期刊文献+
共找到319,505篇文章
< 1 2 250 >
每页显示 20 50 100
Polymer nanocomposites with concurrently enhanced dielectric constant and breakdown strength at high temperature enabled by rationally designed core-shell structured nanofillers
1
作者 Ding Ai Chenglong Wu +6 位作者 Yuting Han Yuan Chang Zongliang Xie Hao Yu Yanhao Ma Yonghong Cheng Guanglei Wu 《Journal of Materials Science & Technology》 2025年第7期170-178,共9页
Polymer dielectrics are required to maintain high energy density at elevated temperatures for advanced power and electronic systems.Herein,we report a novel solution-processed core-shell structured poly-imide(PI)nanoc... Polymer dielectrics are required to maintain high energy density at elevated temperatures for advanced power and electronic systems.Herein,we report a novel solution-processed core-shell structured poly-imide(PI)nanocomposite with moderate dielectric constant HfO_(2)core and wide-bandgap Al_(2)O_(3)shell,ef-fectively addressing the typical trade-off between dielectric constant and breakdown strength in dielectric nanocomposites predominant at elevated temperatures.The formation of improved dielectrically match-ing interfaces by the rationally designed dielectric constant gradient from core-shell-matrix remarkably mitigates the distortion of the electric field around the interfaces,resulting in a high breakdown strength.Wide band gap Al_(2)O_(3)shell also introduces deeper traps to impede the conduction loss.The validity of Al_(2)O_(3)shell has been proved via experiments and simulations.Accordingly,HfO_(2)@Al_(2)O_(3)/PI nanocompos-ite exhibits an excellent charge-discharge efficiency of 91.7%at 300 MV/m and a maximum discharged energy density of 2.94 J/cm^(3)at 150℃,demonstrating its potential for high-temperature energy storage. 展开更多
关键词 Polymer dielectrics High temperature Energy storage Core-shell structure
原文传递
Evolution of microstructure and texture of AZ80 magnesium alloy under hot torsion with constant decreasing temperature rate 被引量:1
2
作者 Yongbiao Yang Jinxuan Guo +4 位作者 Cuiying Wang Wenxuan Jiang Zhimin Zhang Qiang Wang Xing Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1619-1637,共19页
Hot torsion tests for AZ80 magnesium alloy were carried out in the temperature range of 380℃-260℃,with a constant decreasing temperature rate of 10℃/s in order to weaken the basal texture and refine the grains.The ... Hot torsion tests for AZ80 magnesium alloy were carried out in the temperature range of 380℃-260℃,with a constant decreasing temperature rate of 10℃/s in order to weaken the basal texture and refine the grains.The results indicated that the average grain sizes were refined forming gradient structure with increasing specimen radial position from center(12.2-5.4μm),and that the initial basal texture intensity of the extruded magnesium alloy was weakened from 46.2 to 8.3.Furthermore,the extension twins(ETs)could be disintegrated from the twins forming separated twins with smaller sizes.Interestingly,ETs with the same twin variant intersecting with each other could be coalesced forming grains with similar orientation,while ETs with different twin variants were separated by twins boundaries contributing to grain refinement.Moreover,in addition to the conventional continuous dynamic recrystallized(CDRX)grains with 30˚orientation rotated around C-axis of the parent grains,CDRXed grains with 30˚rotation around a-axis and random rotation axis were also discerned.Besides,the CDRX evolution induced twins were also elaborated,exhibiting the complex competition between CDRX and twining.Hot torsion deformation with constant decreasing temperatures rate is an effective way of grain refinement and texture modification. 展开更多
关键词 Texture Microstructure Hot torsion Decreasing temperature AZ80
在线阅读 下载PDF
Predicting High Precision Hubble Constant Determinations Based on a New Theoretical Relationship between CMB Temperature and H0
3
作者 Eugene Terry Tatum Espen Gaarder Haug Stéphane Wojnow 《Journal of Modern Physics》 2024年第11期1708-1716,共9页
