In this paper,the Lie symmetry analysis method is applied to the(2+1)-dimensional time-fractional Heisenberg ferromagnetic spin chain equation.We obtain all the Lie symmetries admitted by the governing equation and re...In this paper,the Lie symmetry analysis method is applied to the(2+1)-dimensional time-fractional Heisenberg ferromagnetic spin chain equation.We obtain all the Lie symmetries admitted by the governing equation and reduce the corresponding(2+1)-dimensional fractional partial differential equations with the Riemann–Liouville fractional derivative to(1+1)-dimensional counterparts with the Erdélyi–Kober fractional derivative.Then,we obtain the power series solutions of the reduced equations,prove their convergence and analyze their dynamic behavior graphically.In addition,the conservation laws for all the obtained Lie symmetries are constructed using the new conservation theorem and the generalization of Noether operators.展开更多
This work focuses on a Keller-Segel chemotaxis model, with an emphasis on its conservation laws. Through a new approach combined with the multiplier method, called the mixed method, we obtain conservation vectors that...This work focuses on a Keller-Segel chemotaxis model, with an emphasis on its conservation laws. Through a new approach combined with the multiplier method, called the mixed method, we obtain conservation vectors that are related and unrelated to symmetric information. In addition, some exact solutions with particular forms are obtained according to the method of conservation laws. These particular solutions are different from the group-invariant solutions.展开更多
The method of integrating factors is used to study the conservation laws of the Herglotz type Birkhoffian systems in this paper.Firstly,the definition of the integrating factors of the Herglotz type Birkhoffian system...The method of integrating factors is used to study the conservation laws of the Herglotz type Birkhoffian systems in this paper.Firstly,the definition of the integrating factors of the Herglotz type Birkhoffian systems is given.Secondly,the relationship between the integrating factors and conservation laws is studied,and the conservation theorems of Herglotz type Birkhoff's equations and their inverse theorems are established.Thirdly,two types of generalized Killing equations for calculating integrating factors are given.Finally,as an example,a linear damped oscillator is taken.This example can be transformed into a Herglotz type Birkhoffian system.The resulting conservation theorems are used to find the conserved quantities for this example.展开更多
Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-d...Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-dimensional potentiaial-YTSF equation. Baaed on the invariant group theory, Lie symmetries of the (3+1)-dimensional potential-YTSF equation are obtained. We equation with the given Lie symmetry.展开更多
A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are ...A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are bypassed by transforming the computational space.The method is based on local changes of physical variables to choose the discontinuous stencil and introduce the pseudo arc-length parameter,and then transform the governing equations from physical space to arc-length space.In order to solve these equations in arc-length coordinate,it is necessary to combine the velocity of mesh points in the moving mesh method,and then convert the physical variable in arclength space back to physical space.Numerical examples have proved the effectiveness and generality of the new approach for linear equation,nonlinear equation and system of equations with discontinuous initial values.Non-oscillation solution can be obtained by adjusting the parameter and the mesh refinement number for problems containing both shock and rarefaction waves.展开更多
By applying a direct symmetry method, we get the symmetry of the asymmetric Nizhnik-Novikov-Veselov equation (ANNV). Taking the special case, we have a finite-dimensional symmetry. By using the equivalent vector of ...By applying a direct symmetry method, we get the symmetry of the asymmetric Nizhnik-Novikov-Veselov equation (ANNV). Taking the special case, we have a finite-dimensional symmetry. By using the equivalent vector of the symmetry, we construct an eight-dimensional symmetry algebra and get the optimal system of group-invariant solutions. To every case of the optimal system, we reduce the ANNV equation and obtain some solutions to the reduced equations. Furthermore, we find some new explicit solutions of the ANNV equation. At last, we give the conservation laws of the ANNV equation.展开更多
This paper mainly discusses the(2+1)-dimensional modified dispersive water-wave(MDWW) system which will be proved nonlinear self-adjointness. This property is applied to construct conservation laws corresponding to th...This paper mainly discusses the(2+1)-dimensional modified dispersive water-wave(MDWW) system which will be proved nonlinear self-adjointness. This property is applied to construct conservation laws corresponding to the symmetries of the system. Moreover, via the truncated Painlev′e analysis and consistent tanh-function expansion(CTE)method, the soliton-cnoidal periodic wave interaction solutions and corresponding images will be eventually achieved.展开更多
