A technique was developed to study mass trans fer process and inter facial reaction in two phases system. This constant inter facial cell with a laminar flow was made into a cubic structure. The two fluids were contin...A technique was developed to study mass trans fer process and inter facial reaction in two phases system. This constant inter facial cell with a laminar flow was made into a cubic structure. The two fluids were continuously recycled and mixed. The concentration of each liquid could be monitored by two different methods. This kind of structure made both flows near the inter face flow parallel to the inter face. The inter face was smooth and steady. The mass trans fer rate could be judged by the linear velocity of the flows. The technique can be used for the analyses of the control step in both phases near the inter face in a diffusion control process. A preliminary hydrodynamics and mass trans fer study on the cell was presented, which ensures the distinguishing between a diffusion and a chemical reaction control process. A simplified mass transfer equation,N =0.5303D 1 /2* (Ci- Cb)* (V / B) 1/2, was achieved.展开更多
The extraction kinetics of La(III) from aqueous chloride solutions into n-heptane solutions of bifunctional ionic liquid extractant [A336][CA-12](tricaprylmethylammonium sec-octylphenoxy acetic acid) was investigated ...The extraction kinetics of La(III) from aqueous chloride solutions into n-heptane solutions of bifunctional ionic liquid extractant [A336][CA-12](tricaprylmethylammonium sec-octylphenoxy acetic acid) was investigated using a constant interfacial cell with laminar flow. The effects of stirring speed, temperature and specific interfacial area on the extraction rate were examined. The results indicate that mass transfer kinetics of La(III) is a mixed-controlled process influenced by interfacial reaction. On the basis of mass transfer kinetic results in the extraction of La(III) by [A336][CA-12], the extraction rate equation of La(III) is proposed in terms of pseudo-firstorder constants, which is supported by the measured thermodynamic equations. The mass-transfer kinetic model deduced from the rate controlling step is adequate to interpret the experimental data qualitatively.展开更多
Heat transfer characteristics of oscillating turbulent air flow in a pipe heated with constant heat flux were experimentally investigated.The experiments were performed over a range of 245.7 to 902 of the kinetic Reyn...Heat transfer characteristics of oscillating turbulent air flow in a pipe heated with constant heat flux were experimentally investigated.The experiments were performed over a range of 245.7 to 902 of the kinetic Reynolds number and 25 to 175 of the dimensionless oscillation amplitude.The effects of these two dimensionless parameters were analyzed.The results show that the cycle-averaged local Nusselt number increases with both the kinetic Reynolds number and the dimensionless oscillation amplitude.The space-cycle averaged Nusselt number also effectively increases with the kinetic Reynolds number and the dimensionless oscillation amplitude.Based on the experimental data,a correlation equation of the space-cycle averaged Nusselt number for air in terms of these two dimensionless parameters has been obtained.展开更多
深部岩石裂隙在剪切过程中形貌不断发生改变,导致裂隙渗流特性极其复杂,进而影响深部岩体工程的稳定性。为探明恒定法向刚度(constant normal stiffness,简称CNS)边界条件下岩石裂隙的剪切渗流特性,基于分形理论构建了不同粗糙度三维自...深部岩石裂隙在剪切过程中形貌不断发生改变,导致裂隙渗流特性极其复杂,进而影响深部岩体工程的稳定性。为探明恒定法向刚度(constant normal stiffness,简称CNS)边界条件下岩石裂隙的剪切渗流特性,基于分形理论构建了不同粗糙度三维自仿射裂隙面,采用考虑裂隙粗糙度退化的剪切数值方法分析了不同CNS边界条件下裂隙岩石剪切过程中几何形貌参数的演变规律。随后利用COMSOL软件对受剪后的裂隙进行渗流计算,研究了法向刚度、剪切位移和分形维数对裂隙非线性渗流特性的影响。结果表明:(1)裂隙的力学开度随着分形维数的增大而增大,但法向刚度的增加会减缓其增长速度;接触率主要受法向刚度控制,并随其增大而增大。(2)裂隙渗流的压力梯度与流量关系能够用Forchheimer定律准确描述,拟合系数A和B随剪切位移的增大呈幂函数减小趋势,随法向刚度的增加而增加,随裂隙分形维数的增加而减小。(3)裂隙的水力开度随分形维数的增加而增加,随法向刚度的增加而减小,并建立了以力学开度和开度标准差为自变量的水力开度模型。(4)裂隙渗流的临界雷诺数随剪切位移的增加先减小后增大,并随分形维数和法向刚度的增加而减小,以裂隙的分形维数、接触率和水力开度模型为基础,建立了CNS条件下剪切裂隙的临界雷诺数计算拟合公式。展开更多
文摘A technique was developed to study mass trans fer process and inter facial reaction in two phases system. This constant inter facial cell with a laminar flow was made into a cubic structure. The two fluids were continuously recycled and mixed. The concentration of each liquid could be monitored by two different methods. This kind of structure made both flows near the inter face flow parallel to the inter face. The inter face was smooth and steady. The mass trans fer rate could be judged by the linear velocity of the flows. The technique can be used for the analyses of the control step in both phases near the inter face in a diffusion control process. A preliminary hydrodynamics and mass trans fer study on the cell was presented, which ensures the distinguishing between a diffusion and a chemical reaction control process. A simplified mass transfer equation,N =0.5303D 1 /2* (Ci- Cb)* (V / B) 1/2, was achieved.
