Perovskite-based photovoltaic materials have been attracting attention for their strikingly improved performance at converting sunlight into electricity.The beneficial and unique optoelectronic characteristics of pero...Perovskite-based photovoltaic materials have been attracting attention for their strikingly improved performance at converting sunlight into electricity.The beneficial and unique optoelectronic characteristics of perovskite structures enable researchers to achieve an incredibly remarkable power conversion efficiency.Flexible hybrid perovskite photovoltaics promise emerging applications in a myriad of optoelectronic and wearable/portable device applications owing to their inherent intriguing physicochemical and photophysical properties which enabled researchers to take forward advanced research in this growing field.Flexible perovskite photovoltaics have attracted significant attention owing to their fascinating material properties with combined merits of high efficiency,light-weight,flexibility,semitransparency,compatibility towards roll-to-roll printing,and large-area mass-scale production.Flexible perovskite-based solar cells comprise of 4 key components that include a flexible substrate,semi-transparent bottom contact electrode,perovskite(light absorber layer)and charge transport(electron/hole)layers and top(usually metal)electrode.Among these components,interfacial layers and contact electrodes play a pivotal role in influencing the overall photovoltaic performance.In this comprehensive review article,we focus on the current developments and latest progress achieved in perovskite photovoltaics concerning the charge selective transport layers/electrodes toward the fabrication of highly stable,efficient flexible devices.As a concluding remark,we briefly summarize the highlights of the review article and make recommendations for future outlook and investigation with perspectives on the perovskite-based optoelectronic functional devices that can be potentially utilized in smart wearable and portable devices.展开更多
The effects of contact electrode size on the photo-voltaic characteristics of polycrystalline-Si p-i-n solar cells have been studied,with respect to a unit-cell pitch size of 1μm width.For the non-transparent Al cont...The effects of contact electrode size on the photo-voltaic characteristics of polycrystalline-Si p-i-n solar cells have been studied,with respect to a unit-cell pitch size of 1μm width.For the non-transparent Al contact electrode with a contact width of 0.05-0.2μm,the short-circuit current is obviously reduced with increasing contact width,due to a larger area of optical reflection by the electrode.On the other hand,even when using a transparent ITO(indium-tin-oxide) electrode,a larger width of contact electrode may also cause a smaller short-circuit current, due to a larger area of optical absorption by the electrode.However,for this ITO electrode,the contact electrode of 0.05μm width causes a smaller short-circuit current than that of 0.1μm width,primarily ascribed to a smaller area for collecting carrier and a larger contact resistance.As a result,while using the ITO contact electrode to enhance the conversion efficiency of the solar cell,a proper width of contact electrode should be employed to optimize the photo-voltaic characteristics.展开更多
A comparative study was conducted using two designs of a roxatidine acetate (ROX)-selective electrode; a conventional liquid inner contact called electrode A and a graphite-coated solid contact called electrode 13. ...A comparative study was conducted using two designs of a roxatidine acetate (ROX)-selective electrode; a conventional liquid inner contact called electrode A and a graphite-coated solid contact called electrode 13. The fabrication of electrodes was based on roxatidine-tetraphenylborate (ROX-TPB) as an ion-association complex in a PVC matrix using different plasticizers. Electrode A has a linear dynamic range of 2.2 ×10^-5 mol/L to 1.0 ×10^-2 mol/L, with a Nernstian slope of 54.7 mV/decade and a detection limit of 1.4 ×10^-6 mol/L. Electrode B shows linearity over the concentration range of 1.0×10^-6 mol/L to 1.0×10^-2 tool/L, with a Nernstian slope of 51.2 mV/decade and a limit of detection of 1.1×10^7 mol/L which is remarkably improved as a result of diminishing ion fluxes in this solid contact, ion-selective electrode. The proposed sensors display useful analytical characteristics for the determination of ROX in bulk powder and its pharmaceutical formulation. The present electrodes show clear discrimination of ROX from several inorganic, organic ions, sugars, some common drug excipients and the degradation product (3-[3-(1-piperidinyl methyl) phenoxy] propyl amine) of ROX. Furthermore, the proposed electrodes were utilized for the determination of ROX in human plasma, where electrode B covers drug Cmax which indicated its applicability to pharmacokinetic, bioavailability and bioequivalent studies. The results obtained by the proposed electrodes were statistically analyzed and compared with those obtained by a reported HPLC method. No significant difference for either accuracy or precision was observed.展开更多
