With the acceleration of urbanization,prefabricated bridges have become a significant choice for transportation infrastructure construction due to their environmental friendliness,efficiency,and reliable quality.Howev...With the acceleration of urbanization,prefabricated bridges have become a significant choice for transportation infrastructure construction due to their environmental friendliness,efficiency,and reliable quality.However,existing connection technologies still face shortcomings in construction efficiency,seismic performance,and cost control.This paper summarizes the process characteristics of commonly used connection technologies such as socket connections,grouted sleeve connections and corrugated pipe connections,and analyzes their seismic capacity and mechanical performance.In response to existing issues,two new technologies—separated steel connection and multi-chamber steel tube concrete connection—are proposed,and their comprehensive performance and economic efficiency are analyzed.The new connection technologies outperform traditional methods in construction efficiency,economic efficiency,and structural stability,with more reasonable force distribution,clearer load transfer paths,and significantly reduced overall costs.Existing technologies,such as socket connections,perform well in seismic performance but are complex to construct;grouted sleeve connections are mature in technology,but the quality of grouting is difficult to inspect.The separated steel connection and multi-chamber steel tube concrete connection technologies offer significant advantages.With the increasing demands for energy conservation and emission reduction,coupled with the rising labor costs,prefabricated bridge piers are undoubtedly poised to become one of the preferred technologies for bridge construction in China in the future.Therefore,in light of the current research landscape,this paper concludes by offering a forward-looking perspective on the development directions of connection methods for prefabricated bridge piers and identifying key areas for future research.展开更多
The conjugate of T-connection in a Riemannian manifold is obtained, also some of its properties are studied. T-statistical manifold is defined and was considered. Finally a characteristic vector field of the deformati...The conjugate of T-connection in a Riemannian manifold is obtained, also some of its properties are studied. T-statistical manifold is defined and was considered. Finally a characteristic vector field of the deformation algebra (M, , ) is also obtained.展开更多
Chengdu,a city rich in history and culture,is a beacon of China’s storied past embracing a distinct postmodern vibe.As an important hub along the ancient Silk Road,it has long been a meeting point for di!erent civili...Chengdu,a city rich in history and culture,is a beacon of China’s storied past embracing a distinct postmodern vibe.As an important hub along the ancient Silk Road,it has long been a meeting point for di!erent civilizations,where ideas and cultures have exchanged and thrived.Driven by the vision of a community with a shared future for mankind in recent years,Chengdu scholars and media have opened their arms to the world,engaging in multilingual storytelling.These efforts share the warmth and goodwill of a city consistently ranked one of the happiest in China.Through consistent efforts,new insights have emerged—ideas and aspirations intended to be shared with readers both at home and abroad.展开更多
A prior observational study indicated an asymmetric link between sea surface temperature(SST)in the Tasman Sea and ENSO during austral summer.Specifically,El Niño is associated with a dipolar SST anomaly pattern,...A prior observational study indicated an asymmetric link between sea surface temperature(SST)in the Tasman Sea and ENSO during austral summer.Specifically,El Niño is associated with a dipolar SST anomaly pattern,featuring warming in the northwest and cooling in the southeast,whereas La Niña corresponds to basin-scale warming.This study employs the experiments of coupled models from the sixth phase of the Coupled Model Intercomparison Project(CMIP6)to assess ENSO’s impact on Tasman Sea SST.While all 15 models capture the observed dipolar SST anomalies(SSTAs)in the Tasman Sea during El Niño years,only 7 models capture the basin-scale warmth in the Tasman Sea during La Niña years.Consequently,the models are bifurcated into two groups:group-one models yield one physically reasonable asymmetric connection as observed,including the asymmetry of oceanic heat transport,especially the Ekman meridional transport anomalies induced by zonal wind stress driven by the asymmetric atmospheric circulation over the Tasman Sea.However,due to abnormal responses to ENSO and systematic biases in model simulations,including jet and storm tracks,oceanic heat fluxes,ocean currents,and SST,the group-two models fail to reproduce the asymmetric connection between the Tasman Sea and ENSO.This study not only validates the observational asymmetric connection of SSTAs in the Tasman Sea with respect to the two opposite ENSO phases,but also provides evidence and clues to reduce the bias in group-two models.展开更多
