This paper aims to fuse two well-established and,at the same time,opposed control techniques,namely,model predictive control(MPC)and active disturbance rejection control(ADRC),to develop a dynamic motion controller fo...This paper aims to fuse two well-established and,at the same time,opposed control techniques,namely,model predictive control(MPC)and active disturbance rejection control(ADRC),to develop a dynamic motion controller for a laser beam steering system.The proposed technique uses the ADRC philosophy to lump disturbances and model uncertainties into a total disturbance.Then,the total disturbance is estimated via a discrete extended state disturbance observer(ESO),and it is used to(1)handle the system constraints in a quadratic optimization problem and(2)injected as a feedforward term to the plant to reject the total disturbance,together with the feedback term obtained by the MPC.The main advantage of the proposed approach is that the MPC is designed based on a straightforward integrator-chain model such that a simple convex optimization problem is performed.Several experiments show the real-time closed-loop performance regarding trajectory tracking and disturbance rejection.Owing to simplicity,the self-contained approach MPC+ESO becomes a Frugal MPC,which is computationally economical,adaptable,efficient,resilient,and suitable for applications where on-board computational resources are limited.展开更多
Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fa...Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fast response and security.In this paper,we propose a Disturbance-Observe-based Tube Model Predictive Levitation Control(DO-TMPLC)scheme combined with a feedback linearization strategy for the levitation system.The proposed strategy incorporates state constraints and control input constraints,i.e.,the air gap,the vertical velocity,and the current applied to the coil.A feedback linearization strategy is used to cancel the nonlinearity of the tracking error system.Then,a disturbance observer is implemented to actively compensate for disturbances while a TMPLC controller is employed to alleviate the remaining disturbances.Furthermore,we analyze the recursive feasibility and input-to-state stability of the closed-loop system.The simulation results indicate the efficacy of the proposed control strategy.展开更多
This work is concerned with identification and nonlinear predictive control method for MIMO Hammerstein systems with constraints. Firstly, an identification method based on steady-state responses and sub-model method ...This work is concerned with identification and nonlinear predictive control method for MIMO Hammerstein systems with constraints. Firstly, an identification method based on steady-state responses and sub-model method is introduced to MIMO Hammerstein system. A modified version of artificial bee colony algorithm is proposed to improve the prediction ability of Hammerstein model. Next, a computationally efficient nonlinear model predictive control algorithm(MGPC) is developed to deal with constrained problem of MIMO system. The identification process and performance of MGPC are shown. Numerical results about a polymerization reactor validate the effectiveness of the proposed method and the comparisons show that MGPC has a better performance than QDMC and basic GPC.展开更多
Aiming at a class of nonlinear systems with multiple equilibrium points, we present a dual-mode model predictive control algorithm with extended terminal constraint set combined with control invariant set and gain sch...Aiming at a class of nonlinear systems with multiple equilibrium points, we present a dual-mode model predictive control algorithm with extended terminal constraint set combined with control invariant set and gain schedule. Local LQR control laws and the corresponding maximum control invariant sets can be designed for finite equilibrium points. It is guaranteed that control invariant sets are overlapped each other. The union of the control invariant sets is treated as the terminal constraint set of predictive control. The feasibility and stability of the novel dual-mode model predictive control are investigated with both variable and fixed horizon. Because of the introduction of extended terminal constrained set, the feasibility of optimization can be guaranteed with short prediction horizon. In this way, the size of the optimization problem is reduced so it is computationally efficient. Finally, a simulation example illustrating the algorithm is presented.展开更多
Electromechanical actuators are widely used in many industrial applications. There are usually some constraints existing in a designed system. This paper proposes a simple method to design constrained controllers for ...Electromechanical actuators are widely used in many industrial applications. There are usually some constraints existing in a designed system. This paper proposes a simple method to design constrained controllers for electromechanical actuators. The controllers merge the ideas exploited in internal model control and model predictive control. They are designed using the standard control system structure with unity negative feedback. The structure of the controllers is relatively simple as well as the design process. The output constraint handling mechanism is based on prediction of the control plant behavior many time steps ahead. The mechanism increases control performance and safety of the control plant. The benefits offered by the proposed controllers have been demonstrated in real-life experiments carried out in control systems of two electromechanical actuators: a DC motor and an electrohydraulic actuator.展开更多