In this article, we get non-selfsimilar elementary waves of the conservation laws in another kind of view, which is different from the usual self-similar transformation. The solution has different global structure. Th...In this article, we get non-selfsimilar elementary waves of the conservation laws in another kind of view, which is different from the usual self-similar transformation. The solution has different global structure. This article is divided into three parts. The first part is introduction. In the second part, we discuss non-selfsimilar elementary waves and their interactions of a class of twodimensional conservation laws. In this case, we consider the case that the initial discontinuity is parabola with u+ 〉 0, while explicit non-selfsirnilar rarefaction wave can be obtained. In the second part, we consider the solution structure of case u+ 〈 0. The new solution structures are obtained by the interactions between different elementary waves, and will continue to interact with other states. Global solutions would be very different from the situation of one dimension.展开更多
In this paper, the super spectral viscosity (SSV) method is developed by introducing a spectrally small amount of high order regularization which is only activated on high frequencies. The resulting SSV approximatio...In this paper, the super spectral viscosity (SSV) method is developed by introducing a spectrally small amount of high order regularization which is only activated on high frequencies. The resulting SSV approximation is stable and convergent to the exact entropy solution. A Gegenbauer-Chebyshev post-processing for the SSV solution is proposed to remove the spurious oscillations at the disconti-nuities and recover accuracy from the spectral approximation. The ssv method is applied to the scahr periodic Burgers equation and the one-dimensional system of Euler equations of gas dynamics. The numerical results exhibit high accuracy and resolution to the exact entropy solution,展开更多
This article is concerned with the pointwise error estimates for vanishing vis- cosity approximations to scalar convex conservation laws with boundary.By the weighted error function and a bootstrap extrapolation techn...This article is concerned with the pointwise error estimates for vanishing vis- cosity approximations to scalar convex conservation laws with boundary.By the weighted error function and a bootstrap extrapolation technique introduced by Tadmor-Tang,an optimal pointwise convergence rate is derived for the vanishing viscosity approximations to the initial-boundary value problem for scalar convex conservation laws,whose weak entropy solution is piecewise C 2 -smooth with interaction of elementary waves and the ...展开更多
In this paper, the Riemann solutions for scalar conservation laws with discontinuous flux function were constructed. The interactions of elementary waves of the conservation laws were concerned, and the numerical simu...In this paper, the Riemann solutions for scalar conservation laws with discontinuous flux function were constructed. The interactions of elementary waves of the conservation laws were concerned, and the numerical simulations were given.展开更多
We study the large time behavior of solutions of scalar conservation laws with periodic initial data. Under a very weak nonlinearity condition,we prove that the solutions converge to constants as time tends to infinit...We study the large time behavior of solutions of scalar conservation laws with periodic initial data. Under a very weak nonlinearity condition,we prove that the solutions converge to constants as time tends to infinity. Our results improve the earlier ones since we only require the flux to be nonlinear at the mean value of the initial data.展开更多
Based on the modified Sawad^Kotera equation, we introduce a 3 ~ 3 matrix spectral problem with two potentials and derive a hierarchy of new nonlinear evolution equations. The second member in the hierarchy is a genera...Based on the modified Sawad^Kotera equation, we introduce a 3 ~ 3 matrix spectral problem with two potentials and derive a hierarchy of new nonlinear evolution equations. The second member in the hierarchy is a generalization of the modified Sawad-Kotera equation, by which a Lax pair of the modified Sawada-Kotera equation is obtained. With the help of the Miura transformation, explicit solutions of the Sawad-Kotera equation, the Kaup-Kupershmidt equation, and the modified Sawad-Kotera equation are given. Moreover, infinite sequences of conserved quantities of the first two nonlinear evolution equations in the hierarchy and the modified Sawada-Kotera equation are constructed with the aid of their Lax pairs.展开更多
In this paper, the time fractional Fordy–Gibbons equation is investigated with Riemann–Liouville derivative. The equation can be reduced to the Caudrey–Dodd–Gibbon equation, Savada–Kotera equation and the Kaup–K...In this paper, the time fractional Fordy–Gibbons equation is investigated with Riemann–Liouville derivative. The equation can be reduced to the Caudrey–Dodd–Gibbon equation, Savada–Kotera equation and the Kaup–Kupershmidt equation, etc. By means of the Lie group analysis method, the invariance properties and symmetry reductions of the equation are derived. Furthermore, by means of the power series theory, its exact power series solutions of the equation are also constructed. Finally, two kinds of conservation laws of the equation are well obtained with aid of the self-adjoint method.展开更多