The editorial office regrets that mistakes occurred during the presentation of Figs.1 and 4.Specifically,a typographic error in Figs.1 and 4 was mistakenly taken from a different article.The editorial office would lik...The editorial office regrets that mistakes occurred during the presentation of Figs.1 and 4.Specifically,a typographic error in Figs.1 and 4 was mistakenly taken from a different article.The editorial office would like to apologise for any inconvenience caused,and the corrected figures are pending as below.展开更多
A range of partial top full bottom electrodes are used to explore the use of bi-polar Polarisation-Electricfield(PeE)measurements to quantify recoverable energy(Wrec),energy loss(W_(loss))and the efficiency(h)of ferro...A range of partial top full bottom electrodes are used to explore the use of bi-polar Polarisation-Electricfield(PeE)measurements to quantify recoverable energy(Wrec),energy loss(W_(loss))and the efficiency(h)of ferroelectric BaTiO_(3)ceramics.The values obtained are dependent on the ratio of sample thickness(S)and top contact radius(r).With increasing S/r from 0.17 to 1.96 the P-E responses become increasingly distorted and broader.Measurements show Wrec increases by a factor of~1.4 but Wloss increases by a factor of~7 with h decreasing from~29%to 8%.Finite element modelling was used to simulate the experimental set-up of the sample/electrode arrangements using the Jiles-Atherton model to replicate the ferroelectric behaviour of BaTiO_(3).These models demonstrate the experimentally applied electricfield using a simple geometric correction for sample thickness is an underestimation of the actualfield experienced by the material under the top contact at high S/r values.We stress the importance of reporting the contact sizes and thicknesses of samples when using PeE measurements to assess Wrec,W_(loss)andηin non-linear dielectric materials.This will allow a fairer comparison of performances between various types of materials being considered for high-energy-density ceramic capacitors.展开更多
Microneedle array(MNA)electrodes are an effective solution to achieve high-quality surface biopotential recording without the coordination of conductive gel and are thus very suitable for long-term wearable applicatio...Microneedle array(MNA)electrodes are an effective solution to achieve high-quality surface biopotential recording without the coordination of conductive gel and are thus very suitable for long-term wearable applications.Existing schemes are limited by flexibility,biosafety,and manufacturing costs,which create large barriers for wider applications.Here,we present a novel flexible MNA electrode that can simultaneously achieve flexibility of the substrate to fit a curved body surface,robustness of microneedles to penetrate the skin without fracture,and a simplified process to allow mass production.The compatibility with wearable wireless systems and the short preparation time of the electrodes significantly improves the comfort and convenience of electrophysiological recording.The normalized electrode–skin contact impedance reaches 0.98 kΩcm^(2)at 1 kHz and 1.50 kΩcm^(2)at 10 Hz,a record low value compared to previous reports and approximately 1/250 of the standard electrodes.The morphology,biosafety,and electrical/mechanical properties are fully characterized,and wearable recordings with a high signal-to-noise ratio and low motion artifacts are realized.The first reported clinical study of microneedle electrodes for surface electrophysiological monitoring was conducted in tens of healthy and sleep-disordered subjects with 44 nights of recording(over 8 h per night),providing substantial evidence that the electrodes can be leveraged to substitute for clinical standard electrodes.展开更多
To achieve an atmospheric pressure glow discharge(APGD)in air and modify the surface of polyester thread using plasma,the electric field distribution and discharge characteristics under different conditions were stu...To achieve an atmospheric pressure glow discharge(APGD)in air and modify the surface of polyester thread using plasma,the electric field distribution and discharge characteristics under different conditions were studied.We found that the region with a strong electric field,which was formed in a tiny gap between two electrodes constituting a line-line contact electrode structure,provided the initial electron for the entire discharge process.Thus,the discharge voltage was reduced.The dielectric barrier of the line-line contact electrodes can inhibit the generation of secondary electrons.Thus,the transient current pulse discharge was reduced significantly,and an APGD in air was achieved.We designed double layer line-line contact electrodes,which can generate the APGD on the surface of a material under treatment directly.A noticeable change in the surface morphology of polyester fiber was visualized with the aid of a scanning electron microscope(SEM).Two electrode structures-the multi-row line-line and double-helix line-line contact electrodes-were designed.A large area of the APGD plasma with flat and curved surfaces can be formed in air using these contact electrodes.This can improve the efficiency of surface treatment and is significant for the application of the APGD plasma in industries.展开更多