The primary objective of Chinese spelling correction(CSC)is to detect and correct erroneous characters in Chinese text,which can result from various factors,such as inaccuracies in pinyin representation,character rese...The primary objective of Chinese spelling correction(CSC)is to detect and correct erroneous characters in Chinese text,which can result from various factors,such as inaccuracies in pinyin representation,character resemblance,and semantic discrepancies.However,existing methods often struggle to fully address these types of errors,impacting the overall correction accuracy.This paper introduces a multi-modal feature encoder designed to efficiently extract features from three distinct modalities:pinyin,semantics,and character morphology.Unlike previous methods that rely on direct fusion or fixed-weight summation to integrate multi-modal information,our approach employs a multi-head attention mechanism to focuse more on relevant modal information while dis-regarding less pertinent data.To prevent issues such as gradient explosion or vanishing,the model incorporates a residual connection of the original text vector for fine-tuning.This approach ensures robust model performance by maintaining essential linguistic details throughout the correction process.Experimental evaluations on the SIGHAN benchmark dataset demonstrate that the pro-posed model outperforms baseline approaches across various metrics and datasets,confirming its effectiveness and feasibility.展开更多
This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with...This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure.展开更多
Precast concrete pavements(PCPs)represent an innovative solution in the construction industry,addressing the need for rapid,intelligent,and low-carbon pavement technologies that significantly reduce construction time ...Precast concrete pavements(PCPs)represent an innovative solution in the construction industry,addressing the need for rapid,intelligent,and low-carbon pavement technologies that significantly reduce construction time and environmental impact.However,the integration of prefabricated technology in pavement surface and base layers lacks systematic classification and understanding.This paper aims to fill this gap by introducing a detailed analysis of discretization and assembly connection technology for cement concrete pavement(CCP)structures.Through a comprehensive review of domestic and international literature,the study classifies prefabricated pavement technology based on discrete assembly structural layers and presents specific conclusions(i)surface layer discrete units are categorized into bottom plates,top plates,plate-rod separated assemblies,and prestressed connections,with optimal material compositions identified to enhance mechanical properties;(ii)base layer discrete units include block-type,plate-type,and beam-type elements,highlighting their contributions to sustainability by incorporating recycled materials(iii)planar assembly connection types are assessed,ranking them by load transfer efficiency,with specific dimensions provided for optimal performance;and(iv)vertical assembly connections are defined by their leveling and sealing layers,suitable for both new constructions and repairs of existing roads.The insights gained from this review not only clarify the distinctions between various structural layers but also provide practical guidelines for enhancing the design and implementation of PCP.This work contributes to advancing sustainable and resilient road construction practices,making it a significant reference for researchers and practitioners in the field.展开更多
This paper focuses on the field of Hakka cuisine vocational education and conducts an in-depth study on the“Secondary Vocational-Higher Vocational-Post-Vocational Training”connection mechanism.By analyzing the neces...This paper focuses on the field of Hakka cuisine vocational education and conducts an in-depth study on the“Secondary Vocational-Higher Vocational-Post-Vocational Training”connection mechanism.By analyzing the necessity from multiple aspects,including the continuity of talent cultivation,the talent structure for industrial development,and the optimal allocation of educational resources,it reveals the significance of constructing this connection mechanism.In terms of the construction ideas,the paper proposes targeted and operable strategies from three key dimensions:the connection and integration of curriculum systems,the collaborative construction of teaching teams,and the sharing and expansion of practical platforms.Meanwhile,to ensure the effective implementation of the mechanism,it elaborates on safeguard measures such as policy support and guidance,the participation of industry associations,and quality monitoring and evaluation.This study holds important theoretical and practical value for improving the Hakka cuisine vocational education system,cultivating high-quality culinary talents that meet the needs of industrial development,and promoting the inheritance and innovation of Hakka cuisine culture.展开更多
