentrations (>= 2 mmol L^(-1) for citrateand >= 15 mmol L^(-1) for tartrate) apparently promoted Cd release. Under the same conditions, theCd release in naturally polluted soils was less than that of artificially contaminatedsoils.Additionally, as the initial pH rose from 2 to 8 in the presence of citrate, a sequentialvalley and then peak appeared in the Cd release curve, while in the presence of tartrate the Cdrelease steadily decreased. In addition, Cd release was clearly enhanced as the electrolyteconcentration of KNO_3 or KC1 increased in the presence of 2 mmol L^(-1) tartrate. Moreover, ahigher desorption of Cd was shown with the KCl electrolyte compared to KNO_3 for the sameconcentration levels. This implied that the bioavailability of heavy metals could be promoted withthe addition of suitable types and concentrations of organic acids as well as reasonable fieldconditions.
基金supported by the National Key Research and Development Program(2018YFD0800300,2016YFC1400600)Natural Science Foundation of China(U1607111)+3 种基金the Hundred Talent program of CAS(2010–735)the Project for Science and Technology Service of Chinese Academy of Sciences(KFJ-EWSTS-016)Ningbo Natural Science Foundation(202003N4002)the Zhejiang Province Financial Support(LGF19D060001,R5110230)。
文摘Cadmium contamination of soil is a global issue and in-situ remediation technology as a promising mitigation strategy has attracted more and more attention.Many nanomaterials have been applied for the in-situ remediation of cadmium-contaminated soil due to their excellent properties of the nano-scale size effect.In this work,recent research progress of various nanomaterials,including carbon nanomaterials,metal-based nanomaterials and nano mineral materials,in the removal of cadmium and in-situ remediation of cadmiumcontaminated soil were systematically discussed.Additional emphases were particularly laid on both laboratory and field restoration effects.Moreover,the factors which can affect the stability of cadmium,main interaction mechanisms between nanomaterials and cadmium in the soil,and potential future research direction were also provided.Therefore,it is believed that this work will ultimately contribute to the myriad of environmental cleanup advances,and further improve human health and sustainable development.
基金supported by the Program of In-ternational S&T Cooperation(No.2010 DFA 94550,2010KW-24-1)the National Natural Science Founda-tion of China(No.50830303)+1 种基金the Major Science and Technology Program for Water Pollution Control and Treatment(No.2009ZX07317-007-001)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT0853)
文摘Graded modified Fenton’s (MF) oxidation is a strategy in which H 2 O 2 is added intermittently to prevent a sharp temperature increase and undesired soil sterilization at soil circumneutral pH versus adding the same amount of H 2 O 2 continuously.The primary objective of the present study was to investigate whether a mild MF pre-oxidation such as a stepwise addition of H 2 O 2 can prevent sterilization and achieve a maximum degradation of tank oil in soil.Optimization experiments of graded MF oxidation were conducted using citric acid,oxalic acid and SOLV-X as iron chelators under different frequencies of H 2 O 2 addition.The results indicated that the activity order of iron chelates decreased as:citric acid (51%) SOLV-X (44%) oxalic acid (9%),and citric acid was found to be an optimized iron chelating agent of graded MF oxidation.Three-time addition of H 2 O 2 was found to be favorable and economical due to decreasing total petroleum hydrocarbon removal from three time addition (51%) to five time addition (59%).Biological experiments were conducted after graded MF oxidation of tank oil completed under optimum conditions mentioned above.After graded oxidation,substantially higher increase (31%) in microbial activity was observed with excessive H 2 O 2 (1470 mmol/L,the mol ratio of H 2 O 2:Fe 2+ was 210:1) than that of non-oxidized soil.Removal efficiency of tank oil was up to 93% after four weeks.Especially,the oil fraction (C 10 –C 40 ) became more biodagradable after graded MF oxidation than its absence.Therefore,graded MF oxidation is a mild pretreatment to achieve an effective bioremediation of oil contaminated soil.
