钢拱桥的线形监测是桥梁健康监测系统的重要组成部分。运用三维激光扫描技术,融合随机抽样一致(random sample consensus,RANSAC)算法对传统的具有噪声的基于密度的聚类方法(density-based spatial clustering of applications with noi...钢拱桥的线形监测是桥梁健康监测系统的重要组成部分。运用三维激光扫描技术,融合随机抽样一致(random sample consensus,RANSAC)算法对传统的具有噪声的基于密度的聚类方法(density-based spatial clustering of applications with noise,DBSCAN)算法进行改进,对钢拱桥拱肋线形进行提取。三维激光点云数据具有全面性和细节体现的优势,能够完整地呈现桥梁结构的形状和变形信息,融合RANSAC的改进DBSCAN算法根据钢拱桥结构特征对聚类结果进行约束,能够很好地实现删除离散点及桥面、横撑、横联和腹杆部分的点云这一目的。根据融合RANSAC的改进DBSCAN算法提取出的点云进行关键点拟合,与人工提取结果进行对比,拱肋关键点提取误差均在毫米级,最大误差为9.2 mm,最小误差为0.1 mm,此提取方法能够更加准确有效地完成钢拱桥线形提取,使线形提取精度达到毫米级,大大降低了人力成本和时间成本,对钢拱桥的复杂结构有更好的鲁棒性,能很好地适应实际生产需求。展开更多
The economic dispatch problem(EDP) of microgrids operating in both grid-connected and isolated modes within an energy internet framework is addressed in this paper. The multi-agent leader-following consensus algorithm...The economic dispatch problem(EDP) of microgrids operating in both grid-connected and isolated modes within an energy internet framework is addressed in this paper. The multi-agent leader-following consensus algorithm is employed to address the EDP of microgrids in grid-connected mode, while the push-pull algorithm with a fixed step size is introduced for the isolated mode. The proposed algorithm of isolated mode is proven to converge to the optimum when the interaction digraph of microgrids is strongly connected. A unified algorithmic framework is proposed to handle the two modes of operation of microgrids simultaneously, enabling our algorithm to achieve optimal power allocation and maintain the balance between power supply and demand in any mode and any mode switching. Due to the push-pull structure of the algorithm and the use of fixed step size,the proposed algorithm can better handle the case of unbalanced graphs, and the convergence speed is improved. It is documented that when the transmission topology is strongly connected and there is bi-directional communication between the energy router and its neighbors, the proposed algorithm in composite mode achieves economic dispatch even with arbitrary mode switching.Finally, we demonstrate the effectiveness and superiority of our algorithm through numerical simulations.展开更多
A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with ...A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with their states available for measurement. When the communication topology of the system is connected, an adaptive control algorithm with selfdelays and uncertainties is suggested to guarantee global full-state synchro-nization that the difference between the agent's positions and ve-locities asymptotically converges to zero. Moreover, the distributed sliding-mode law is given for chaotic systems with nonlinear inputs to compensate for the effects of nonlinearity. Finally, simulation results show the effectiveness of the proposed control algorithm.展开更多
As one of the underlying technologies of the blockchain,the consensus algorithm plays a vital role in ensuring security and efficiency.As a consensus algorithm for the private blockchain,Raft has better performance th...As one of the underlying technologies of the blockchain,the consensus algorithm plays a vital role in ensuring security and efficiency.As a consensus algorithm for the private blockchain,Raft has better performance than the rest of the consensus algorithms,and it does not cause problems such as the concentrated hashing power,resource waste and fork.However,Raft can only be used in a non-byzantine environment with a small network size.In order to enable Raft to be used in a large-scale network with a certain number of byzantine nodes,this paper combines Raft and credit model to propose a Raft blockchain consensus algorithm based on credit model CRaft.In the node credit evaluation phase,RBF-based support vector machine is used as the anomaly detection method,and the node credit evaluation model is constructed.Then the Trust Nodes List(TNL)mechanism is introduced to make the consensus phase in a creditable network environment.Finally,the common node is synchronized to the consensus node to update the blockchain of the entire network.Experiments show that CRaft has better throughput and lower latency than the commonly used consortium blockchain consensus algorithm PBFT(Practical Byzantine Fault Tolerance).展开更多
Blockchain is a distributed public ledger that keeps track of all transactions that have ever taken place in the system. As a distributed ledger, a consensus mechanism is required to ensure all the transaction functio...Blockchain is a distributed public ledger that keeps track of all transactions that have ever taken place in the system. As a distributed ledger, a consensus mechanism is required to ensure all the transaction functions properly. In order to reach a consensus, it is critical to emphasize the importance of performance and efficiency. The use of the right consensus algorithm will significantly improve the efficiency of a blockchain application. This paper reviewed several types of consensus algorithms used in blockchain and discusses the idea of a new consensus algorithm that can improve the performance of consortium blockchain.展开更多