Congenital heart disease(CHD)stands as the most common cardiovascular disorder among children,exerting a profound impact on the growth,development,and quality of life of the affected pediatric population.The modified ...Congenital heart disease(CHD)stands as the most common cardiovascular disorder among children,exerting a profound impact on the growth,development,and quality of life of the affected pediatric population.The modified Fontan procedure,the total cavopulmonary connection(TCPC),has become a pivotal palliative or definitive surgical method for treating complex CHD cases,including single ventricle and tricuspid valve atresia.Through staged surgical processes,this technique directly diverts vena cava blood into the pulmonary artery,thus improving the patient’s oxygenation status.Despite the initial success of the Fontan circulation in providing a means for survival in patients with complex CHD,a significant proportion of patients will eventually experience Fontan failure.Fontan failure is a complex syndrome characterized by a constellation of symptoms and signs,including heart failure,arrhythmia,protein-losing enteropathy,and plastic bronchitis.Understanding the contemporary management of failing modified Fontan after TCPC is crucial for optimizing patient outcomes,as the number of adult patients with Fontan circulation continues to grow due to improved surgical techniques and postoperative care.展开更多
Carbon fiber reinforced polymer(CFRP)-aluminum alloys have the advantages of both CFRP and aluminum alloys,but their different properties make the connection challenging.In this study,the response surface method(RSM)w...Carbon fiber reinforced polymer(CFRP)-aluminum alloys have the advantages of both CFRP and aluminum alloys,but their different properties make the connection challenging.In this study,the response surface method(RSM)was used to optimize the laser and plasma processing parameters for treating the 6061 aluminum alloy(AA 6061)surface.The AA 6061 surface was subjected to laser-plasma co-treatment with the optimized parameters.The CFRP-AA 6061 were prepared by the co-curing method.The interface properties of the CFRP-AA 6061 were evaluated by using the climbing drum peel(CDP)test.The single lap layer shear(SLLS)strengths of different treatment procedures under different service aging conditions were investigated.The optimal laser processing parameters included a laser scanning line spacing of 0.115 mm,a laser scanning rate of 102.719 mm/s and a laser frequency of 10.763 kHz,resulting in an average peel strength of 103.76(N·mm)/mm.The optimal plasma processing parameters included a gas flow rate of 597.383 L/h,a processing distance of 5.821 mm and a processing time of 173.132 s,resulting in an average peel strength of 66.39(N·mm)/mm.Under the optimal laser-plasma co-treatment condition,the average peel strength can reach 113.02(N·mm)/mm,and the interfacial connection is better under different service aging conditions.This research can provide a reference for the interface treatment of composite-metal heterogeneous connections.展开更多
In petroleum extraction,the sealing surfaces of bolted joints are susceptible to damage due to the high-temperature and high-pressure conditions in wellbores.This damage adversely affects sealing performance,consequen...In petroleum extraction,the sealing surfaces of bolted joints are susceptible to damage due to the high-temperature and high-pressure conditions in wellbores.This damage adversely affects sealing performance,consequently leading to the failure and damage of threaded connections.In severe cases,it can result in considerable economic losses and trigger safety accidents.The sealing performance of special bolted joints holds crucial importance for production efficiency,output,equipment lifespan,and cost control.Enhancing the sealing perfor-mance of threaded connections can have a positive impact on industrial production and environmental protection.The existing research on American Petroleum Institute threaded joints has been thorough and has obtained a series of excellent results.However,the research on the sealing damage mechanism of threaded connections under complex well conditions lacks sufficient depth and that on new sealing technology is scarce.This study proposes a half-size evaluation test to address the abovementioned problem.Based on this test,an investigation into the sealing performance of threaded connections under high-temperature,cyclic loading,and high-temperature creep conditions is conducted.This study uses a combined approach of finite element methods and experiments to investigate the impact of different makeup torques on the sealing performance of premium threaded connections(PTCs).The results of the half-size evaluation test indicate that temperature notably influences the sealing performance of threaded connections.The continuous action of high temperatures causes contact pressure and sealing performance to decrease,and sealing contact pressure increases after cooling.Finite element and test results show that for a certain joint A,the greater the torque,the higher the critical sealing pressure of the thread,and the better the sealing performance.The research on the sealing damage mechanism of PTCs provides a scientific basis and theoretical guidance for the further optimization and development of PTCs.展开更多