基金supported by the National Natural Science Foundation of China(No.21137003)the National KeyBasic Research Program of China(No.2014CB441106)
文摘The use of surfactants to enhance plant-microbe associated dissipation in soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is a promising bioremediation technology. This comparative study was conducted on the effects of plant-microbe treatment on the removal of phenanthrene and pyrene from contaminated soil, in the presence of low concentration single anionic, nonionic and anionic-nonionic mixed surfactants. Sodium dodecyl benzene sulfonate (SDBS) and Tween 80 were chosen as representative anionic and nonionic surfactants, respectively. We found that mixed surfactants with concentrations less than 150 mg/kg were more effective in promoting plant-microbe associated bioremediation than the same amount of single surfactants. Only about (m/m) of mixed surfactants was needed to remove the same amount of phenanthrene and pyrene from either the planted or unplanted soils, when compared to Tween 80. Mixed surfactants (〈 150 mg/kg) better enhanced the degradation efficiency of phenanthrene and pyrene via microbe or plant-microbe routes in the soils. In the concentration range of 60-150 mg/kg, both ryegrass roots and shoots could accumulate 2-3 times the phenanthrene and pyrene with mixed surfactants than with Tween 80. These results may be explained by the lower sorption loss and reduced inteffacial tension of mixed surfactants relative to Tween 80, which enhanced the bioavailability of PAHs in soil and the microbial degradation efficiency. The higher remediation efficiency of low dosage SDBS-Tween 80 mixed surfactants thus advanced the technology of surfactant-enhanced plant-microbe associated bioremediation.
基金supported by the Special project in key areas of Guangdong Province Ordinary Universities (No. 2020ZDZX1003)the Guangdong Provincial Key R&D Programme (No. 2020B1111350002)+4 种基金the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2018)the research project and development plan for key areas of Guangdong Province (No. 2020B0202080002)the Project of Educational Commission of Guangdong Province of China (No. 2019KTSCX067)the Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams (No. 2019KJ140)the National Natural Science Foundation of China (No. 21407155).
文摘Risk associated with heavy metals in soil has been received widespread attention.In this study,a porous biochar supported nanoscale zero-valent iron(BC-nZVI)was applied to immobilize cadmium(Cd)and lead(Pb)in clayey soil.Experiment results indicated that the immobilization of Cd or Pb by BC-nZVI process was better than that of BC or nZVI process,and about 80%of heavy metals immobilization was obtained in BC-nZVI process.Addition of BC-nZVI could increase soil pH and organic matter(SOM).Cd or Pb immobilization was inhibited with coexisting organic compound 2,4-dichlorophenol(2,4-DCP),but 2,4-DCP could be removed in a simultaneous manner with Cd or Pb immobilization at low concentration levels.Simultaneous immobilization of Cd and Pb was achieved in BC-nZVI process,and both Cd and Pb availability significantly decreased.Stable Cd species inculding Cd(OH)_(2),CdCO_(3)and CdO were formed,whereas stable Pb species such as PbCO_(3),PbO and Pb(OH)_(2)were produced with BC-nZVI treatment.Simultaneous immobilization mechanism of Cd and Pb in soil by BC-nZVI was thereby proposed.This study well demonstrates that BC-nZVI has been emerged as a potential technology for the remediation of multiple heavy metals in soil.
基金the "National Science Council",Taiwan,for financial support (NSC 101-2811-M-194-008 for JPM)
文摘The use of a biodegradable natural plant-based surfactant extracted from soapberry is proposed for the remediation of Ni, Cr and Mn from industrial soil site in Hai-Pu, Taiwan. Batch experiments were performed under variation of fundamental factors (saponin concentration, pH, and incubation time) for metal remediation. Removal of Ni and Mn were increased with increasing saponin concentration (0.015-0.150 g/L), whereas the removal of Cr was increased upto 0.075 g/L saponin. The Ni, Cr and Mn were removed significantly (p 〈 0.05) at near to the neutral and slightly acidic (pH 5 to 8) conditions. Removal efficiency of Ni (99%) from the soil was found to be greater than that of Cr (73%) or Mn (25%) in the presence of saponin at a concentration of 0.150 g/L at pH 5. The removal percentage increased with incubation time where the removal of Ni was faster than that of Cr and Mn. The result indicates the feasibility of cco-friendly removal of heavy metal (Ni, Cr and Mn) from industrial soil by soil washing process in presence of plant derived saponin.