The importance of Model Predictive Control(MPC)has significant applications in the agricultural industry,more specifically for greenhouse’s control tasks.However,the complexity of the greenhouse and its limited prior...The importance of Model Predictive Control(MPC)has significant applications in the agricultural industry,more specifically for greenhouse’s control tasks.However,the complexity of the greenhouse and its limited prior knowledge prevent an exact mathematical description of the system.Subspace methods provide a promising solution to this issue through their capacity to identify the system’s comportment using the fit between model output and observed data.In this paper,we introduce an application of Constrained Model Predictive Control(CMPC)for a greenhouse temperature and relative humidity.For this purpose,two Multi Input Single Output(MISO)systems,using Numerical Subspace State Space System Identification(N4SID)algorithm,are firstly suggested to identify the temperature and the relative humidity comportment to heating and ventilation actions.In this sense,linear state space models were adopted in order to evaluate the robustness of the control strategy.Once the system is identified,the MPC technique is applied for the temperature and the humidity regulation.Simulation results show that the regulation of the temperature and the relative humidity under constraints was guaranteed,both parameters respect the ranges 15℃≤T_(int)≤30℃and 50%≤H_(int)≤70%respectively.On the other hand,the control signals uf and uh applied to the fan and the heater,respect the hard constraints notion,the control signals for the fan and the heater did not exceed 0≤uf≤4.3 Volts and 0≤uh≤5 Volts,respectively,which proves the effectiveness of the MPC and the tracking tasks.Moreover,we show that with the proposed technique,using a new optimization toolbox,the computational complexity has been significantly reduced.The greenhouse in question is devoted to Schefflera Arboricola cultivation.展开更多
The paper presents a new dual-mode nonlinear model predictive control(NMPC) scheme for continuous-time nonlinear systems subject to constraints on the state and control.The idea of control Lyapunov functions for nonli...The paper presents a new dual-mode nonlinear model predictive control(NMPC) scheme for continuous-time nonlinear systems subject to constraints on the state and control.The idea of control Lyapunov functions for nonlinear systems is used to compute the terminal regions and terminal control laws with some free-parameters in the dual-mode NMPC framework.The parameters of the terminal controller are selected offline to estimate the terminal region as large as possible;and the parameters are optimized online to gain optimality of the terminal controller with respect to given cost functions.Then a dual-mode NMPC algorithm with varying time-horizon is formulated for the constrained system.Recursive feasibility and closed-loop stability of this NMPC are established.The example of a spring-cart is used to demonstrate the advantages of the presented scheme by comparing to the dual-mode NMPC via the linear quadratic regulator(LQR) method.展开更多
In this paper,we propose a model predictive control(MPC)strategy for accelerated offset-free tracking piece-wise constant reference signals of nonlinear systems subject to state and control constraints.Some special co...In this paper,we propose a model predictive control(MPC)strategy for accelerated offset-free tracking piece-wise constant reference signals of nonlinear systems subject to state and control constraints.Some special contractive constraints on tracking errors and terminal constraints are embedded into the tracking nonlinear MPC formulation.Then,recursive feasibility and closed-loop convergence of the tracking MPC are guaranteed in the presence of piece-wise references and constraints by deriving some sufficient conditions.Moreover,the local optimality of the tracking MPC is achieved for unreachable output reference signals.By comparing to traditional tracking MPC,the simulation experiment of a thermal system is used to demonstrate the acceleration ability and the effectiveness of the tracking MPC scheme proposed here.展开更多
This paper presents a control strategy for residential battery energy storage systems,which is aware of volatile electricity markets and uncertain daily cycling loads.The economic benefits of energy trading for prosum...This paper presents a control strategy for residential battery energy storage systems,which is aware of volatile electricity markets and uncertain daily cycling loads.The economic benefits of energy trading for prosumers are achieved through a novel modification of a conventional model predictive control(MPC).The proposed control strategy guarantees an optimal global solution for the applied control action.A new cost function is introduced to model the effects of volatility on customer benefits more effectively.Specifically,the newly presented cost function models a probabilistic relation between the power exchanged with the grid,the net load,and the electricity market.The probabilistic calculation of the cost function shows the dependence on the mathematical expectation of market price and net load.Computational techniques for calculating this value are presented.The proposed strategy differs from the stochastic and robust MPC in that the cost is calculated across the market price and net load variations rather than across model constraints and parameter variations.展开更多
基金support through his Master scholarshipThe Vicerrectoría de Investigación y Estudios de Posgrado(VIEP-BUAP)partially funded this work under grant number 00593-PV/2025.