Accurate water level measurement in nuclear reactors,particularly in PWRs(pressurized water reactors)and BWRs(boiling water reactors),is essential for ensuring the safety and efficiency of reactor operations.K-type HJ...Accurate water level measurement in nuclear reactors,particularly in PWRs(pressurized water reactors)and BWRs(boiling water reactors),is essential for ensuring the safety and efficiency of reactor operations.K-type HJTCs(heated junction thermocouples)are widely used for this purpose due to their ability to withstand extreme temperatures and radiation conditions.This article explores the role of HJTCs in reactor water level measurement and compares the performance of 2-wire and 3-wire connections.While the 2-wire connection is simple and cost-effective,it can introduce measurement inaccuracies due to wire resistance.In contrast,the 3-wire connection compensates for lead resistance,offering more precise and reliable measurements,particularly in long-distance applications.This paper discusses the operational considerations of these wiring configurations in the context of nuclear reactors and highlights the importance of choosing the appropriate connection type to optimize safety and measurement accuracy in PWR and BWR reactors.展开更多
Hydraulic fracturing techniques are commonly used to enhance the production of tight reservoirs.Generally,the effect of hydraulic fracturing can be appraised through hydraulic fracturing experiments in the laboratory,...Hydraulic fracturing techniques are commonly used to enhance the production of tight reservoirs.Generally,the effect of hydraulic fracturing can be appraised through hydraulic fracturing experiments in the laboratory,in which acoustic emission(AE)is often used to monitor the fracturing process.At present,the number of AE events and spatial distribution of AE locations are the two main factors commonly conside red in hydraulic fracturing effectiveness evaluatio n.Howeve r,these commonly used evaluation methods overlook two crucial aspects:the connectivity among fractures and the tensile and shear properties of fractures induced by hydraulic fracturing.In this technical note,we consider the influence of these two previously overlooked aspects on the evaluation of hydraulic fracturing effectiveness by establishing a connected fracture model using AE data.The proposed approach links up AE events based on their spatio-temporal relationship and builds a fracture network called the connection model.Then,the characteristic of the fracture network is represented by the fractal dimension to reveal the complexity of fractures in the network.We extract the tensile-shear properties of each fracture based on the inversion of AE events'focal mechanism.Finally,based on the pre-known fracturing effectiveness of a fracture network,we compare the connection model of AE events in several triaxial hydraulic experiments.Our findings indicate that a comprehensive evaluation of hydraulic fracturing effectiveness can be achieved by considering both the connectivity of AE locations and the tensile-shear properties of AE events.This work aims to provide a more rational method for characterizing rock fracture networks and evaluating rock fracturing effects using AE data.展开更多
Duangsamorn Wattanapathitiwong—usually called by her Chinese name Wang Ximei these days—never expected a Chinese television drama to lead her to a life in China,a marriage rooted in cross-cultural understanding,and ...Duangsamorn Wattanapathitiwong—usually called by her Chinese name Wang Ximei these days—never expected a Chinese television drama to lead her to a life in China,a marriage rooted in cross-cultural understanding,and a profession that now bridges two nations.From a university student in Thailand puzzled by Chinese dialogue to a Thai language lecturer in China influencing the next generation of Thailand-China communicators,Wang’s journey is a story of resilience,romance,and responsibility.展开更多
This study numerically investigates the seismic response of a nine-story self-centering concentrically braced frame building incorporating force-limiting connections between the floor system and the lateral force-resi...This study numerically investigates the seismic response of a nine-story self-centering concentrically braced frame building incorporating force-limiting connections between the floor system and the lateral force-resisting system.Nonlinear earthquake simulations are conducted under design basis earthquake ground motions,and the results are compared against a baseline model with rigid-elastic connections.The study discusses connection design considerations and evaluates the effectiveness of force-limiting connections in mitigating higher-mode effects.The findings show that force-limiting connections significantly reduce the magnitude and variability of floor accelerations,brace forces,and connection forces,while maintaining comparable story drifts.limiting Force-connections primarily reduce the contribution of higher-mode responses,while the controlled rocking base mechanism modifies the first-mode response.Overall,the reduced dispersion in structural response improves the reliability of seismic design and enhances resilience by minimizing damage to both structural components and acceleration-sensitive nonstructural elements.展开更多