Based on considerable progress made in understanding the Cosmic Microwave Background (CMB) temperature from a deep theoretical perspective, this paper demonstrates a useful and simple relationship between the CMB temp... Based on considerable progress made in understanding the Cosmic Microwave Background (CMB) temperature from a deep theoretical perspective, this paper demonstrates a useful and simple relationship between the CMB temperature and the Hubble constant. This allows us to predict the Hubble constant with much higher precision than before by using the CMB temperature. This is of great importance, since it will lead to much higher precision in various global parameters of the cosmos, such as the Hubble radius and the age of the universe. We have improved uncertainty in the Hubble constant all the way down to 66.8712 ± 0.0019 km/s/Mpc based on data from one of the most recent CMB studies. Previous studies based on other methods have rarely reported an uncertainty much less than approximately ±1 km/s/Mpc for the Hubble constant. Our deeper understanding of the CMB and its relation to H0seems to be opening a new era of high-precision cosmology, which may well be the key to solving the Hubble tension, as alluded to herein. Naturally, our results should also be scrutinized by other researchers over time, but we believe that, even at this stage, this deeper understanding of the CMB deserves attention from the research community. 展开更多
关键词 Hubble constant CMB Planck temperature Upsilon constant
暂未订购
Effects of the extrusion parameters on microstructure,texture and room temperature mechanical properties of extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy 被引量:1
4
作者 Chenjin Zhang Guangyu Yang +4 位作者 Lei Xiao Zhiyong Kan Jing Guo Qiang Li Wanqi Jie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期136-146,共11页
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi... Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy. 展开更多
关键词 Mg-rare earth alloys extrusion temperature extrusion ratio extrusion speed strengthening mechanisms
在线阅读 下载PDF
Novel Methodologies for Preventing Crack Propagation in Steel Gas Pipelines Considering the Temperature Effect 被引量:2
5
作者 Nurlan Zhangabay Ulzhan Ibraimova +4 位作者 Marco Bonopera Ulanbator Suleimenov Konstantin Avramov Maryna Chernobryvko Aigerim Yessengali 《Structural Durability & Health Monitoring》 EI 2025年第1期1-23,共23页
Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac... Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines. 展开更多
关键词 Crack propagation finite-element internal pressure PRESTRESSING steel gas pipeline temperature effect
在线阅读 下载PDF
How the Units That Quantify Both the Gas Constant R and the Boltzmann Constant kB Link the Temperature Dependence of Gas Volume with the Temperature Dependence of Entropy
6
作者 Robert Garth Kidd 《Journal of Modern Physics》 2024年第13期2335-2346,共12页
This study uses the PΔV term in the ideal gas equation PΔV = nRΔT to show how the 1-degree temperature increase that expands the occupied volume of a gas by ΔV against constant pressure P also causes the system to... This study uses the PΔV term in the ideal gas equation PΔV = nRΔT to show how the 1-degree temperature increase that expands the occupied volume of a gas by ΔV against constant pressure P also causes the system to increase its entropy by ΔS. As the volume available to a gas sample increases, the locations for disordered molecular relocation also increase. The causal agent linking a volume increase ΔV and an entropy increase ΔS is absolute temperature T measured in kelvin units. Since a volume increase is empirically observable while an increase in randomized molecular disorder is not, a per-kelvin increase in gas volume provides a method for estimating entropy increase. Both volume and entropy are extensive variables dependent upon the number of molecules in the system. Both are deemed to be at their absolute minima at the absolute zero of temperature. This study provides an insight into how a per-kelvin temperature increase causes both a linear increase in gas volume and a linear increase in gas entropy. When people talk about randomized disorder without specifying absolute temperature and molecule-count for the system, they are discussing a concept other than thermodynamic entropy. 展开更多
关键词 Macroscopic Gas constant: 8.314 J·K−1·mol−1 Microscopic Gas constant: 1.38 × 10−23 J·K−1·molecule−1 Microscopic Boltzmann constant: 1.38 × 10−23 J·K−1 molecule−1
暂未订购
Dual heterogeneous structure enabled ultrahigh strength and ductility across a broad temperature range in CrCoNi-based medium-entropy alloy 被引量:1
7
作者 Kang Tu Bo Li +2 位作者 Zonglin Li Kaisheng Ming Shijian Zheng 《Journal of Materials Science & Technology》 2025年第4期46-59,共14页
