A thoroughly mechanistic understanding of the electrochemical CO reduction reaction(eCORR)at the interface is significant for guiding the design of high-performance electrocatalysts.However,unintentionally ignored fac...A thoroughly mechanistic understanding of the electrochemical CO reduction reaction(eCORR)at the interface is significant for guiding the design of high-performance electrocatalysts.However,unintentionally ignored factors or unreasonable settings during mechanism simulations will result in false positive results between theory and experiment.Herein,we computationally identified the dynamic site preference change of CO adsorption with potentials on Cu(100),which was a previously unnoticed factor but significant to potential-dependent mechanistic studies.Combined with the different lateral interactions among adsorbates,we proposed a new C–C coupling mechanism on Cu(100),better explaining the product distribution at different potentials in experimental eCORR.At low potentials(from–0.4 to–0.6 V_(RHE)),the CO forms dominant adsorption on the bridge site,which couples with another attractively aggregated CO to form a C–C bond.At medium potentials(from–0.6 to–0.8 VRHE),the hollow-bound CO becomes dominant but tends to isolate with another adsorbate due to the repulsion,thereby blocking the coupling process.At high potentials(above–0.8 VRHE),the CHO intermediate is produced from the electroreduction of hollow-CO and favors the attraction with another bridge-CO to trigger C–C coupling,making CHO the major common intermediate for C–C bond formation and methane production.We anticipate that our computationally identified dynamic change in site preference of adsorbates with potentials will bring new opportunities for a better understanding of the potential-dependent electrochemical processes.展开更多
Inspired by hexaazanaphthalene-based conjugated copper metal-organic framework(HATNA-Cu-MOF),we designed 161 HATNA-TM-MOF-based SACs(TM@N_(x)O_(4-x)-HATNA)with varying TM or ligands creating distinct coordination envi...Inspired by hexaazanaphthalene-based conjugated copper metal-organic framework(HATNA-Cu-MOF),we designed 161 HATNA-TM-MOF-based SACs(TM@N_(x)O_(4-x)-HATNA)with varying TM or ligands creating distinct coordination environments(x=0-4)with superior thermodynamic and electrochemical stabilities.Volcano plots can be constructed using(AGOOH^(*)-ΔGO^(*))/ΔGO^(*)as descriptors for oxygen evolution/reduction reaction(OER/ORR)activity,also serving as target parameters for machine learning(ML)models to identify high-performance OER/ORR catalysts.The efficient monofunctional and bifunctional electrocatalysts were successfully predicted,where the ML prediction results well matched the DFT calculation results.We employed Shapley additive explanations(SHAP)for feature analysis and utilized sure independence screening and sparsification operator(SISSO)for generalization.ML analyses reveal that TM-based OER/ORR activities predominantly correlate with three key descriptors:metallic atomic radius,d-orbital electron population,and the heat of formation of the oxide,demonstrating the pivotal role of TM's inherent electronic configuration and physicochemical characteristics in governing electrocatalytic efficacy.The constant-potential approach emphasizes the key role of electric double-layer capacitance in adjusting the kinetic barrier,where changes in the Fermi level influence the occupation of d-orbitals.Variations in electrochemical potential significantly alter the electronic structure of representative Rh@N_(1)O_(3)-HATNA,affecting both the Fermi level and adsorption properties,with the unique 4d^(8)5s^(1)configuration leading to inverted O_(2)adsorption energies as the potential decreases.This study contributes insights into the origin of oxygen evolution-reduction activity for the HATNA-TM-MOF-based SACs and reveals the fundamentals of structure-activity relationships for future applications.展开更多
Electrochemical NO reduction reaction(NORR)to NH3 emerges as a fascinating approach to achieve both the migration of NO pollutant and the green synthesis of NH3.In this contribution,within the framework of computation...Electrochemical NO reduction reaction(NORR)to NH3 emerges as a fascinating approach to achieve both the migration of NO pollutant and the green synthesis of NH3.In this contribution,within the framework of computational hydrogen model and constant-potential implicit solvent model,the NORR electrocatalyzed by a novel transition-metal-anchored SnOSe armchair nanotube(TM@SnOSe_ANT)was investigated using density functional theory calculations.Through the checking in terms of stability,activity,and selectivity,Sc-and Y@SnOSe_ANTs were screened out from the twenty-five candidates.Considering the effects of pH,solvent environment,as well as applied potential,only Sc@SnOSe_ANT is found to be most promising.The predicted surface area normalized capacitance is 11.4μF/cm^(2),and the highest NORR performance can be achieved at the U_(RHE) of-0.58 V in the acid environment.The high activity originates from the mediate adsorption strength of OH.These findings add a new perspective that the nanotube can be served as a highly promising electrocatalyst towards NORR.展开更多