The use of electro-osmotic chemical is an effective method to improve the clayey soil foundation.Various boundary conditions can be adopted in this method.In this work,two electrode–clay contacts,three solution condi...The use of electro-osmotic chemical is an effective method to improve the clayey soil foundation.Various boundary conditions can be adopted in this method.In this work,two electrode–clay contacts,three solution conditioners,and four anode solution supply times were used for clayey soil improvement.Based on the experimental data,electro-osmotic consolidation theory,and transport of ion theory,it is found that the electro-osmotic chemical effect of the separation of electrode–clay(E_S)is more beneficial for the transport of Ca^(2+),production of cementing material,and reduction of water content than that of electrode–clay(E_C)joining;through electrode–clay contact separation,the anode solution conditioner(NaPO3)6(E_SHMP)delayed the cementing reaction and then increased the transport of Ca^(2+)near the cathode,which increased the amount of cementing material and the electro-osmotic chemical effect;and when the anode conditioner(NaPO3)6 was used,two days of anode solution supply followed by three days cut off from the anode solution led to the highest undrained shear strength increase after the application of electro-osmotic chemical,which resolved the uneven electro-osmotic chemical effect in the E_SHMP.展开更多
Photoconductive antennas (PCAs) based on nanoplasmonic gratings contact electrodes have been pro- posed to satisfy the demand for high power, efficiency and responsivity terahertz (THz) sources. Reducing the avera...Photoconductive antennas (PCAs) based on nanoplasmonic gratings contact electrodes have been pro- posed to satisfy the demand for high power, efficiency and responsivity terahertz (THz) sources. Reducing the average photo-generated carrier transport path to the photoconductor contact electrodes was previously considered the dominant mechanism to improve PCAs' power. However, considering the bias in a real device, the electric field between gratings is limited and the role of surface plasmonic resonance (SPR) field enhancement is more important in improving THz radiation. This paper, based on SPR, analyzes the interaction between incident light and substrate in nano cylinder array PCAs and clearly shows that the SPR can enhance the light absorption in the substrate. After the optimization of the structure size, the proposed structure can offer 87% optical transmission into GaAs substrate. Compared with conventional PCAs, the optical transmission into the substrate will increase 5.8 times and the enhancement factor of substrate absorption will reach 13.7 respectively.展开更多
基金the CSIRO Low Emissions Technologies Program for the support of this studythe financial support from the Australian Research Council(ARC)for the Future Fellowship(FT130101337)+4 种基金QUT core funding(QUT/322120-0301/07)supported by NSF MRI(1428992)U.S.-Egypt Science and Technology(S&T)Joint FundSDBoR R&D ProgramEDA University Center Program(ED18DEN3030025)。
文摘Perovskite-based photovoltaic materials have been attracting attention for their strikingly improved performance at converting sunlight into electricity.The beneficial and unique optoelectronic characteristics of perovskite structures enable researchers to achieve an incredibly remarkable power conversion efficiency.Flexible hybrid perovskite photovoltaics promise emerging applications in a myriad of optoelectronic and wearable/portable device applications owing to their inherent intriguing physicochemical and photophysical properties which enabled researchers to take forward advanced research in this growing field.Flexible perovskite photovoltaics have attracted significant attention owing to their fascinating material properties with combined merits of high efficiency,light-weight,flexibility,semitransparency,compatibility towards roll-to-roll printing,and large-area mass-scale production.Flexible perovskite-based solar cells comprise of 4 key components that include a flexible substrate,semi-transparent bottom contact electrode,perovskite(light absorber layer)and charge transport(electron/hole)layers and top(usually metal)electrode.Among these components,interfacial layers and contact electrodes play a pivotal role in influencing the overall photovoltaic performance.In this comprehensive review article,we focus on the current developments and latest progress achieved in perovskite photovoltaics concerning the charge selective transport layers/electrodes toward the fabrication of highly stable,efficient flexible devices.As a concluding remark,we briefly summarize the highlights of the review article and make recommendations for future outlook and investigation with perspectives on the perovskite-based optoelectronic functional devices that can be potentially utilized in smart wearable and portable devices.