Using the classical Lie method of infinitesimals, we first obtain the symmetry of the (2+1)-dimensional Burgers-Korteweg-de-Vries (3D-BKdV) equation. Then we reduce the 3D-BKdV equation using the symmetry and giv...Using the classical Lie method of infinitesimals, we first obtain the symmetry of the (2+1)-dimensional Burgers-Korteweg-de-Vries (3D-BKdV) equation. Then we reduce the 3D-BKdV equation using the symmetry and give some exact solutions of the 3D-BKdV equation. When using the direct method, we restrict a condition and get a relationship between the new solutions and the old ones. Given a solution of the 3D-BKdV equation, we can get a new one from the relationship. The relationship between the symmetry obtained by using the classical Lie method and that obtained by using the direct method is also mentioned. At last, we give the conservation laws of the 3D-BKdV equation.展开更多
By using the generalized characteristic analysis method, the two-dimensional four-wave Riemann problem for scalar conservation laws, which is nonconvex along the y direction, was studied. Riemann solutions, which invo...By using the generalized characteristic analysis method, the two-dimensional four-wave Riemann problem for scalar conservation laws, which is nonconvex along the y direction, was studied. Riemann solutions, which involve the Guckenheimer structure, were constructed.展开更多
A fourth-order relaxation scheme is derived and applied to hyperbolic systems of conservation laws in one and two space dimensions. The scheme is based on a fourthorder central weighted essentially nonoscillatory (CW...A fourth-order relaxation scheme is derived and applied to hyperbolic systems of conservation laws in one and two space dimensions. The scheme is based on a fourthorder central weighted essentially nonoscillatory (CWENO) reconstruction for one-dimensional cases, which is generalized to two-dimensional cases by the dimension-by-dimension approach. The large stability domain Runge-Kutta-type solver ROCK4 is used for time integration. The resulting method requires neither the use of Riemann solvers nor the computation of Jacobians and therefore it enjoys the main advantage of the relaxation schemes. The high accuracy and high-resolution properties of the present method are demonstrated in one- and two-dimensional numerical experiments.展开更多
In this paper, an infinite sequence of conservation laws for a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids are constructed based on the Backlund transformation. Hirota bilinear fo...In this paper, an infinite sequence of conservation laws for a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids are constructed based on the Backlund transformation. Hirota bilinear form and symbolic computation are applied to obtain three kinds of solutions. Variable coefficients can affect the conserved density, associated flux, and appearance of the characteristic lines. Effects of the wave number on the soliton structures are also discussed and types of soliton structures, e.g., the double-periodic soliton, parallel soliton and soliton complexes, are presented.展开更多
The present paper deals with the Sharma-Tasso-Olver-Burgers equation(STOBE)and its conservation laws and kink solitons.More precisely,the formal Lagrangian,Lie symmetries,and adjoint equations of the STOBE are firstly...The present paper deals with the Sharma-Tasso-Olver-Burgers equation(STOBE)and its conservation laws and kink solitons.More precisely,the formal Lagrangian,Lie symmetries,and adjoint equations of the STOBE are firstly constructed to retrieve its conservation laws.Kink solitons of the STOBE are then extracted through adopting a series of newly well-designed approaches such as Kudryashov and exponential methods.Diverse graphs in 2 and 3D postures are formally portrayed to reveal the dynamical features of kink solitons.According to the authors’knowledge,the outcomes of the current investigation are new and have been listed for the first time.展开更多
In this paper, the problem of determining the most general Lie point symmetries group and conservation laws of a well known nonlinear hyperbolic PDE in mathematical physics called the Hunter-Saxton equation (HSE) is...In this paper, the problem of determining the most general Lie point symmetries group and conservation laws of a well known nonlinear hyperbolic PDE in mathematical physics called the Hunter-Saxton equation (HSE) is anaiyzed. By applying the basic Lie symmetry method for the HSE, the classical Lie point symmetry operators are obtained. Also, the algebraic structure of the Lie algebra of symmetries is discussed and an optimal system of one- dimensional subalgebras of the HSE symmetry algebra which creates the preliminary classification of group invariant solutions is constructed. Particularly, the Lie invariants as well as similarity reduced equations corresponding to in- finitesimal symmetries are obtained. Mainly, the conservation laws of the HSE are computed via three different methods including Boyer's generalization of Noether's theorem, first homotopy method and second homotopy method.展开更多
基金supported by the State Key Program of the National Natural Science Foundation of China(72031009).