文摘This paper aims to fuse two well-established and,at the same time,opposed control techniques,namely,model predictive control(MPC)and active disturbance rejection control(ADRC),to develop a dynamic motion controller for a laser beam steering system.The proposed technique uses the ADRC philosophy to lump disturbances and model uncertainties into a total disturbance.Then,the total disturbance is estimated via a discrete extended state disturbance observer(ESO),and it is used to(1)handle the system constraints in a quadratic optimization problem and(2)injected as a feedforward term to the plant to reject the total disturbance,together with the feedback term obtained by the MPC.The main advantage of the proposed approach is that the MPC is designed based on a straightforward integrator-chain model such that a simple convex optimization problem is performed.Several experiments show the real-time closed-loop performance regarding trajectory tracking and disturbance rejection.Owing to simplicity,the self-contained approach MPC+ESO becomes a Frugal MPC,which is computationally economical,adaptable,efficient,resilient,and suitable for applications where on-board computational resources are limited.
基金supported by the National Natural Science Foundationof China(62273029).
文摘Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fast response and security.In this paper,we propose a Disturbance-Observe-based Tube Model Predictive Levitation Control(DO-TMPLC)scheme combined with a feedback linearization strategy for the levitation system.The proposed strategy incorporates state constraints and control input constraints,i.e.,the air gap,the vertical velocity,and the current applied to the coil.A feedback linearization strategy is used to cancel the nonlinearity of the tracking error system.Then,a disturbance observer is implemented to actively compensate for disturbances while a TMPLC controller is employed to alleviate the remaining disturbances.Furthermore,we analyze the recursive feasibility and input-to-state stability of the closed-loop system.The simulation results indicate the efficacy of the proposed control strategy.
基金Projects(61573052,61273132)supported by the National Natural Science Foundation of China
文摘This work is concerned with identification and nonlinear predictive control method for MIMO Hammerstein systems with constraints. Firstly, an identification method based on steady-state responses and sub-model method is introduced to MIMO Hammerstein system. A modified version of artificial bee colony algorithm is proposed to improve the prediction ability of Hammerstein model. Next, a computationally efficient nonlinear model predictive control algorithm(MGPC) is developed to deal with constrained problem of MIMO system. The identification process and performance of MGPC are shown. Numerical results about a polymerization reactor validate the effectiveness of the proposed method and the comparisons show that MGPC has a better performance than QDMC and basic GPC.
基金Supported by National Natural Science Foundation of P. R. China (60474051, 60534020)Development Program of Shanghai Science and Technology Department (04DZ11008)the Program for New Century Excellent Talents in Universities of P. R. China (NCET)
文摘Aiming at a class of nonlinear systems with multiple equilibrium points, we present a dual-mode model predictive control algorithm with extended terminal constraint set combined with control invariant set and gain schedule. Local LQR control laws and the corresponding maximum control invariant sets can be designed for finite equilibrium points. It is guaranteed that control invariant sets are overlapped each other. The union of the control invariant sets is treated as the terminal constraint set of predictive control. The feasibility and stability of the novel dual-mode model predictive control are investigated with both variable and fixed horizon. Because of the introduction of extended terminal constrained set, the feasibility of optimization can be guaranteed with short prediction horizon. In this way, the size of the optimization problem is reduced so it is computationally efficient. Finally, a simulation example illustrating the algorithm is presented.
文摘Electromechanical actuators are widely used in many industrial applications. There are usually some constraints existing in a designed system. This paper proposes a simple method to design constrained controllers for electromechanical actuators. The controllers merge the ideas exploited in internal model control and model predictive control. They are designed using the standard control system structure with unity negative feedback. The structure of the controllers is relatively simple as well as the design process. The output constraint handling mechanism is based on prediction of the control plant behavior many time steps ahead. The mechanism increases control performance and safety of the control plant. The benefits offered by the proposed controllers have been demonstrated in real-life experiments carried out in control systems of two electromechanical actuators: a DC motor and an electrohydraulic actuator.