文摘The effects of contact electrode size on the photo-voltaic characteristics of polycrystalline-Si p-i-n solar cells have been studied,with respect to a unit-cell pitch size of 1μm width.For the non-transparent Al contact electrode with a contact width of 0.05-0.2μm,the short-circuit current is obviously reduced with increasing contact width,due to a larger area of optical reflection by the electrode.On the other hand,even when using a transparent ITO(indium-tin-oxide) electrode,a larger width of contact electrode may also cause a smaller short-circuit current, due to a larger area of optical absorption by the electrode.However,for this ITO electrode,the contact electrode of 0.05μm width causes a smaller short-circuit current than that of 0.1μm width,primarily ascribed to a smaller area for collecting carrier and a larger contact resistance.As a result,while using the ITO contact electrode to enhance the conversion efficiency of the solar cell,a proper width of contact electrode should be employed to optimize the photo-voltaic characteristics.
文摘A comparative study was conducted using two designs of a roxatidine acetate (ROX)-selective electrode; a conventional liquid inner contact called electrode A and a graphite-coated solid contact called electrode 13. The fabrication of electrodes was based on roxatidine-tetraphenylborate (ROX-TPB) as an ion-association complex in a PVC matrix using different plasticizers. Electrode A has a linear dynamic range of 2.2 ×10^-5 mol/L to 1.0 ×10^-2 mol/L, with a Nernstian slope of 54.7 mV/decade and a detection limit of 1.4 ×10^-6 mol/L. Electrode B shows linearity over the concentration range of 1.0×10^-6 mol/L to 1.0×10^-2 tool/L, with a Nernstian slope of 51.2 mV/decade and a limit of detection of 1.1×10^7 mol/L which is remarkably improved as a result of diminishing ion fluxes in this solid contact, ion-selective electrode. The proposed sensors display useful analytical characteristics for the determination of ROX in bulk powder and its pharmaceutical formulation. The present electrodes show clear discrimination of ROX from several inorganic, organic ions, sugars, some common drug excipients and the degradation product (3-[3-(1-piperidinyl methyl) phenoxy] propyl amine) of ROX. Furthermore, the proposed electrodes were utilized for the determination of ROX in human plasma, where electrode B covers drug Cmax which indicated its applicability to pharmacokinetic, bioavailability and bioequivalent studies. The results obtained by the proposed electrodes were statistically analyzed and compared with those obtained by a reported HPLC method. No significant difference for either accuracy or precision was observed.
文摘The editorial office regrets that mistakes occurred during the presentation of Figs.1 and 4.Specifically,a typographic error in Figs.1 and 4 was mistakenly taken from a different article.The editorial office would like to apologise for any inconvenience caused,and the corrected figures are pending as below.
基金the EPSRC funding to support this work through a CASE conversion DTP grant EP/T517835/1.
文摘A range of partial top full bottom electrodes are used to explore the use of bi-polar Polarisation-Electricfield(PeE)measurements to quantify recoverable energy(Wrec),energy loss(W_(loss))and the efficiency(h)of ferroelectric BaTiO_(3)ceramics.The values obtained are dependent on the ratio of sample thickness(S)and top contact radius(r).With increasing S/r from 0.17 to 1.96 the P-E responses become increasingly distorted and broader.Measurements show Wrec increases by a factor of~1.4 but Wloss increases by a factor of~7 with h decreasing from~29%to 8%.Finite element modelling was used to simulate the experimental set-up of the sample/electrode arrangements using the Jiles-Atherton model to replicate the ferroelectric behaviour of BaTiO_(3).These models demonstrate the experimentally applied electricfield using a simple geometric correction for sample thickness is an underestimation of the actualfield experienced by the material under the top contact at high S/r values.We stress the importance of reporting the contact sizes and thicknesses of samples when using PeE measurements to assess Wrec,W_(loss)andηin non-linear dielectric materials.This will allow a fairer comparison of performances between various types of materials being considered for high-energy-density ceramic capacitors.