基金Supported by the National Natural Science Foundation of China(51174184)National Basic Research Program of China(2012CBA01202)+3 种基金the Key Research Programof the Chinese Academy of Sciences(KGZD-EW-201-1)the Science and Technology Planof Nantong City(BK2013030)the University Science Research Project of Jiangsu Province(14KJB150019)Open Subject of Changchun Institute of Applied Chemistry,Chinese Academy of Sciences(RERU2014016)
文摘The extraction kinetics of La(III) from aqueous chloride solutions into n-heptane solutions of bifunctional ionic liquid extractant [A336][CA-12](tricaprylmethylammonium sec-octylphenoxy acetic acid) was investigated using a constant interfacial cell with laminar flow. The effects of stirring speed, temperature and specific interfacial area on the extraction rate were examined. The results indicate that mass transfer kinetics of La(III) is a mixed-controlled process influenced by interfacial reaction. On the basis of mass transfer kinetic results in the extraction of La(III) by [A336][CA-12], the extraction rate equation of La(III) is proposed in terms of pseudo-firstorder constants, which is supported by the measured thermodynamic equations. The mass-transfer kinetic model deduced from the rate controlling step is adequate to interpret the experimental data qualitatively.
文摘Heat transfer characteristics of oscillating turbulent air flow in a pipe heated with constant heat flux were experimentally investigated.The experiments were performed over a range of 245.7 to 902 of the kinetic Reynolds number and 25 to 175 of the dimensionless oscillation amplitude.The effects of these two dimensionless parameters were analyzed.The results show that the cycle-averaged local Nusselt number increases with both the kinetic Reynolds number and the dimensionless oscillation amplitude.The space-cycle averaged Nusselt number also effectively increases with the kinetic Reynolds number and the dimensionless oscillation amplitude.Based on the experimental data,a correlation equation of the space-cycle averaged Nusselt number for air in terms of these two dimensionless parameters has been obtained.
文摘深部岩石裂隙在剪切过程中形貌不断发生改变,导致裂隙渗流特性极其复杂,进而影响深部岩体工程的稳定性。为探明恒定法向刚度(constant normal stiffness,简称CNS)边界条件下岩石裂隙的剪切渗流特性,基于分形理论构建了不同粗糙度三维自仿射裂隙面,采用考虑裂隙粗糙度退化的剪切数值方法分析了不同CNS边界条件下裂隙岩石剪切过程中几何形貌参数的演变规律。随后利用COMSOL软件对受剪后的裂隙进行渗流计算,研究了法向刚度、剪切位移和分形维数对裂隙非线性渗流特性的影响。结果表明:(1)裂隙的力学开度随着分形维数的增大而增大,但法向刚度的增加会减缓其增长速度;接触率主要受法向刚度控制,并随其增大而增大。(2)裂隙渗流的压力梯度与流量关系能够用Forchheimer定律准确描述,拟合系数A和B随剪切位移的增大呈幂函数减小趋势,随法向刚度的增加而增加,随裂隙分形维数的增加而减小。(3)裂隙的水力开度随分形维数的增加而增加,随法向刚度的增加而减小,并建立了以力学开度和开度标准差为自变量的水力开度模型。(4)裂隙渗流的临界雷诺数随剪切位移的增加先减小后增大,并随分形维数和法向刚度的增加而减小,以裂隙的分形维数、接触率和水力开度模型为基础,建立了CNS条件下剪切裂隙的临界雷诺数计算拟合公式。