文摘The importance of Model Predictive Control(MPC)has significant applications in the agricultural industry,more specifically for greenhouse’s control tasks.However,the complexity of the greenhouse and its limited prior knowledge prevent an exact mathematical description of the system.Subspace methods provide a promising solution to this issue through their capacity to identify the system’s comportment using the fit between model output and observed data.In this paper,we introduce an application of Constrained Model Predictive Control(CMPC)for a greenhouse temperature and relative humidity.For this purpose,two Multi Input Single Output(MISO)systems,using Numerical Subspace State Space System Identification(N4SID)algorithm,are firstly suggested to identify the temperature and the relative humidity comportment to heating and ventilation actions.In this sense,linear state space models were adopted in order to evaluate the robustness of the control strategy.Once the system is identified,the MPC technique is applied for the temperature and the humidity regulation.Simulation results show that the regulation of the temperature and the relative humidity under constraints was guaranteed,both parameters respect the ranges 15℃≤T_(int)≤30℃and 50%≤H_(int)≤70%respectively.On the other hand,the control signals uf and uh applied to the fan and the heater,respect the hard constraints notion,the control signals for the fan and the heater did not exceed 0≤uf≤4.3 Volts and 0≤uh≤5 Volts,respectively,which proves the effectiveness of the MPC and the tracking tasks.Moreover,we show that with the proposed technique,using a new optimization toolbox,the computational complexity has been significantly reduced.The greenhouse in question is devoted to Schefflera Arboricola cultivation.
基金supported by the National Natural Science Foundation of China(613741 11)Zhejiang Provincial Natural Science Foundation of China(LR17F030004)
文摘The paper presents a new dual-mode nonlinear model predictive control(NMPC) scheme for continuous-time nonlinear systems subject to constraints on the state and control.The idea of control Lyapunov functions for nonlinear systems is used to compute the terminal regions and terminal control laws with some free-parameters in the dual-mode NMPC framework.The parameters of the terminal controller are selected offline to estimate the terminal region as large as possible;and the parameters are optimized online to gain optimality of the terminal controller with respect to given cost functions.Then a dual-mode NMPC algorithm with varying time-horizon is formulated for the constrained system.Recursive feasibility and closed-loop stability of this NMPC are established.The example of a spring-cart is used to demonstrate the advantages of the presented scheme by comparing to the dual-mode NMPC via the linear quadratic regulator(LQR) method.
基金the National Natural Science Foundation of China(61773345)the Zhejiang Provincial Major Projects Foundation of China(2020C03056).
文摘In this paper,we propose a model predictive control(MPC)strategy for accelerated offset-free tracking piece-wise constant reference signals of nonlinear systems subject to state and control constraints.Some special contractive constraints on tracking errors and terminal constraints are embedded into the tracking nonlinear MPC formulation.Then,recursive feasibility and closed-loop convergence of the tracking MPC are guaranteed in the presence of piece-wise references and constraints by deriving some sufficient conditions.Moreover,the local optimality of the tracking MPC is achieved for unreachable output reference signals.By comparing to traditional tracking MPC,the simulation experiment of a thermal system is used to demonstrate the acceleration ability and the effectiveness of the tracking MPC scheme proposed here.
基金supported by Australian Research Council (ARC)Discovery Project (No.160102571)。
文摘This paper presents a control strategy for residential battery energy storage systems,which is aware of volatile electricity markets and uncertain daily cycling loads.The economic benefits of energy trading for prosumers are achieved through a novel modification of a conventional model predictive control(MPC).The proposed control strategy guarantees an optimal global solution for the applied control action.A new cost function is introduced to model the effects of volatility on customer benefits more effectively.Specifically,the newly presented cost function models a probabilistic relation between the power exchanged with the grid,the net load,and the electricity market.The probabilistic calculation of the cost function shows the dependence on the mathematical expectation of market price and net load.Computational techniques for calculating this value are presented.The proposed strategy differs from the stochastic and robust MPC in that the cost is calculated across the market price and net load variations rather than across model constraints and parameter variations.