Developing alloys with exceptional strength-ductility combinations across a broad temperature range is crucial for advanced structural applications.The emerging face-centered cubic medium-entropy alloys(MEAs)demonstra... Developing alloys with exceptional strength-ductility combinations across a broad temperature range is crucial for advanced structural applications.The emerging face-centered cubic medium-entropy alloys(MEAs)demonstrate outstanding mechanical properties at both ambient and cryogenic temperatures.They are anticipated to extend their applicability to elevated temperatures,owing to their inherent advantages in leveraging multiple strengthening and deformation mechanisms.Here,a dual heterostructure,comprising of heterogeneous grain structure with heterogeneous distribution of the micro-scale Nb-rich Laves phases,is introduced in a CrCoNi-based MEA through thermo-mechanical processing.Additionally,a high-density nano-coherentγ’phase is introduced within the grains through isothermal aging treatments.The superior thermal stability of the heterogeneously distributed precipitates enables the dual heterostructure to persist at temperatures up to 1073 K,allowing the MEA to maintain excellent mechanical properties across a wide temperature range.The yield strength of the dual-heterogeneous-structured MEA reaches up to 1.2 GPa,1.1 GPa,0.8 GPa,and 0.6 GPa,coupled with total elongation values of 28.6%,28.4%,12.6%,and 6.1%at 93 K,298 K,873 K,and 1073 K,respectively.The high yield strength primar-ily stems from precipitation strengthening and hetero-deformation-induced strengthening.The high flow stress and low stacking fault energy of the dual-heterogeneous-structured MEA promote the formation of high-density stacking faults and nanotwins during deformation from 93 K to 1073 K,and their density increase with decreasing deformation temperature.This greatly contributes to the enhanced strainhardening capability and ductility across a wide temperature range.This study offers a practical solution for designing dual-heterogeneous-structured MEAs with both high yield strength and large ductility across a wide temperature range. 展开更多
关键词 Medium-entropy alloy Dual heterogeneous structure Strength-ductility synergy Cryogenic temperatures Elevated temperatures
原文传递
Mechanism of nano-scale zero-valent iron modified biochar for enhancing low-nitrogen anammox process resistance to low temperatures 被引量:2
8
作者 Wenjing Chen Lijin Zhang +3 位作者 Zirui Liu Wenru Liu Bin Lu Haitao Zhao 《Journal of Environmental Sciences》 2025年第6期442-452,共11页
Two anaerobic ammonia oxidation(anammox)systems,one with adding nano-scale zerovalent iron modified biochar(nZVI@BC)and the other with adding biochar,were constructed to explore the feasibility of nZVI@BC for enhancin... Two anaerobic ammonia oxidation(anammox)systems,one with adding nano-scale zerovalent iron modified biochar(nZVI@BC)and the other with adding biochar,were constructed to explore the feasibility of nZVI@BC for enhancing the resistance of low-nitrogen anammox processes to low temperatures.The results showed that the average nitrogen removal efficiency with nZVI@BC addition at lowtemperatureswas maintained at about 80%,while that with biochar addition gradually decreased to 69.49%.The heme-c content of biomass with nZVI@BC was significantly higher by 36.60%-91.45%.Additional,nZVI@BC addition resulted in more extracellular polymeric substances,better biomass granulation,and a higher abundance of anammox bacteria.In particularly,anammox genes hzsA/B/C,hzo and hdh played a pivotal role in maintaining nitrogen removal performance at 15℃.These findings suggest that nZVI@BC has the potential to enhance the resistance of low-nitrogen anammox processes to low temperatures,making it a valuable approach for practical applications in low-nitrogen and low-temperature wastewater treatment. 展开更多
关键词 ANAMMOX nZVI@BC Low temperatures Community structure Functional gene
原文传递
Structural design in re duce d graphene oxide(RGO)metacomposites for enhanced microwave absorption in wide temperature spectrum 被引量:4
9
作者 Haoxu Si Yi Zhang +5 位作者 Yuhao Liu Zhiyang Jiang Cuiping Li Jingwei Zhang Xiaoxiao Huang Chunhong Gong 《Journal of Materials Science & Technology》 2025年第3期211-220,共10页
High-temperature microwave absorbing materials(MAMs)and structures are increasingly appealing due to their critical role in stealth applications under harsh environments.However,the impedance mismatch caused by increa... High-temperature microwave absorbing materials(MAMs)and structures are increasingly appealing due to their critical role in stealth applications under harsh environments.However,the impedance mismatch caused by increased conduction loss often leads to a significant decline in electromagnetic wave absorp-tion(EMWA)performance at elevated temperatures,which severely restricts their practical application.In this study,we propose a novel approach for efficient electromagnetic wave absorption across a wide temperature range using reduced graphene oxide(RGO)/epoxy resin(EP)metacomposites that integrate both electromagnetic parameters and metamaterial design concepts.Due to the discrete distribution of the units,electromagnetic waves can more