文摘In this paper,the Lie symmetry analysis method is applied to the(2+1)-dimensional time-fractional Heisenberg ferromagnetic spin chain equation.We obtain all the Lie symmetries admitted by the governing equation and reduce the corresponding(2+1)-dimensional fractional partial differential equations with the Riemann–Liouville fractional derivative to(1+1)-dimensional counterparts with the Erdélyi–Kober fractional derivative.Then,we obtain the power series solutions of the reduced equations,prove their convergence and analyze their dynamic behavior graphically.In addition,the conservation laws for all the obtained Lie symmetries are constructed using the new conservation theorem and the generalization of Noether operators.
文摘This work focuses on a Keller-Segel chemotaxis model, with an emphasis on its conservation laws. Through a new approach combined with the multiplier method, called the mixed method, we obtain conservation vectors that are related and unrelated to symmetric information. In addition, some exact solutions with particular forms are obtained according to the method of conservation laws. These particular solutions are different from the group-invariant solutions.
基金Supported by the National Natural Science Foundation of China(12272248)。
文摘The method of integrating factors is used to study the conservation laws of the Herglotz type Birkhoffian systems in this paper.Firstly,the definition of the integrating factors of the Herglotz type Birkhoffian systems is given.Secondly,the relationship between the integrating factors and conservation laws is studied,and the conservation theorems of Herglotz type Birkhoff's equations and their inverse theorems are established.Thirdly,two types of generalized Killing equations for calculating integrating factors are given.Finally,as an example,a linear damped oscillator is taken.This example can be transformed into a Herglotz type Birkhoffian system.The resulting conservation theorems are used to find the conserved quantities for this example.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant No. 2004zx16 tCorresponding author, E-maih zzlh100@163.com
文摘Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-dimensional potentiaial-YTSF equation. Baaed on the invariant group theory, Lie symmetries of the (3+1)-dimensional potential-YTSF equation are obtained. We equation with the given Lie symmetry.
基金supported by the National Natural Science Foundation of China(11390363 and 11172041)Beijing Higher Education Young Elite Teacher Project(YETP1190)
文摘A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are bypassed by transforming the computational space.The method is based on local changes of physical variables to choose the discontinuous stencil and introduce the pseudo arc-length parameter,and then transform the governing equations from physical space to arc-length space.In order to solve these equations in arc-length coordinate,it is necessary to combine the velocity of mesh points in the moving mesh method,and then convert the physical variable in arclength space back to physical space.Numerical examples have proved the effectiveness and generality of the new approach for linear equation,nonlinear equation and system of equations with discontinuous initial values.Non-oscillation solution can be obtained by adjusting the parameter and the mesh refinement number for problems containing both shock and rarefaction waves.
基金The Project supported by the Natural Science Foundation of Shandong Province of China under Grant No.Q2005A01
文摘By applying a direct symmetry method, we get the symmetry of the asymmetric Nizhnik-Novikov-Veselov equation (ANNV). Taking the special case, we have a finite-dimensional symmetry. By using the equivalent vector of the symmetry, we construct an eight-dimensional symmetry algebra and get the optimal system of group-invariant solutions. To every case of the optimal system, we reduce the ANNV equation and obtain some solutions to the reduced equations. Furthermore, we find some new explicit solutions of the ANNV equation. At last, we give the conservation laws of the ANNV equation.
基金Supported by National Natural Science Foundation of China under Grant Nos.11371293,11505090the Natural Science Foundation of Shaanxi Province under Grant No.2014JM2-1009+1 种基金Research Award Foundation for Outstanding Young Scientists of Shandong Province under Grant No.BS2015SF009the Science and Technology Innovation Foundation of Xi’an under Grant No.CYX1531WL41
文摘This paper mainly discusses the(2+1)-dimensional modified dispersive water-wave(MDWW) system which will be proved nonlinear self-adjointness. This property is applied to construct conservation laws corresponding to the symmetries of the system. Moreover, via the truncated Painlev′e analysis and consistent tanh-function expansion(CTE)method, the soliton-cnoidal periodic wave interaction solutions and corresponding images will be eventually achieved.