基金supported by the China Capital Health Research and Development of Special (No. 2018-14111)the National Natural Science Foundation of China (grant No. 62004007 and No. 82027805)the China Postdoctoral Science Foundation Grant (No. 2021M700258)
文摘Microneedle array(MNA)electrodes are an effective solution to achieve high-quality surface biopotential recording without the coordination of conductive gel and are thus very suitable for long-term wearable applications.Existing schemes are limited by flexibility,biosafety,and manufacturing costs,which create large barriers for wider applications.Here,we present a novel flexible MNA electrode that can simultaneously achieve flexibility of the substrate to fit a curved body surface,robustness of microneedles to penetrate the skin without fracture,and a simplified process to allow mass production.The compatibility with wearable wireless systems and the short preparation time of the electrodes significantly improves the comfort and convenience of electrophysiological recording.The normalized electrode–skin contact impedance reaches 0.98 kΩcm^(2)at 1 kHz and 1.50 kΩcm^(2)at 10 Hz,a record low value compared to previous reports and approximately 1/250 of the standard electrodes.The morphology,biosafety,and electrical/mechanical properties are fully characterized,and wearable recordings with a high signal-to-noise ratio and low motion artifacts are realized.The first reported clinical study of microneedle electrodes for surface electrophysiological monitoring was conducted in tens of healthy and sleep-disordered subjects with 44 nights of recording(over 8 h per night),providing substantial evidence that the electrodes can be leveraged to substitute for clinical standard electrodes.
文摘To achieve an atmospheric pressure glow discharge(APGD)in air and modify the surface of polyester thread using plasma,the electric field distribution and discharge characteristics under different conditions were studied.We found that the region with a strong electric field,which was formed in a tiny gap between two electrodes constituting a line-line contact electrode structure,provided the initial electron for the entire discharge process.Thus,the discharge voltage was reduced.The dielectric barrier of the line-line contact electrodes can inhibit the generation of secondary electrons.Thus,the transient current pulse discharge was reduced significantly,and an APGD in air was achieved.We designed double layer line-line contact electrodes,which can generate the APGD on the surface of a material under treatment directly.A noticeable change in the surface morphology of polyester fiber was visualized with the aid of a scanning electron microscope(SEM).Two electrode structures-the multi-row line-line and double-helix line-line contact electrodes-were designed.A large area of the APGD plasma with flat and curved surfaces can be formed in air using these contact electrodes.This can improve the efficiency of surface treatment and is significant for the application of the APGD plasma in industries.
基金Project(41902280)supported by the National Natural Science Foundation of ChinaProject(300102219105)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(LP1922)supported by the Open Foundation of State Key Laboratory of Coastal and Offshore Engineering,ChinaProject(XJKFJJ201805)supported by the Open Foundation of Shaanxi Key Laboratory of Safety and Durability of Concrete Structures,China。
文摘The use of electro-osmotic chemical is an effective method to improve the clayey soil foundation.Various boundary conditions can be adopted in this method.In this work,two electrode–clay contacts,three solution conditioners,and four anode solution supply times were used for clayey soil improvement.Based on the experimental data,electro-osmotic consolidation theory,and transport of ion theory,it is found that the electro-osmotic chemical effect of the separation of electrode–clay(E_S)is more beneficial for the transport of Ca^(2+),production of cementing material,and reduction of water content than that of electrode–clay(E_C)joining;through electrode–clay contact separation,the anode solution conditioner(NaPO3)6(E_SHMP)delayed the cementing reaction and then increased the transport of Ca^(2+)near the cathode,which increased the amount of cementing material and the electro-osmotic chemical effect;and when the anode conditioner(NaPO3)6 was used,two days of anode solution supply followed by three days cut off from the anode solution led to the highest undrained shear strength increase after the application of electro-osmotic chemical,which resolved the uneven electro-osmotic chemical effect in the E_SHMP.
基金Project supported by the National Basic Research Program of China(Nos.2015CB351902,2015CB932402)the National Key Research Program of China(No.2011ZX01015-001)the National Natural Science Foundation of China(No.U143231)
文摘Photoconductive antennas (PCAs) based on nanoplasmonic gratings contact electrodes have been pro- posed to satisfy the demand for high power, efficiency and responsivity terahertz (THz) sources. Reducing the average photo-generated carrier transport path to the photoconductor contact electrodes was previously considered the dominant mechanism to improve PCAs' power. However, considering the bias in a real device, the electric field between gratings is limited and the role of surface plasmonic resonance (SPR) field enhancement is more important in improving THz radiation. This paper, based on SPR, analyzes the interaction between incident light and substrate in nano cylinder array PCAs and clearly shows that the SPR can enhance the light absorption in the substrate. After the optimization of the structure size, the proposed structure can offer 87% optical transmission into GaAs substrate. Compared with conventional PCAs, the optical transmission into the substrate will increase 5.8 times and the enhancement factor of substrate absorption will reach 13.7 respectively.