This paper presents a parallel method for simulating real-time 3D deformable objects using the volume preservation mass-spring system method on tetrahedron meshes.In general,the conventional mass-spring system is mani...This paper presents a parallel method for simulating real-time 3D deformable objects using the volume preservation mass-spring system method on tetrahedron meshes.In general,the conventional mass-spring system is manipulated as a force-driven method because it is fast,simple to implement,and the parameters can be controlled.However,the springs in traditional mass-spring system can be excessively elongated which cause severe stability and robustness issues that lead to shape restoring,simulation blow-up,and huge volume loss of the deformable object.In addition,traditional method that uses a serial process of the central processing unit(CPU)to solve the system in every frame cannot handle the complex structure of deformable object in real-time.Therefore,the first order implicit constraint enforcement for a mass-spring model is utilized to achieve accurate visual realism of deformable objects with tough constraint error.In this paper,we applied the distance constraint and volume conservation constraints for each tetrahedron element to improve the stability of deformable object simulation using the mass-spring system and behave the same as its real-world counterparts.To reduce the computational complexity while ensuring stable simulation,we applied a method that utilizes OpenGL compute shader,a part of OpenGL Shading Language(GLSL)that executes on the graphic processing unit(GPU)to solve the numerical problems effectively.We applied the proposed methods to experimental volumetric models,and volume percentages of all objects are compared.The average volume percentages of all models during the simulation using the mass-spring system,distance constraint,and the volume constraint method were 68.21%,89.64%,and 98.70%,respectively.The proposed approaches are successfully applied to improve the stability of mass-spring system and the performance comparison from our experimental tests also shows that the GPU-based method is faster than CPU-based implementation for all cases.展开更多
Performance improvement of heat exchangers and the corresponding thermal systems benefits energy conservation, which is a multi-parameters, multi-objectives and multi-levels optimization problem. However, the optimize...Performance improvement of heat exchangers and the corresponding thermal systems benefits energy conservation, which is a multi-parameters, multi-objectives and multi-levels optimization problem. However, the optimized results of heat exchangers with improper decision parameters or objectives do not contribute and even against thermal system performance improvement. After deducing the inherent overall relations between the decision parameters and designing requirements for a typical heat exchanger network and by applying the Lagrange multiplier method, several different optimization equation sets are derived, the solutions of which offer the optimal decision parameters corresponding to different specific optimization objectives, respectively. Comparison of the optimized results clarifies that it should take the whole system, rather than individual heat exchangers, into account to optimize the fluid heat capacity rates and the heat transfer areas to minimize the total heat transfer area, the total heat capacity rate or the total entropy generation rate, while increasing the heat transfer coefficients of individual heat exchangers with different given heat capacity rates benefits the system performance. Besides, different objectives result in different optimization results due to their different intentions, and thus the optimization objectives should be chosen reasonably based on practical applications, where the inherent overall physical constraints of decision parameters are necessary and essential to be built in advance.展开更多
In some quantum gravity theories, a foamy structure of space-time may lead to Lorentz invariance violation(LIV). As the most energetic explosions in the Universe, gamma-ray bursts(GRBs) provide an effect way to pr...In some quantum gravity theories, a foamy structure of space-time may lead to Lorentz invariance violation(LIV). As the most energetic explosions in the Universe, gamma-ray bursts(GRBs) provide an effect way to probe quantum gravity effects. In this paper, we use the continuous spectra of 20 short GRBs detected by the Swift satellite to give a conservative lower limit of quantum gravity energy scale MQG. Due to the LIV effect, photons with different energy have different velocities. This will lead to the delayed arrival of high energy photons relative to low energy ones. Based on the fact that the LIV-induced time delay cannot be longer than the duration of a GRB,we present the most conservative estimate of the quantum gravity energy scales from 20 short GRBs. The strictest constraint, M_(QG) 〉 5.05 × 10^(14) GeV in the linearly corrected case, is from GRB 140622 A. Our constraint on MQG,although not as tight as previous results, is the safest and most reliable so far.展开更多
基金This work was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF-2019R1F1A1062752)funded by the Ministry of Education+1 种基金was funded by BK21 FOUR(Fostering Outstanding Universities for Research)(No.:5199990914048)and was also supported by the Soonchunhyang University Research Fund.