基金Sponsored by the National Natural Science Foundation of China (10671116,10871199, and 10001023)Hou Yingdong Fellowship (81004), The China Scholarship Council, Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, Natural Science Foundation of Guangdong (06027210 and 000804)Natural Science Foundation of Guangdong Education Bureau (200030)
文摘In this article, we get non-selfsimilar elementary waves of the conservation laws in another kind of view, which is different from the usual self-similar transformation. The solution has different global structure. This article is divided into three parts. The first part is introduction. In the second part, we discuss non-selfsimilar elementary waves and their interactions of a class of twodimensional conservation laws. In this case, we consider the case that the initial discontinuity is parabola with u+ 〉 0, while explicit non-selfsirnilar rarefaction wave can be obtained. In the second part, we consider the solution structure of case u+ 〈 0. The new solution structures are obtained by the interactions between different elementary waves, and will continue to interact with other states. Global solutions would be very different from the situation of one dimension.
文摘In this paper, the super spectral viscosity (SSV) method is developed by introducing a spectrally small amount of high order regularization which is only activated on high frequencies. The resulting SSV approximation is stable and convergent to the exact entropy solution. A Gegenbauer-Chebyshev post-processing for the SSV solution is proposed to remove the spurious oscillations at the disconti-nuities and recover accuracy from the spectral approximation. The ssv method is applied to the scahr periodic Burgers equation and the one-dimensional system of Euler equations of gas dynamics. The numerical results exhibit high accuracy and resolution to the exact entropy solution,
基金supported by the NSF China#10571075NSF-Guangdong China#04010473+1 种基金The research of the second author was supported by Jinan University Foundation#51204033the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State education Ministry#2005-383
文摘This article is concerned with the pointwise error estimates for vanishing vis- cosity approximations to scalar convex conservation laws with boundary.By the weighted error function and a bootstrap extrapolation technique introduced by Tadmor-Tang,an optimal pointwise convergence rate is derived for the vanishing viscosity approximations to the initial-boundary value problem for scalar convex conservation laws,whose weak entropy solution is piecewise C 2 -smooth with interaction of elementary waves and the ...
基金Project supported by National Natural Science Foundation of China(Grant No .10271072)
文摘In this paper, the Riemann solutions for scalar conservation laws with discontinuous flux function were constructed. The interactions of elementary waves of the conservation laws were concerned, and the numerical simulations were given.
文摘We study the large time behavior of solutions of scalar conservation laws with periodic initial data. Under a very weak nonlinearity condition,we prove that the solutions converge to constants as time tends to infinity. Our results improve the earlier ones since we only require the flux to be nonlinear at the mean value of the initial data.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171312)the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 200804590008)
文摘Based on the modified Sawad^Kotera equation, we introduce a 3 ~ 3 matrix spectral problem with two potentials and derive a hierarchy of new nonlinear evolution equations. The second member in the hierarchy is a generalization of the modified Sawad-Kotera equation, by which a Lax pair of the modified Sawada-Kotera equation is obtained. With the help of the Miura transformation, explicit solutions of the Sawad-Kotera equation, the Kaup-Kupershmidt equation, and the modified Sawad-Kotera equation are given. Moreover, infinite sequences of conserved quantities of the first two nonlinear evolution equations in the hierarchy and the modified Sawada-Kotera equation are constructed with the aid of their Lax pairs.