easily penetrate the interior of materials,thereby exhibiting stable microwave absorption(MA)performance and impedance-matching characteristics suitable across a wide temperature range.Consequently,exceptional MA properties can be achieved within the tem-perature range from 298 to 473 K.Furthermore,by carefully controlling the structural parameters in RGO metacomposites,both the resonant frequency and effective absorption bandwidth(EAB)can be optimized based on precise manipulation of equivalent electromagnetic parameters.This study not only provides an effective approach for the rational design of MA performance but also offers novel insights into achieving super metamaterials with outstanding performance across a wide temperature spectrum. 展开更多
关键词 Microwave absorbing materials Metacomposites Equivalent electromagnetic parameters Structural parameters Wide temperature spectrum
原文传递
Shear behaviors of intermittent joints subjected to shearing cycles under constant normal stiffness conditions:Effects of loading parameters 被引量:1
10
作者 Bin Wang Yujing Jiang +1 位作者 Qiangyong Zhang Hongbin Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2695-2712,共18页
A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that th... A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that the loading parameters(initial normal stress,normal stiffness,and shear velocity)determine propagation paths of the wing and secondary cracks in rock bridges during the initial shear cycle,creating different morphologies of macroscopic step-path rupture surfaces and asperities on them.The differences in stress state and rupture surface induce different cyclic shear responses.It shows that high initial normal stress accelerates asperity degradation,raises shear resistance,and promotes compression of intermittent joints.In addition,high normal stiffness provides higher normal stress and shear resistance during the initial cycles and inhibits the dilation and compression of intermittent joints.High shear velocity results in a higher shear resistance,greater dilation,and greater compression.Finally,shear strength is most sensitive to initial normal stress,followed by shear velocity and normal stiffness.Moreover,average dilation angle is most sensitive to initial normal stress,followed by normal stiffness and shear velocity.During the shear cycles,frictional coefficient is affected by asperity degradation,backfilling of rock debris,and frictional area,exhibiting a non-monotonic behavior. 展开更多
关键词 Intermittent joint Cyclic shear Loading parameter constant normal stiffness(CNS)
在线阅读 下载PDF
A battery-free wireless temperature sensing chipset implemented by 55 and 65 nm CMOS process 被引量:1
11
作者 Jiayi Wang Haoyang Li +4 位作者 Weixiao Wang Tianying Fang Jiaqing Li Yuxuan Luo Bo Zhao 《Journal of Semiconductors》 2025年第6期22-29,共8页
In the applications such as food production,the environmental temperature should be measured continuously dur-ing the entire process,which requires an ultra-low-power temperature sensor for long-termly monitoring.Conv... In the applications such as food production,the environmental temperature should be measured continuously dur-ing the entire process,which requires an ultra-low-power temperature sensor for long-termly monitoring.Conventional tempera-ture sensors trade the measurement accuracy with power consumption.In this work,we present a battery-free wireless tempera-ture sensing chip for long-termly monitoring during food production.A calibrated oscillator-based CMOS temperature sensor is proposed instead of the ADC-based power-hungry circuits in conventional works.In addition,the sensor chip can harvest the power transferred by a remote reader to eliminate the use of battery.Meanwhile,the system conducts wireless bidirectional communication between the sensor chip and reader.In this way,the temperature sensor can realize both a high precision and battery-free operation.The temperature sensing chip is fabricated in 55 nm CMOS process,and the reader chip is imple-mented in 65 nm CMOS technology.Experimental results show that the temperature measurement error achieves±1.6℃ from 25 to 50℃,with battery-free readout by a remote reader. 展开更多
关键词 food monitoring temperature sensor battery-free power harvesting bidirectional communication
在线阅读 下载PDF
An integrated physiology and proteomics analysis reveals the response of wheat grain to low temperature stress during booting 被引量:1
12
作者 Anmin Zhang Zihong Li +7 位作者 Qirui Zhou Jiawen Zhao Yan Zhao Mengting Zhao Shangyu Ma Yonghui Fan Zhenglai Huang Wenjing Zhang 《Journal of Integrative Agriculture》 2025年第1期114-131,共18页