As iconic structures in Dong ethnic villages of Guizhou,drum towers hold significant cultural and architectural value.However,research on their mechanical behavior,particularly the mechanical performance of their join...As iconic structures in Dong ethnic villages of Guizhou,drum towers hold significant cultural and architectural value.However,research on their mechanical behavior,particularly the mechanical performance of their joints,remains limited,with numerical simulation studies lagging behind theoretical and experimental investigations.This study first establishes an orthotropic elastoplastic constitutive model for timber based on experimental data from Chuandou-style timber structures,determining key parameters such as elastic modulus,shear strength,and plastic strain.Subsequently,a refined finite element model was established using ABAQUS,and its reliability was validated through comparative analysis of stress nephograms,skeleton curves,and other key outcomes with experimental data.The findings provide valuable references for engineering design.展开更多
In this paper,we compute sub-Riemannian limits of some important curvature variants associated with the connection with torsion for four dimensional twisted BCV spaces and derive a Gauss-Bonnet theorem for four dimens...In this paper,we compute sub-Riemannian limits of some important curvature variants associated with the connection with torsion for four dimensional twisted BCV spaces and derive a Gauss-Bonnet theorem for four dimensional twisted BCV spaces.展开更多
The Arctic plays a pivotal role in the Earth’s climate system,with its rapid transformation exerting profound impacts on global climate dynamics,ecosystems,and human societies.In recent decades,Arctic warming has sig...The Arctic plays a pivotal role in the Earth’s climate system,with its rapid transformation exerting profound impacts on global climate dynamics,ecosystems,and human societies.In recent decades,Arctic warming has significantly outpaced the global mean temperature increase,driving the enhanced sea ice decline,the accelerated mass loss of the Greenland Ice Sheet,permafrost degradation,and glacier retreat.These changes modulate atmospheric and oceanic circulation patterns,establishing teleconnections with mid-and low-latitude climate systems.Investigating the historical evolution,current state,and projected future trends of the Arctic climate system,as well as its global impacts,is crucial for elucidating the mechanisms underlying Arctic amplification,refining climate change projections,attributing extreme weather and climate events,and informing sustainable development strategies.展开更多
On November 3,the Philippine Embassy in China and the Philippine Department of Tourism jointly launched the Philippine e-visa system in Beijing,aiming to make travel more convenient for Chinese visitors and promote pe...On November 3,the Philippine Embassy in China and the Philippine Department of Tourism jointly launched the Philippine e-visa system in Beijing,aiming to make travel more convenient for Chinese visitors and promote people-to-people exchange between the two countries.Philippine Ambassador to China Jaime FlorCruz said the government launched the program to ensure a smoother visa experience for Chinese applicants.展开更多
The effects of random long-range connections (shortcuts) on the transitions of neural firing patterns in coupled Hindmarsh-Rose neurons are investigated, where each neuron is subjected to an external current. It is ...The effects of random long-range connections (shortcuts) on the transitions of neural firing patterns in coupled Hindmarsh-Rose neurons are investigated, where each neuron is subjected to an external current. It is found that, on one hand, the system can achieve the transition of neural firing patterns from the fewer-period state to the multi-period one, when the number of the added shortcuts in the neural network is greater than a threshold value, indicating the occurrence of in-transition of neural firing patterns. On the other hand, for a stronger coupling strength, we can also find the similar but reverse results by adding some proper random connections. In addition, the influences of system size and coupling strength on such transition behavior, as well as the internality between the transition degree of firing patterns and its critical characteristics for different external stimulation current, are also discussed.展开更多
基金supported by Prevention the Fundamental Research Funds for the Central Universities“Study on the general joint of prefabricated high-pier columns”(ZY20230218)Science and Technology Innovation Program for Postgraduate students in IDP subsidized by Fundamental Research Funds for the Central Universities“Research on seismic performance of prefabricated bridge piers with embedded separated steel connections”(ZY20250316).