文摘This paper presents a parallel method for simulating real-time 3D deformable objects using the volume preservation mass-spring system method on tetrahedron meshes.In general,the conventional mass-spring system is manipulated as a force-driven method because it is fast,simple to implement,and the parameters can be controlled.However,the springs in traditional mass-spring system can be excessively elongated which cause severe stability and robustness issues that lead to shape restoring,simulation blow-up,and huge volume loss of the deformable object.In addition,traditional method that uses a serial process of the central processing unit(CPU)to solve the system in every frame cannot handle the complex structure of deformable object in real-time.Therefore,the first order implicit constraint enforcement for a mass-spring model is utilized to achieve accurate visual realism of deformable objects with tough constraint error.In this paper,we applied the distance constraint and volume conservation constraints for each tetrahedron element to improve the stability of deformable object simulation using the mass-spring system and behave the same as its real-world counterparts.To reduce the computational complexity while ensuring stable simulation,we applied a method that utilizes OpenGL compute shader,a part of OpenGL Shading Language(GLSL)that executes on the graphic processing unit(GPU)to solve the numerical problems effectively.We applied the proposed methods to experimental volumetric models,and volume percentages of all objects are compared.The average volume percentages of all models during the simulation using the mass-spring system,distance constraint,and the volume constraint method were 68.21%,89.64%,and 98.70%,respectively.The proposed approaches are successfully applied to improve the stability of mass-spring system and the performance comparison from our experimental tests also shows that the GPU-based method is faster than CPU-based implementation for all cases.
基金supported by the National Natural Science Foundation of China(Grant Nos.51422603,51356001&51321002)the National Basic Research Program of China("973"Project)(Grant No.2013CB228301)
文摘Performance improvement of heat exchangers and the corresponding thermal systems benefits energy conservation, which is a multi-parameters, multi-objectives and multi-levels optimization problem. However, the optimized results of heat exchangers with improper decision parameters or objectives do not contribute and even against thermal system performance improvement. After deducing the inherent overall relations between the decision parameters and designing requirements for a typical heat exchanger network and by applying the Lagrange multiplier method, several different optimization equation sets are derived, the solutions of which offer the optimal decision parameters corresponding to different specific optimization objectives, respectively. Comparison of the optimized results clarifies that it should take the whole system, rather than individual heat exchangers, into account to optimize the fluid heat capacity rates and the heat transfer areas to minimize the total heat transfer area, the total heat capacity rate or the total entropy generation rate, while increasing the heat transfer coefficients of individual heat exchangers with different given heat capacity rates benefits the system performance. Besides, different objectives result in different optimization results due to their different intentions, and thus the optimization objectives should be chosen reasonably based on practical applications, where the inherent overall physical constraints of decision parameters are necessary and essential to be built in advance.
基金Supported by National Natural Science Foundation of China(11375203,11305181,11322545,11335012)Knowledge Innovation Program of The Chinese Academy of Sciences
文摘In some quantum gravity theories, a foamy structure of space-time may lead to Lorentz invariance violation(LIV). As the most energetic explosions in the Universe, gamma-ray bursts(GRBs) provide an effect way to probe quantum gravity effects. In this paper, we use the continuous spectra of 20 short GRBs detected by the Swift satellite to give a conservative lower limit of quantum gravity energy scale MQG. Due to the LIV effect, photons with different energy have different velocities. This will lead to the delayed arrival of high energy photons relative to low energy ones. Based on the fact that the LIV-induced time delay cannot be longer than the duration of a GRB,we present the most conservative estimate of the quantum gravity energy scales from 20 short GRBs. The strictest constraint, M_(QG) 〉 5.05 × 10^(14) GeV in the linearly corrected case, is from GRB 140622 A. Our constraint on MQG,although not as tight as previous results, is the safest and most reliable so far.