Low temperature(LT)in spring has become one of the principal abiotic stresses that restrict the growth and development of wheat.Diverse analyses were performed to investigate the mechanism underlying the response of w... Low temperature(LT)in spring has become one of the principal abiotic stresses that restrict the growth and development of wheat.Diverse analyses were performed to investigate the mechanism underlying the response of wheat grain development to LT stress during booting.These included morphological observation,measurements of starch synthase activity,and determination of amylose and amylopectin content of wheat grain after exposure to treatment with LT during booting.Additionally,proteomic analysis was performed using tandem mass tags(TMT).Results showed that the plumpness of wheat grains decreased after LT stress.Moreover,the activities of sucrose synthase(SuS,EC 2.4.1.13)and ADP-glucose pyrophosphorylase(AGPase,EC 2.7.7.27)exhibited a significant reduction,leading to a significant reduction in the contents of amylose and amylopectin.A total of 509 differentially expressed proteins(DEPs)were identified by proteomics analysis.The Gene Ontology(GO)enrichment analysis showed that the protein difference multiple in the nutritional repository activity was the largest among the molecular functions,and the up-regulated seed storage protein(ssP)played an active role in the response of grains to LT stress and subsequent damage.The Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis showed that LT stress reduced the expression of DEPs such as sucrose phosphate synthase(SPS),glucose-1-phosphate adenylyltransferase(glgC),andβ-fructofuranosidase(FFase)in sucrose and starch metabolic pathways,thus affecting the synthesis of grain starch.In addition,many heat shock proteins(HsPs)were found in the protein processing in endoplasmic reticulum pathways,which can resist some damage caused by LT stress.These findings provide a new theoretical foundation for elucidating the underlying mechanism governing wheat yield developmentafterexposuretoLTstress inspring. 展开更多
关键词 low temperature at booting WHEAT GRAIN starch synthesis PROTEOMICS
在线阅读 下载PDF
Overcoming low-temperature challenges in LIBs:The role of anion-rich solvation sheath in strong solvents 被引量:1
13
作者 Xueqing Min Li Wang +3 位作者 Yanzhou Wu Zhiguo Zhang Hong Xu Xiangming He 《Journal of Energy Chemistry》 2025年第7期63-70,共8页
Lithium-ion batteries(LIBs)face significant limitations in low-temperature environments,with the slow interfacial de-solvation process and the hindered Li+transport through the interphase layer emerging as key obstacl... Lithium-ion batteries(LIBs)face significant limitations in low-temperature environments,with the slow interfacial de-solvation process and the hindered Li+transport through the interphase layer emerging as key obstacles beyond the issue of ionic conductivity.This investigation unveils a novel formulation that constructs an anion-rich solvation sheath within strong solvents,effectively addressing all three of these challenges to bolster low-temperature performance.The developed electrolyte,characterized by an enhanced concentration of contact ion pairs(CIPs)and aggregates(AGGs),facilitates the formation of an inorganic-rich interphase layer on the anode and cathode particles.This promotes de-solvation at low temperatures and stabilizes the electrode-electrolyte interphase.Full cells composed of LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)and graphite,when equipped with this electrolyte,showcase remarkable cycle stability and capacity retention,with 93.3% retention after 500 cycles at room temperature(RT)and 95.5%after 120 cycles at -20℃.This study validates the utility of the anion-rich solvation sheath in strong solvents as a strategy for the development of low-temperature electrolytes. 展开更多
关键词 Electrolytes Solvation structure Low temperature Strong solvents Lithium-ion batteries
在线阅读 下载PDF
Mechanical properties of sandstone under in-situ high-temperature and confinement conditions 被引量:1
14
作者 Liyuan Liu Juan Jin +5 位作者 Jiandong Liu Wei Cheng Minghui Zhao Shengwen Luo Yifan Luo Tao Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第4期778-787,共10页