Aiming at the defects of traditional four-wheel aligner such as many sensors,complex operation and slow detection speed,a fast and accurate 3D four-wheel alignment detection method is studied.Firstly,a new and special...Aiming at the defects of traditional four-wheel aligner such as many sensors,complex operation and slow detection speed,a fast and accurate 3D four-wheel alignment detection method is studied.Firstly,a new and special circle center target board is designed to calibrate the camera,and then the registration of the homography matrix is optimized by using the improved RANSAC(Random sample consensus)algorithm combined with the designed special target board,and the parameters of the wheel alignment system are adjusted by using the space vector principle.Accurate measurements are made to obtain the parameters of the four-wheel alignment.Design a calibration comparison experiment between the traditional target board and the new type of target board,and conduct a comparative test with the existing four-wheel aligner of the depot.The experimental results show that the use of the new target board-binding optimization algorithm can improve the calibration efficiency by about 9%to 21%,while improving the calibration accuracy by about 10.6%to 17.8%.And through the real vehicle test,it is verified that the use of the new target combined with the optimization algorithm can ensure the accuracy and reliability of the four-wheel positioning.This method has a certain significance in the rapid detection of vehicle four-wheel alignment parameters.展开更多
Although many computing algorithms have been developed to analyze the relationship between land use pattern and driving forces (RLPDF), little has been done to assess and reduce the uncertainty of predictions. In this...Although many computing algorithms have been developed to analyze the relationship between land use pattern and driving forces (RLPDF), little has been done to assess and reduce the uncertainty of predictions. In this study, we investigated RLPDF based on 1990, 2005 and 2012 datasets at two spatial scales using eight state-of-the-art single computing algorithms and four consensus methods in Jinjing rive catchment in Hunan Province, China. At the entire catchment scale, the mean AUC values were between 0.715 (ANN) and 0.948 (RF) for the single-algorithms, and from 0.764 to 0.962 for the consensus methods. At the subcatchment scale, the mean AUC values between 0.624 (CTA) and 0.972 (RF) for the single-algorithms, and from 0.758 to 0.979 for the consensus methods. At the subcatchment scale, the mean AUC values were between 0.624 (CTA) and 0.972 (RF) for the single-algorithms, and from 0.758 to 0.979 for the consensus methods. The result suggested that among the eight single computing algorithms, RF performed the best overall for woodland and paddy field;consensus method showed higher predictive performance for woodland and paddy field models than the single computing algorithms. We compared the simulation results of the best - and worst-performing algorithms for the entire catchment in 2012, and found that approximately 72.5% of woodland and 72.4% of paddy field had probabilities of occurrence of less than 0.1, and 3.6% of woodland and 14.5% of paddy field had probabilities of occurrence of more than 0.5. In other words, the simulation errors associated with using different computing algorithms can be up to 14.5% if a probability level of 0.5 is set as the threshold. The results of this study showed that the choice of modeling approaches can greatly affect the accuracy of RLPDF prediction. The computing algorithms for specific RLPDF tasks in specific regions have to be localized and optimized.展开更多
Edge computing devices are widely deployed.An important issue that arises is in that these devices suffer from security attacks.To deal with it,we turn to the blockchain technologies.The note in the alliance chain nee...Edge computing devices are widely deployed.An important issue that arises is in that these devices suffer from security attacks.To deal with it,we turn to the blockchain technologies.The note in the alliance chain need rules to limit write permissions.Alliance chain can provide security management functions,using these functions to meet the management between the members,certification,authorization,monitoring and auditing.This article mainly analyzes some requirements realization which applies to the alliance chain,and introduces a new consensus algorithm,generalized Legendre sequence(GLS)consensus algorithm,for alliance chain.GLS algorithms inherit the recognition and verification efficiency of binary sequence ciphers in computer communication and can solve a large number of nodes verification of key distribution issues.In the alliance chain,GLS consensus algorithm can complete node address hiding,automatic task sorting,task automatic grouping,task node scope confirmation,task address binding and stamp timestamp.Moreover,the GLS consensus algorithm increases the difficulty of network malicious attack.展开更多
