The complex geometrical features of mechanical components significantly influence contact interactions and system dynamics.However,directly modeling contact forces on surfaces with intricate geometries presents consid...The complex geometrical features of mechanical components significantly influence contact interactions and system dynamics.However,directly modeling contact forces on surfaces with intricate geometries presents considerable challenges.This study focuses on the helically twisted wire rope-sheave contact and proposes a contact force model that incorporates complex geometric features through a parameter identification approach.The model's impact on contact forces and system dynamics is thoroughly investigated.Leveraging a point contact model and an elliptic integral approximation,a loss function is formulated using the finite element(FE)contact model results as the reference data.Geometric parameters are subsequently determined by optimizing this loss function via a genetic algorithm(GA).The findings reveal that the contact stiffness increases with the wire rope pitch length,the radius of principal curvature,and the elliptic eccentricity of the contact zone.The proposed contact force model is integrated into a rigid-flexible coupled dynamics model,developed by the absolute node coordinate formulation,to examine the effects of contact geometry on system dynamics.The results demonstrate that the variations in wire rope geometry alter the contact stiffness,which in turn affects dynamic rope tension through frictional energy dissipation.The enhanced model's predictions exhibit superior alignment with the experimental data,thereby validating the methodology.This approach provides new insights for deducing the contact geometry from kinetic parameters and monitoring the performance degradation of mechanical components.展开更多
Polyacrylamide(PAAm)hydrogels with brush-covered or crosslinked surfaces were produced and their tribological behavior was studied over a wide range of sliding speeds for two different contact geometries:sphere-on-fla...Polyacrylamide(PAAm)hydrogels with brush-covered or crosslinked surfaces were produced and their tribological behavior was studied over a wide range of sliding speeds for two different contact geometries:sphere-on-flat and flat-pin-on-flat.Irrespective of the contact geometry,the brushy hydrogel surfaces displayed up to an order of magnitude lower coefficients of frictionμ(COF)compared to the crosslinked surfaces,even achieving superlubricity(μ<0.01).In general,a hydrogel sphere showed a lower coefficient of friction than a flat hydrogel pin at a similar contact pressure over the entire range of sliding speeds.However,after normalizing the friction force by the contact area,the shear stress of hydrogels with either crosslinked or brushy surfaces was found to be similar for both contact geometries at low speeds,indicating that hydrogel friction is unaffected by the contact geometry at these speeds.At high sliding speeds,the shear stress was found to be lower for a sphere-on-flat configuration compared to a flat-pin-on-flat configuration.This can be attributed to the larger equivalent hydrodynamic thickness due to the convergent inlet zone ahead of the sphere-on-flat contact,which presumably enhances the water supply in the contact,promotes rehydration,and thus reduces the friction at high sliding speeds compared to that measured for the flat-pin-on-flat contact.展开更多
This paper reports that the organic field-effect transistors with hybrid contact geometry were fabricated, in which the top electrodes and the bottom electrodes were combined in parallel resistances within one transis...This paper reports that the organic field-effect transistors with hybrid contact geometry were fabricated, in which the top electrodes and the bottom electrodes were combined in parallel resistances within one transistor. With the facility of the novel structure, the difference of contact resistance between the top contact geometry and the bottom contact geometry was studied. The hybrid contact devices showed similar characteristics with the top contact configuration devices, which provide helpful evidence on the lower contact resistance of the top contact configuration device. The origin of the different contact resistance between the top contact device and the bottom contact device was discussed.展开更多
基金supported by the National Key Research and Development Program of China(No.2023YFC3010400)。
文摘The complex geometrical features of mechanical components significantly influence contact interactions and system dynamics.However,directly modeling contact forces on surfaces with intricate geometries presents considerable challenges.This study focuses on the helically twisted wire rope-sheave contact and proposes a contact force model that incorporates complex geometric features through a parameter identification approach.The model's impact on contact forces and system dynamics is thoroughly investigated.Leveraging a point contact model and an elliptic integral approximation,a loss function is formulated using the finite element(FE)contact model results as the reference data.Geometric parameters are subsequently determined by optimizing this loss function via a genetic algorithm(GA).The findings reveal that the contact stiffness increases with the wire rope pitch length,the radius of principal curvature,and the elliptic eccentricity of the contact zone.The proposed contact force model is integrated into a rigid-flexible coupled dynamics model,developed by the absolute node coordinate formulation,to examine the effects of contact geometry on system dynamics.The results demonstrate that the variations in wire rope geometry alter the contact stiffness,which in turn affects dynamic rope tension through frictional energy dissipation.The enhanced model's predictions exhibit superior alignment with the experimental data,thereby validating the methodology.This approach provides new insights for deducing the contact geometry from kinetic parameters and monitoring the performance degradation of mechanical components.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51875303)the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation programme(Grant Agreement No 669562).
文摘Polyacrylamide(PAAm)hydrogels with brush-covered or crosslinked surfaces were produced and their tribological behavior was studied over a wide range of sliding speeds for two different contact geometries:sphere-on-flat and flat-pin-on-flat.Irrespective of the contact geometry,the brushy hydrogel surfaces displayed up to an order of magnitude lower coefficients of frictionμ(COF)compared to the crosslinked surfaces,even achieving superlubricity(μ<0.01).In general,a hydrogel sphere showed a lower coefficient of friction than a flat hydrogel pin at a similar contact pressure over the entire range of sliding speeds.However,after normalizing the friction force by the contact area,the shear stress of hydrogels with either crosslinked or brushy surfaces was found to be similar for both contact geometries at low speeds,indicating that hydrogel friction is unaffected by the contact geometry at these speeds.At high sliding speeds,the shear stress was found to be lower for a sphere-on-flat configuration compared to a flat-pin-on-flat configuration.This can be attributed to the larger equivalent hydrodynamic thickness due to the convergent inlet zone ahead of the sphere-on-flat contact,which presumably enhances the water supply in the contact,promotes rehydration,and thus reduces the friction at high sliding speeds compared to that measured for the flat-pin-on-flat contact.
基金supported by National Basic Research Program of China (973 Program) (Grant No 2006CB806204)National Natural Science Foundation of China (Grant Nos 60676001,60676008 and 60825403)
文摘This paper reports that the organic field-effect transistors with hybrid contact geometry were fabricated, in which the top electrodes and the bottom electrodes were combined in parallel resistances within one transistor. With the facility of the novel structure, the difference of contact resistance between the top contact geometry and the bottom contact geometry was studied. The hybrid contact devices showed similar characteristics with the top contact configuration devices, which provide helpful evidence on the lower contact resistance of the top contact configuration device. The origin of the different contact resistance between the top contact device and the bottom contact device was discussed.