Low-to medium-maturity oil shale resources display substantial reserves, offering promising prospects for in-situ conversion inChina. Investigating the evolution of the mechanical properties of the reservoir and capro... Low-to medium-maturity oil shale resources display substantial reserves, offering promising prospects for in-situ conversion inChina. Investigating the evolution of the mechanical properties of the reservoir and caprock under in-situ high-temperature and confine-ment conditions is of considerable importance. Compared to conventional mechanical experiments on rock samples after high-temperat-ure treatment, in-situ high-temperature experiments can more accurately characterize the behavior of rocks in practical engineering,thereby providing a more realistic reflection of their mechanical properties. In this study, an in-situ high-temperature triaxial compressiontesting machine is developed to conduct in-situ compression tests on sandstone at different temperatures(25, 200, 400, 500, and 650℃)and confining pressures(0, 10, and 20 MPa). Based on the experimental results, the temperature-dependent changes in compressivestrength, peak strain, elastic modulus, Poisson's ratio, cohesion, and internal friction angle are thoroughly analyzed and discussed. Resultsindicate that the mass of sandstone gradually decreases as the temperature increases. The thermal conductivity and thermal diffusivity ofsandstone exhibit a linear relationship with temperature. Peak stress decreases as the temperature rises, while it increases with higher con-fining pressures. Notably, the influence of confining pressure on peak stress diminishes at higher temperatures. Additionally, as the tem-perature rises, the Poisson's ratio of sandstone decreases. The internal friction angle also decreases with increasing temperature, with 400℃ acting as the threshold temperature. Interestingly, under uniaxial conditions, the damage stress of sandstone is less affected by tem-perature. However, when the confining pressure is 10 or 20 MPa, the damage stress decreases as the temperature increases. This study en-hances our understanding of the influence of in-situ high-temperature and confinement conditions on the mechanical properties of sand-stone strata. The study also provides valuable references and experimental data that support the development of low-to medium-maturityoil shale resources. 展开更多
关键词 in-situ high temperature mechanical property thermal damage thermomechanical coupling
在线阅读 下载PDF
The association between daily temperature extremes and human biomarkers:heterogeneous effects of occupation and season
15
作者 Yang Zhao Chunmei Yang +3 位作者 Yina Li Haiou Hong Rui Wang Jiuchang Wei 《中国科学技术大学学报》 北大核心 2025年第3期53-66,52,I0002,共16页
The impact of extreme temperatures on the health of individuals in different organizations remains uncertain.We employed stratified analyses to examine the impacts of summer(April-September)daily maximum temperatures ... The impact of extreme temperatures on the health of individuals in different organizations remains uncertain.We employed stratified analyses to examine the impacts of summer(April-September)daily maximum temperatures and winter(October-March)daily minimum temperatures on blood pressure and lipid profiles across government staff,com-pany employees,and researchers.We examined 209,477 physical examination records from a physical examination center in the First Affiliated Hospital of USTC from 2017 to 2021.Employing a segmented regression model within the frame-work of generalized linear regression(GLM),we examined the causal impact of extreme temperatures on health outcomes.Additionally,sensitivity analyses were conducted via distributed lag nonlinear models(DLNMs),with a focus on ob-serving the long-term effects over a period of 21 days.Our findings indicate that government staff face increased health risks during extremely low temperatures,regardless of the season.Compared with participants experiencing median tem-peratures,government staff exposed to extremely low temperatures(below the 10th percentile,below 24℃)in the sum-mer presented maximum increases of 2.32 mmHg(95%CI:1.542-3.098)in diastolic blood pressure and 6.481 mmHg(95%CI:5.368-7.594)in systolic blood pressure.In winter,government staff exposed to temperatures below the 10th per-centile(below 1℃)demonstrated maximum increases of 0.278 mmol/L(95%CI:0.210-0.346)in total cholesterol,0.153 mmol/L(95%CI:0.032-0.274)in triglycerides,and 0.077 mmol/L(95%CI:0.192-0.134)in low-density lipoprotein.Conversely,warm winters benefit company employees,whereas researchers exhibit lower sensitivity to temperature changes in winter.The maximum temperatures in summer and minimum temperatures in winter had greater impacts on in-dividuals.Small temperature fluctuations impact health more than large changes do.Notably,both the maximum and min-imum temperatures were better predictors of health outcomes than the daily average temperature was.Blood pressure con-sistently displayed significant associations with temperature across all three groups,with extremely low temperatures in-creasing the risk and extremely high temperatures reducing it.However,the relationship between temperature and blood lipids is complex. 展开更多