Over the past era,subgraph mining from a large collection of graph database is a crucial problem.In addition,scalability is another big problem due to insufficient storage.There are several security challenges associa...Over the past era,subgraph mining from a large collection of graph database is a crucial problem.In addition,scalability is another big problem due to insufficient storage.There are several security challenges associated with subgraph mining in today’s on-demand system.To address this downside,our proposed work introduces a Blockchain-based Consensus algorithm for Authenticated query search in the Large-Scale Dynamic Graphs(BCCA-LSDG).The two-fold process is handled in the proposed BCCA-LSDG:graph indexing and authenticated query search(query processing).A blockchain-based reputation system is meant to maintain the trust blockchain and cloud server of the proposed architecture.To resolve the issues and provide safe big data transmission,the proposed technique also combines blockchain with a consensus algorithm architecture.Security of the big data is ensured by dividing the BC network into distinct networks,each with a restricted number of allowed entities,data kept in the cloud gate server,and data analysis in the blockchain.The consensus algorithm is crucial for maintaining the speed,performance and security of the blockchain.Then Dual Similarity based MapReduce helps in mapping and reducing the relevant subgraphs with the use of optimal feature sets.Finally,the graph index refinement process is undertaken to improve the query results.Concerning query error,fuzzy logic is used to refine the index of the graph dynamically.The proposed technique outperforms advanced methodologies in both blockchain and non-blockchain systems,and the combination of blockchain and subgraph provides a secure communication platform,according to the findings.展开更多
The PBFT (Practical Byzantine Fault Tolerance, PBFT) consensus algorithm, which addressed the issue of malicious nodes sending error messages to disrupt the system operation in distributed systems, was challenging to ...The PBFT (Practical Byzantine Fault Tolerance, PBFT) consensus algorithm, which addressed the issue of malicious nodes sending error messages to disrupt the system operation in distributed systems, was challenging to support massive network nodes, the common participation over all nodes in the consensus mechanism would lead to increased communication complexity, and the arbitrary selection of master nodes would also lead to inefficient consensus. This paper offered a PBFT consensus method (Role Division-based Practical Byzantine Fault Tolerance, RD-PBFT) to address the above problems based on node role division. First, the nodes in the system voted with each other to divide the high reputation group and low reputation group, and determined the starting reputation value of the nodes. Then, the mobile node in the group was divided into roles according to the high reputation value, and a total of three roles were divided into consensus node, backup node, and supervisory node to reduce the number of nodes involved in the consensus process and reduced the complexity of communication. In addition, an adaptive method was used to select the master nodes in the consensus process, and an integer value was introduced to ensure the unpredictability and equality of the master node selection. Experimentally, it was verified that the algorithm has lower communication complexity and better decentralization characteristics compared with the PBFT consensus algorithm, which improved the efficiency of consensus.展开更多
The advent of blockchain technology has transformed traditional methods of information exchange,shifting reliance from centralized data centers to decentralized frameworks.While blockchain’s decentralization and secu...The advent of blockchain technology has transformed traditional methods of information exchange,shifting reliance from centralized data centers to decentralized frameworks.While blockchain’s decentralization and security are strengths,traditional consensus mechanisms like Proof of Work(PoW)and Proof of Stake(PoS)face limitations in scalability.PoW achieves decentralization and security but struggles with scalability as transaction volumes grow,while PoS enhances scalability,but risks centralization due to monopolization by high-stake participants.Sharding,a recent advancement in blockchain technology,addresses scalability by partitioning the network into shards that process transactions independently,thereby improving throughput and reducing