基金Projects(51778386,51708377,51608059)supported by the National Natural Science Foundation of ChinaProject(BK20170339)supported by Natural Science Foundation of Jiangsu Province,China+2 种基金Project(17KJB560008)supported by Natural Science Fund for Colleges and Universities in Jiangsu Province,ChinaProjects(KFJ170106,KFJ180105)supported by Open Fund of National Engineering Laboratory of Highway Maintenance Technology(Changsha University of Science&Technology),ChinaProjects(2016ZD18,2017ZD002)supported by Jiangsu Provincial Department of Housing,Urban-Rural Development,China。
文摘The treatment of contaminated soil is a crucial issue in geotechnical and environmental engineering.This study proposes to incorporate appropriate polypropylene fibers and cements as an effective method to treat heavy metal contaminated soil(HMCS).The objective of this paper is to investigate the effects of fiber content,fiber length,cement content,curing time,heavy metal types and concentration on the mechanical properties of soils.To this end,a series of direct shear test,unconfined compression strength(UCS)test,dry-wet cycle and freeze-thaw cycle test are performed.The results confirm that the appropriate reinforcement of polypropylene fibers and cement is an effective way to recycle HMCS as substitutable fillers in roadbed,which exhibits benefits in environment and economy development.
基金Supported by National Natural Science Foundation of China(Grant No.21067003,5136-4015)Natural Science Foundation of Jiangxi Province(Grant No.20114BAB203024)National High-Tech Research and Development Program of China(Grant No.2012BAC11B07)~~
文摘This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitrogen; to be specific, the concentration of nitrate nitrogen in soil planted with wheat was reduced from 692.19 mg/kg to lower than 100 mg/kg; when the mass ratio of amendment to soil reached 3:50 and the amendment particle size was 1-2 mm, the concentration of nitrate ni-trogen in soil planted with wheat was reduced to 43 mg/kg. The amendment type exhibited extremely significant effects on the concentration of ammonium nitrogen; to be specific, when the mass ratio of amendment to soil reached 10:50, the concen-tration of ammonium nitrogen in soil added with 2-3 mm zeolite was reduced from 23 593.75 to 3 300 mg/kg on day 15. Amendments and plants mainly exhibited desorption performance for sulfate radical in soil, and the amendment type extreme-ly significantly affected the concentration of sulfate radical; to be specific, the con-centration of sulfate radical in soil added with limestone increased from 370 mg/kg to 900 mg/kg on day 7.
基金supported by the Hi-Tech Research and Development Program (863) of China (No.2008AA10Z404)the special fund for the institute of commonweal scientific research in China (No. 628-16)
文摘The effects of different phosphate-amendments on lead (Pb) uptake, the activities of superoxide dismutase (SOD) and the level of malondialdehyde (MDA) in cauliflower (Brassica oleracea L.) in contaminated soils with 2500, or 5000 mg P2O5/kg soil of hydroxyapatite (HA), phosphate rock (PR), single-superphosphate (SSP) and the mix of HA/SSP (HASSP) were evaluated in pot experiments. Results showed that the Pb concentrations in shoots and roots decreased by 18.3%-51.6% and 16.8%-57.3% among the treatments respectively compared to the control samples. The efficiency order of these phosphate-amendments in reducing Pb uptake was as follows: HASSP= HA 〉 SSP ,= PR. With the addition of SSP, HA and the mix of HA/SSP, the SOD activity in shoot was reduced markedly (P 〈 0.05) compared with that in the control group. For example, the SOD activities in shoot by the treatments of HASSP, SSP, and HA in 5000 mg P2O5/kg were found to be only 51.3%, 56.2%, and 56.7%, respectively. Similar effects were also observed on the level of MDA in the shoots with a decrease in 24.5%-56.3%. The results verified the inference that phosphate compounds could be used to reduce the plant uptake of Pb and resist the Pb stress in the plant vegetated in Pb-contaminated soils.
基金Foundation item: Projects(41172273, 40802079, 51108288) supported by the National Natural Science Foundation of China Project(KLE-TJGE-B1106) supported by the Opening Fund of Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education (Tongji University), China
文摘Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were investigated. A series of test program, unconfined compressive strength (UCS) test, TCLP leaching test and scanning electron microscopy (SEM) test, were performed on lead and zinc contaminated soils solidified/stabilized by fly ash. Test results show that UCS and the leaching characteristics of heavy metal ions of S/S contaminated soils are significantly improved with the increase of fly ash content. UCS of S/S soils firstly increases with the increase of the times of drying and wetting cycles, after reaching the peak, it decreases with it. When the pollutant content is lower (1 000 mg/kg), the TCLP concentration first slightly decreases under cyclic drying and wetting, then increases, but the change is minor. The TCLP concentration is higher under a high pollutant content of 5 000 mg/kg, and increases with the increase of the times of drying and wetting cycles. The results of scanning electron microscopy (SEM) test are consistent with UCS tests and TCLP leaching tests, which reveals the micro-mechanism of the variations of engineering properties of stabilized contaminated soils after drying and wetting cycles.