基金Supported by the Fundamental Research Funds for Key Discipline Construction under Grant No.XZD201602the Fundamental Research Funds for the Central Universities under Grant Nos.2015QNA53 and 2015XKQY14+2 种基金the Fundamental Research Funds for Postdoctoral at the Key Laboratory of Gas and Fire Control for Coal Minesthe General Financial Grant from the China Postdoctoral Science Foundation under Grant No.2015M570498Natural Sciences Foundation of China under Grant No.11301527
文摘In this paper, the time fractional Fordy–Gibbons equation is investigated with Riemann–Liouville derivative. The equation can be reduced to the Caudrey–Dodd–Gibbon equation, Savada–Kotera equation and the Kaup–Kupershmidt equation, etc. By means of the Lie group analysis method, the invariance properties and symmetry reductions of the equation are derived. Furthermore, by means of the power series theory, its exact power series solutions of the equation are also constructed. Finally, two kinds of conservation laws of the equation are well obtained with aid of the self-adjoint method.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant No. 2004 zx 16
文摘Using the classical Lie method of infinitesimals, we first obtain the symmetry of the (2+1)-dimensional Burgers-Korteweg-de-Vries (3D-BKdV) equation. Then we reduce the 3D-BKdV equation using the symmetry and give some exact solutions of the 3D-BKdV equation. When using the direct method, we restrict a condition and get a relationship between the new solutions and the old ones. Given a solution of the 3D-BKdV equation, we can get a new one from the relationship. The relationship between the symmetry obtained by using the classical Lie method and that obtained by using the direct method is also mentioned. At last, we give the conservation laws of the 3D-BKdV equation.
文摘By using the generalized characteristic analysis method, the two-dimensional four-wave Riemann problem for scalar conservation laws, which is nonconvex along the y direction, was studied. Riemann solutions, which involve the Guckenheimer structure, were constructed.
基金the National Natural Science Foundation of China (60134010)The English text was polished by Yunming Chen.
文摘A fourth-order relaxation scheme is derived and applied to hyperbolic systems of conservation laws in one and two space dimensions. The scheme is based on a fourthorder central weighted essentially nonoscillatory (CWENO) reconstruction for one-dimensional cases, which is generalized to two-dimensional cases by the dimension-by-dimension approach. The large stability domain Runge-Kutta-type solver ROCK4 is used for time integration. The resulting method requires neither the use of Riemann solvers nor the computation of Jacobians and therefore it enjoys the main advantage of the relaxation schemes. The high accuracy and high-resolution properties of the present method are demonstrated in one- and two-dimensional numerical experiments.
基金Supported by the National Natural Science Foundation of China under Grant No.60772023by the Slpported Project under Grant No.SKLSDE-2010ZX-07 of the State Key Laboratory of Software Development Environment,Beijing University of Aeronautics and As tronautics+2 种基金by the Specialized Research Fund for the Doctoral Program of Higher Educatioi under Grant No.200800130006Chinese Ministry of Education,and by the Innovation Foundation for Ph.D.Graduates under Grant Nos.30-0350 and 30-0366Beijing University of Aeronautics and Astronautics
文摘In this paper, an infinite sequence of conservation laws for a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids are constructed based on the Backlund transformation. Hirota bilinear form and symbolic computation are applied to obtain three kinds of solutions. Variable coefficients can affect the conserved density, associated flux, and appearance of the characteristic lines. Effects of the wave number on the soliton structures are also discussed and types of soliton structures, e.g., the double-periodic soliton, parallel soliton and soliton complexes, are presented.
文摘The present paper deals with the Sharma-Tasso-Olver-Burgers equation(STOBE)and its conservation laws and kink solitons.More precisely,the formal Lagrangian,Lie symmetries,and adjoint equations of the STOBE are firstly constructed to retrieve its conservation laws.Kink solitons of the STOBE are then extracted through adopting a series of newly well-designed approaches such as Kudryashov and exponential methods.Diverse graphs in 2 and 3D postures are formally portrayed to reveal the dynamical features of kink solitons.According to the authors’knowledge,the outcomes of the current investigation are new and have been listed for the first time.
文摘In this paper, the problem of determining the most general Lie point symmetries group and conservation laws of a well known nonlinear hyperbolic PDE in mathematical physics called the Hunter-Saxton equation (HSE) is anaiyzed. By applying the basic Lie symmetry method for the HSE, the classical Lie point symmetry operators are obtained. Also, the algebraic structure of the Lie algebra of symmetries is discussed and an optimal system of one- dimensional subalgebras of the HSE symmetry algebra which creates the preliminary classification of group invariant solutions is constructed. Particularly, the Lie invariants as well as similarity reduced equations corresponding to in- finitesimal symmetries are obtained. Mainly, the conservation laws of the HSE are computed via three different methods including Boyer's generalization of Noether's theorem, first homotopy method and second homotopy method.