关键词 extreme temperature stress response organizational members temperature fluctuation SUBTROPICAL
暂未订购
A binary eutectic electrolyte design for high-temperature interface-compatible Zn-ion batteries 被引量:1
16
作者 Guomin Li Wentao Wen +7 位作者 Kefeng Ouyang Yanyi Wang Jianhui Zhu Ming Yang Hongwei Mi Ning Zhao Peixin Zhang Dingtao Ma 《Journal of Energy Chemistry》 2025年第2期587-597,I0012,共12页
The deterioration of aqueous zinc-ion batteries(AZIBs)is confronted with challenges such as unregulated Zn^(2+)diffusion,dendrite growth and severe decay in battery performance under harsh environments.Here,a design c... The deterioration of aqueous zinc-ion batteries(AZIBs)is confronted with challenges such as unregulated Zn^(2+)diffusion,dendrite growth and severe decay in battery performance under harsh environments.Here,a design concept of eutectic electrolyte is presented by mixing long chain polymer molecules,polyethylene glycol dimethyl ether(PEGDME),with H_(2)O based on zinc trifluoromethyl sulfonate(Zn(OTf)2),to reconstruct the Zn^(2+)solvated structure and in situ modified the adsorption layer on Zn electrode surface.Molecular dynamics simulations(MD),density functional theory(DFT)calculations were combined with experiment to prove that the long-chain polymer-PEGDME could effectively reduce side reactions,change the solvation structure of the electrolyte and priority absorbed on Zn(002),achieving a stable dendrite-free Zn anode.Due to the comprehensive regulation of solvation structure and zinc deposition by PEGDME,it can stably cycle for over 3200 h at room temperature at 0.5 mA/cm^(2)and 0.5 mAh/cm^(2).Even at high-temperature environments of 60℃,it can steadily work for more than 800 cycles(1600 h).Improved cyclic stability and rate performance of aqueous Zn‖VO_(2)batteries in modified electrolyte were also achieved at both room and high temperatures.Beyond that,the demonstration of stable and high-capacity Zn‖VO_(2)pouch cells also implies its practical application. 展开更多
关键词 Eutectic electrolyte Solvation structure Dendrite suppression High temperature Zn anode
在线阅读 下载PDF
Effects of high temperature and thermal cycles on fracture surface's roughness of granite:An insight on 3D morphology 被引量:1
17
作者 Qixiong Gu Zhen Huang +5 位作者 Kui Zhao Wen Zhong Li Liu Xiaozhao Li Yun Wu Ma Dan 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期810-826,共17页
The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle o... The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles. 展开更多
关键词 GRANITE Thermal cycles High temperature Fracture surface roughness ANISOTROPIC Thermal damage
在线阅读 下载PDF
MXene-based thermoelectric fabric integrated with temperature and strain sensing for health monitoring 被引量:1
18
作者 Jun Peng Fangqing Ge +4 位作者 Weiyi Han Tao Wu Jinglei Tang Yuning Li Chaoxia Wang 《Journal of Materials Science & Technology》 2025年第9期272-280,共9页
Wearable thermoelectric devices hold significant promise in the realm of self-powered wearable electron-ics,offering applications in energy harvesting,movement tracking,and health monitoring.Nevertheless,developing th... Wearable thermoelectric devices hold significant promise in the realm of self-powered wearable electron-ics,offering applications in energy harvesting,movement tracking,and health monitoring.Nevertheless,developing thermoelectric devices with exceptional flexibility,enduring thermoelectric stability,multi-functional sensing,and comfortable wear remains a challenge.In this work,a stretchable MXene-based thermoelectric fabric is designed to accurately discern temperature and strain stimuli.This is achieved by constructing an adhesive polydopamine(PDA)layer on the nylon fabric surface,which facilitates the subsequent MXene attachment through hydrogen bonding.This fusion results in MXene-based thermo-electric fabric that excels in both temperature sensing and strain sensing.The resultant MXene-based thermoelectric fabric exhibits outstanding temperature detection capability and cyclic stability,while also delivering excellent sensitivity,rapid responsiveness(60 ms),and remarkable durability in strain sens-ing(3200 cycles).Moreover,when affixed to a mask,this MXene-based thermoelectric fabric utilizes the temperature difference between the body and the environment to harness body heat,converting it into electrical energy and accurately discerning the body’s respiratory rate.In addition,the MXene-based ther-moelectric fabric can monitor the state of the body’s joint through its own deformation.Furthermore,it possesses the capability to convert solar energy into heat.These findings indicate that MXene-based ther-moelectric fabric holds great promise for applications in power generation,motion tracking,and health monitoring. 展开更多