latency.However,cross-shard communication,essential for transactions involving multiple shards,introduces challenges in coordination and fault tolerance.This research introduces a shard-based hybrid consensus model,PoSW,which combines PoW and PoS to mitigate the limitations of both mechanisms.By integrating PoW’s fairness with PoS’s scalability in a shard-based blockchain,the proposed model addresses key issues of scalability and monopolization.We evaluate the model against state-of-the-art consensus algorithms,including Monoxide and Practical Byzantine Fault Tolerance(PBFT).The results show that the proposed PoSW model reduces communication overhead compared to PBFT and improves resource utilization over Monoxide.In addition to performance gains,the security analysis demonstrates that the PoSW model provides robust defense against common blockchain attacks such as the 51%and Sybil attacks,etc.The proposed approach is particularly suited for applications like decentralized finance(DeFi)and supply chain management,which require both high scalability and robust security.The contributions of this research include the development of the PoSW hybrid consensus mechanism,its comparative evaluation with leading algorithms,and a thorough security analysis.These contributions represent a significant step forward in addressing blockchain’s scalability,fairness,and security challenges.展开更多
基金supported by the National Natural Science Foundation of China(62103203)
文摘The economic dispatch problem(EDP) of microgrids operating in both grid-connected and isolated modes within an energy internet framework is addressed in this paper. The multi-agent leader-following consensus algorithm is employed to address the EDP of microgrids in grid-connected mode, while the push-pull algorithm with a fixed step size is introduced for the isolated mode. The proposed algorithm of isolated mode is proven to converge to the optimum when the interaction digraph of microgrids is strongly connected. A unified algorithmic framework is proposed to handle the two modes of operation of microgrids simultaneously, enabling our algorithm to achieve optimal power allocation and maintain the balance between power supply and demand in any mode and any mode switching. Due to the push-pull structure of the algorithm and the use of fixed step size,the proposed algorithm can better handle the case of unbalanced graphs, and the convergence speed is improved. It is documented that when the transmission topology is strongly connected and there is bi-directional communication between the energy router and its neighbors, the proposed algorithm in composite mode achieves economic dispatch even with arbitrary mode switching.Finally, we demonstrate the effectiveness and superiority of our algorithm through numerical simulations.
基金supported by the National Natural Sciences Foundation of China (60974146)
文摘A distributed coordinated consensus problem for multiple networked Euler-Lagrange systems is studied. The communication between agents is subject to time delays, unknown parameters and nonlinear inputs, but only with their states available for measurement. When the communication topology of the system is connected, an adaptive control algorithm with selfdelays and uncertainties is suggested to guarantee global full-state synchro-nization that the difference between the agent's positions and ve-locities asymptotically converges to zero. Moreover, the distributed sliding-mode law is given for chaotic systems with nonlinear inputs to compensate for the effects of nonlinearity. Finally, simulation results show the effectiveness of the proposed control algorithm.
基金Supported by the National Natural Science Foundation of China(61672297)。
文摘As one of the underlying technologies of the blockchain,the consensus algorithm plays a vital role in ensuring security and efficiency.As a consensus algorithm for the private blockchain,Raft has better performance than the rest of the consensus algorithms,and it does not cause problems such as the concentrated hashing power,resource waste and fork.However,Raft can only be used in a non-byzantine environment with a small network size.In order to enable Raft to be used in a large-scale network with a certain number of byzantine nodes,this paper combines Raft and credit model to propose a Raft blockchain consensus algorithm based on credit model CRaft.In the node credit evaluation phase,RBF-based support vector machine is used as the anomaly detection method,and the node credit evaluation model is constructed.Then the Trust Nodes List(TNL)mechanism is introduced to make the consensus phase in a creditable network environment.Finally,the common node is synchronized to the consensus node to update the blockchain of the entire network.Experiments show that CRaft has better throughput and lower latency than the commonly used consortium blockchain consensus algorithm PBFT(Practical Byzantine Fault Tolerance).