文摘A thoroughly mechanistic understanding of the electrochemical CO reduction reaction(eCORR)at the interface is significant for guiding the design of high-performance electrocatalysts.However,unintentionally ignored factors or unreasonable settings during mechanism simulations will result in false positive results between theory and experiment.Herein,we computationally identified the dynamic site preference change of CO adsorption with potentials on Cu(100),which was a previously unnoticed factor but significant to potential-dependent mechanistic studies.Combined with the different lateral interactions among adsorbates,we proposed a new C–C coupling mechanism on Cu(100),better explaining the product distribution at different potentials in experimental eCORR.At low potentials(from–0.4 to–0.6 V_(RHE)),the CO forms dominant adsorption on the bridge site,which couples with another attractively aggregated CO to form a C–C bond.At medium potentials(from–0.6 to–0.8 VRHE),the hollow-bound CO becomes dominant but tends to isolate with another adsorbate due to the repulsion,thereby blocking the coupling process.At high potentials(above–0.8 VRHE),the CHO intermediate is produced from the electroreduction of hollow-CO and favors the attraction with another bridge-CO to trigger C–C coupling,making CHO the major common intermediate for C–C bond formation and methane production.We anticipate that our computationally identified dynamic change in site preference of adsorbates with potentials will bring new opportunities for a better understanding of the potential-dependent electrochemical processes.
基金financially supported by the National Natural Science Foundation of China(Nos.62264015 and U2233206)the Civil Aviation Administration of China(No.U1933109)Hubei Province Technology Innovation Program Project(No.2024BCB073)
文摘Inspired by hexaazanaphthalene-based conjugated copper metal-organic framework(HATNA-Cu-MOF),we designed 161 HATNA-TM-MOF-based SACs(TM@N_(x)O_(4-x)-HATNA)with varying TM or ligands creating distinct coordination environments(x=0-4)with superior thermodynamic and electrochemical stabilities.Volcano plots can be constructed using(AGOOH^(*)-ΔGO^(*))/ΔGO^(*)as descriptors for oxygen evolution/reduction reaction(OER/ORR)activity,also serving as target parameters for machine learning(ML)models to identify high-performance OER/ORR catalysts.The efficient monofunctional and bifunctional electrocatalysts were successfully predicted,where the ML prediction results well matched the DFT calculation results.We employed Shapley additive explanations(SHAP)for feature analysis and utilized sure independence screening and sparsification operator(SISSO)for generalization.ML analyses reveal that TM-based OER/ORR activities predominantly correlate with three key descriptors:metallic atomic radius,d-orbital electron population,and the heat of formation of the oxide,demonstrating the pivotal role of TM's inherent electronic configuration and physicochemical characteristics in governing electrocatalytic efficacy.The constant-potential approach emphasizes the key role of electric double-layer capacitance in adjusting the kinetic barrier,where changes in the Fermi level influence the occupation of d-orbitals.Variations in electrochemical potential significantly alter the electronic structure of representative Rh@N_(1)O_(3)-HATNA,affecting both the Fermi level and adsorption properties,with the unique 4d^(8)5s^(1)configuration leading to inverted O_(2)adsorption energies as the potential decreases.This study contributes insights into the origin of oxygen evolution-reduction activity for the HATNA-TM-MOF-based SACs and reveals the fundamentals of structure-activity relationships for future applications.
基金This study was supported by the National Natural Science Foundation of China(No.21573002)Natural Science Funds for Distinguished Young Scholar of Anhui Province(No.1908085J08)the University Annual Scientific Research Plan of Anhui Province(Nos.2022AH050209 and 2022AH010013).
文摘Electrochemical NO reduction reaction(NORR)to NH3 emerges as a fascinating approach to achieve both the migration of NO pollutant and the green synthesis of NH3.In this contribution,within the framework of computational hydrogen model and constant-potential implicit solvent model,the NORR electrocatalyzed by a novel transition-metal-anchored SnOSe armchair nanotube(TM@SnOSe_ANT)was investigated using density functional theory calculations.Through the checking in terms of stability,activity,and selectivity,Sc-and Y@SnOSe_ANTs were screened out from the twenty-five candidates.Considering the effects of pH,solvent environment,as well as applied potential,only Sc@SnOSe_ANT is found to be most promising.The predicted surface area normalized capacitance is 11.4μF/cm^(2),and the highest NORR performance can be achieved at the U_(RHE) of-0.58 V in the acid environment.The high activity originates from the mediate adsorption strength of OH.These findings add a new perspective that the nanotube can be served as a highly promising electrocatalyst towards NORR.