关键词 Mxene thermoelectric fabric temperature sensing Strain sensing Energy harvesting
原文传递
Modeling of Spring Phenology of Boreal Forest by Coupling Machine Learning and Diurnal Temperature Indicators 被引量:1
19
作者 DENG Guorong ZHANG Hongyan +3 位作者 HONG Ying GUO Xiaoyi YI Zhihua EHSAN BINIYAZ 《Chinese Geographical Science》 2025年第1期38-54,共17页
The roles of diurnal temperature in providing heat accumulation and chilling requirements for vegetation spring phenology differ.Although previous studies have established a stronger correlation between leaf onset and... The roles of diurnal temperature in providing heat accumulation and chilling requirements for vegetation spring phenology differ.Although previous studies have established a stronger correlation between leaf onset and diurnal temperature than between leaf onset and average temperature,current research on modeling spring phenology based on diurnal temperature indicators remains limited.In this study,we confirmed the start of the growing season(SOS)sensitivity to diurnal temperature and average temperature in boreal forest.The estimation of SOS was carried out by employing K-Nearest Neighbor Regression(KNR-TDN)model,Random Forest Regres-sion(RFR-TDN)model,eXtreme Gradient Boosting(XGB-TDN)model and Light Gradient Boosting Machine model(LightGBM-TDN)driven by diurnal temperature indicators during 1982-2015,and the SOS was projected from 2015 to 2100 based on the Coupled Model Intercomparison Project Phase 6(CMIP6)climate scenario datasets.The sensitivity of boreal forest SOS to daytime temperature is greater than that to average temperature and nighttime temperature.The LightGBM-TDN model perform best across all vegetation types,exhibiting the lowest RMSE and bias compared to the KNR-TDN model,RFR-TDN model and XGB-TDN model.By incorporating diurn-al temperature indicators instead of relying only on average temperature indicators to simulate spring phenology,an improvement in the accuracy of the model is achieved.Furthermore,the preseason accumulated daytime temperature,daytime temperature and snow cover end date emerged as significant drivers of the SOS simulation in the study area.The simulation results based on LightGBM-TDN model exhibit a trend of advancing SOS followed by stabilization under future climate scenarios.This study underscores the potential of diurn-al temperature indicators as a viable alternative to average temperature indicators in driving spring phenology models,offering a prom-ising new method for simulating spring phenology. 展开更多
关键词 spring phenology diurnal temperature machine learning future climate scenarios boreal forest
在线阅读 下载PDF
Regulation Active Sites of Porous GaN Crystal Via Mn_(3)O_(4)Nanosheets for Advanced High Temperature Energy Storage 被引量:1
20
作者 Songyang Lv Shouzhi Wang +7 位作者 Qirui Zhang Lin Xu Ge Tian Jiaoxian Yu Guodong Wang Lili Li Xiangang Xu Lei Zhang 《Energy & Environmental Materials》 2025年第3期112-121,共10页
Gallium nitride(GaN)single crystal with prominent electron mobility and heat resistance have great potential in the high temperature integrate electric power systems.However,the sluggish charge storage kinetics and in... Gallium nitride(GaN)single crystal with prominent electron mobility and heat resistance have great potential in the high temperature integrate electric power systems.However,the sluggish charge storage kinetics and inadequate energy densities are bottlenecks to its practical application.Herein,the self-supported GaN/Mn_(3)O_(4) integrated electrode is developed for both energy harvesting and storage under the high temperature environment.The experimental and theoretical calculations results reveal that such integrated structures with Mn-N heterointerface bring abundant active sites and reconstruct low-energy barrier channels for efficient charge transferring,reasonably optimizing the ions adsorption ability and strengthening the structural stability.Consequently,the assembled GaN based supercapacitors deliver the power density of 34.0 mW cm^(-2) with capacitance retention of 81.3%after 10000 cycles at 130℃.This work innovatively correlates the centimeter scale GaN single crystal with ideal theoretical capacity Mn_(3)O_(4) and provides an effective avenue for the follow-up energy storage applications of the wide bandgap semiconductor. 展开更多
关键词 active sites density functional theory gallium nitride crystal high temperature SUPERCAPACITORS
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部