文摘Blockchain is a distributed public ledger that keeps track of all transactions that have ever taken place in the system. As a distributed ledger, a consensus mechanism is required to ensure all the transaction functions properly. In order to reach a consensus, it is critical to emphasize the importance of performance and efficiency. The use of the right consensus algorithm will significantly improve the efficiency of a blockchain application. This paper reviewed several types of consensus algorithms used in blockchain and discusses the idea of a new consensus algorithm that can improve the performance of consortium blockchain.
基金Anhui Province Key Research and Development Program(No.2022107020012)Shenzhen Science and Technology Innovation Project(No.JSGG20191129102008260)。
文摘Aiming at the defects of traditional four-wheel aligner such as many sensors,complex operation and slow detection speed,a fast and accurate 3D four-wheel alignment detection method is studied.Firstly,a new and special circle center target board is designed to calibrate the camera,and then the registration of the homography matrix is optimized by using the improved RANSAC(Random sample consensus)algorithm combined with the designed special target board,and the parameters of the wheel alignment system are adjusted by using the space vector principle.Accurate measurements are made to obtain the parameters of the four-wheel alignment.Design a calibration comparison experiment between the traditional target board and the new type of target board,and conduct a comparative test with the existing four-wheel aligner of the depot.The experimental results show that the use of the new target board-binding optimization algorithm can improve the calibration efficiency by about 9%to 21%,while improving the calibration accuracy by about 10.6%to 17.8%.And through the real vehicle test,it is verified that the use of the new target combined with the optimization algorithm can ensure the accuracy and reliability of the four-wheel positioning.This method has a certain significance in the rapid detection of vehicle four-wheel alignment parameters.
文摘Although many computing algorithms have been developed to analyze the relationship between land use pattern and driving forces (RLPDF), little has been done to assess and reduce the uncertainty of predictions. In this study, we investigated RLPDF based on 1990, 2005 and 2012 datasets at two spatial scales using eight state-of-the-art single computing algorithms and four consensus methods in Jinjing rive catchment in Hunan Province, China. At the entire catchment scale, the mean AUC values were between 0.715 (ANN) and 0.948 (RF) for the single-algorithms, and from 0.764 to 0.962 for the consensus methods. At the subcatchment scale, the mean AUC values between 0.624 (CTA) and 0.972 (RF) for the single-algorithms, and from 0.758 to 0.979 for the consensus methods. At the subcatchment scale, the mean AUC values were between 0.624 (CTA) and 0.972 (RF) for the single-algorithms, and from 0.758 to 0.979 for the consensus methods. The result suggested that among the eight single computing algorithms, RF performed the best overall for woodland and paddy field;consensus method showed higher predictive performance for woodland and paddy field models than the single computing algorithms. We compared the simulation results of the best - and worst-performing algorithms for the entire catchment in 2012, and found that approximately 72.5% of woodland and 72.4% of paddy field had probabilities of occurrence of less than 0.1, and 3.6% of woodland and 14.5% of paddy field had probabilities of occurrence of more than 0.5. In other words, the simulation errors associated with using different computing algorithms can be up to 14.5% if a probability level of 0.5 is set as the threshold. The results of this study showed that the choice of modeling approaches can greatly affect the accuracy of RLPDF prediction. The computing algorithms for specific RLPDF tasks in specific regions have to be localized and optimized.
基金We gratefully acknowledge anonymous reviewers who read drafts and made many helpful suggestions.This work is supported by the National Key Research and Development Program No.2018YFC0807002.
文摘Edge computing devices are widely deployed.An important issue that arises is in that these devices suffer from security attacks.To deal with it,we turn to the blockchain technologies.The note in the alliance chain need rules to limit write permissions.Alliance chain can provide security management functions,using these functions to meet the management between the members,certification,authorization,monitoring and auditing.This article mainly analyzes some requirements realization which applies to the alliance chain,and introduces a new consensus algorithm,generalized Legendre sequence(GLS)consensus algorithm,for alliance chain.GLS algorithms inherit the recognition and verification efficiency of binary sequence ciphers in computer communication and can solve a large number of nodes verification of key distribution issues.In the alliance chain,GLS consensus algorithm can complete node address hiding,automatic task sorting,task automatic grouping,task node scope confirmation,task address binding and stamp timestamp.Moreover,the GLS consensus algorithm increases the difficulty of network malicious attack.
文摘Over the past era,subgraph mining from a large collection of graph database is a crucial problem.In addition,scalability is another big problem due to insufficient storage.There are several security challenges associated with subgraph mining in today’s on-demand system.To address this downside,our proposed work introduces a Blockchain-based Consensus algorithm for Authenticated query search in the Large-Scale Dynamic Graphs(BCCA-LSDG).The two-fold process is handled in the proposed BCCA-LSDG:graph indexing and authenticated query search(query processing).A blockchain-based reputation system is meant to maintain the trust blockchain and cloud server of the proposed architecture.To resolve the issues and provide safe big data transmission,the proposed technique also combines blockchain with a consensus algorithm architecture.Security of the big data is ensured by dividing the BC network into distinct networks,each with a restricted number of allowed entities,data kept in the cloud gate server,and data analysis in the blockchain.The consensus algorithm is crucial for maintaining the speed,performance and security of the blockchain.Then Dual Similarity based MapReduce helps in mapping and reducing the relevant subgraphs with the use of optimal feature sets.Finally,the graph index refinement process is undertaken to improve the query results.Concerning query error,fuzzy logic is used to refine the index of the graph dynamically.The proposed technique outperforms advanced methodologies in both blockchain and non-blockchain systems,and the combination of blockchain and subgraph provides a secure communication platform,according to the findings.
文摘The PBFT (Practical Byzantine Fault Tolerance, PBFT) consensus algorithm, which addressed the issue of malicious nodes sending error messages to disrupt the system operation in distributed systems, was challenging to support massive network nodes, the common participation over all nodes in the consensus mechanism would lead to increased communication complexity, and the arbitrary selection of master nodes would also lead to inefficient consensus. This paper offered a PBFT consensus method (Role Division-based Practical Byzantine Fault Tolerance, RD-PBFT) to address the above problems based on node role division. First, the nodes in the system voted with each other to divide the high reputation group and low reputation group, and determined the starting reputation value of the nodes. Then, the mobile node in the group was divided into roles according to the high reputation value, and a total of three roles were divided into consensus node, backup node, and supervisory node to reduce the number of nodes involved in the consensus process and reduced the complexity of communication. In addition, an adaptive method was used to select the master nodes in the consensus process, and an integer value was introduced to ensure the unpredictability and equality of the master node selection. Experimentally, it was verified that the algorithm has lower communication complexity and better decentralization characteristics compared with the PBFT consensus algorithm, which improved the efficiency of consensus.
文摘The advent of blockchain technology has transformed traditional methods of information exchange,shifting reliance from centralized data centers to decentralized frameworks.While blockchain’s decentralization and security are strengths,traditional consensus mechanisms like Proof of Work(PoW)and Proof of Stake(PoS)face limitations in scalability.PoW achieves decentralization and security but struggles with scalability as transaction volumes grow,while PoS enhances scalability,but risks centralization due to monopolization by high-stake participants.Sharding,a recent advancement in blockchain technology,addresses scalability by partitioning the network into shards that process transactions independently,thereby improving throughput and reducing latency.However,cross-shard communication,essential for transactions involving multiple shards,introduces challenges in coordination and fault tolerance.This research introduces a shard-based hybrid consensus model,PoSW,which combines PoW and PoS to mitigate the limitations of both mechanisms.By integrating PoW’s fairness with PoS’s scalability in a shard-based blockchain,the proposed model addresses key issues of scalability and monopolization.We evaluate the model against state-of-the-art consensus algorithms,including Monoxide and Practical Byzantine Fault Tolerance(PBFT).The results show that the proposed PoSW model reduces communication overhead compared to PBFT and improves resource utilization over Monoxide.In addition to performance gains,the security analysis demonstrates that the PoSW model provides robust defense against common blockchain attacks such as the 51%and Sybil attacks,etc.The proposed approach is particularly suited for applications like decentralized finance(DeFi)and supply chain management,which require both high scalability and robust security.The contributions of this research include the development of the PoSW hybrid consensus mechanism,its comparative evaluation with leading algorithms,and a thorough security analysis.These contributions represent a significant step forward in addressing blockchain’s scalability,fairness,and security challenges.