文摘With the acceleration of urbanization,prefabricated bridges have become a significant choice for transportation infrastructure construction due to their environmental friendliness,efficiency,and reliable quality.However,existing connection technologies still face shortcomings in construction efficiency,seismic performance,and cost control.This paper summarizes the process characteristics of commonly used connection technologies such as socket connections,grouted sleeve connections and corrugated pipe connections,and analyzes their seismic capacity and mechanical performance.In response to existing issues,two new technologies—separated steel connection and multi-chamber steel tube concrete connection—are proposed,and their comprehensive performance and economic efficiency are analyzed.The new connection technologies outperform traditional methods in construction efficiency,economic efficiency,and structural stability,with more reasonable force distribution,clearer load transfer paths,and significantly reduced overall costs.Existing technologies,such as socket connections,perform well in seismic performance but are complex to construct;grouted sleeve connections are mature in technology,but the quality of grouting is difficult to inspect.The separated steel connection and multi-chamber steel tube concrete connection technologies offer significant advantages.With the increasing demands for energy conservation and emission reduction,coupled with the rising labor costs,prefabricated bridge piers are undoubtedly poised to become one of the preferred technologies for bridge construction in China in the future.Therefore,in light of the current research landscape,this paper concludes by offering a forward-looking perspective on the development directions of connection methods for prefabricated bridge piers and identifying key areas for future research.
文摘The conjugate of T-connection in a Riemannian manifold is obtained, also some of its properties are studied. T-statistical manifold is defined and was considered. Finally a characteristic vector field of the deformation algebra (M, , ) is also obtained.
文摘Chengdu,a city rich in history and culture,is a beacon of China’s storied past embracing a distinct postmodern vibe.As an important hub along the ancient Silk Road,it has long been a meeting point for di!erent civilizations,where ideas and cultures have exchanged and thrived.Driven by the vision of a community with a shared future for mankind in recent years,Chengdu scholars and media have opened their arms to the world,engaging in multilingual storytelling.These efforts share the warmth and goodwill of a city consistently ranked one of the happiest in China.Through consistent efforts,new insights have emerged—ideas and aspirations intended to be shared with readers both at home and abroad.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFF0805101)the National Natural Science Founda-tion of China(Grant Nos.42376250 and 42405068).
文摘A prior observational study indicated an asymmetric link between sea surface temperature(SST)in the Tasman Sea and ENSO during austral summer.Specifically,El Niño is associated with a dipolar SST anomaly pattern,featuring warming in the northwest and cooling in the southeast,whereas La Niña corresponds to basin-scale warming.This study employs the experiments of coupled models from the sixth phase of the Coupled Model Intercomparison Project(CMIP6)to assess ENSO’s impact on Tasman Sea SST.While all 15 models capture the observed dipolar SST anomalies(SSTAs)in the Tasman Sea during El Niño years,only 7 models capture the basin-scale warmth in the Tasman Sea during La Niña years.Consequently,the models are bifurcated into two groups:group-one models yield one physically reasonable asymmetric connection as observed,including the asymmetry of oceanic heat transport,especially the Ekman meridional transport anomalies induced by zonal wind stress driven by the asymmetric atmospheric circulation over the Tasman Sea.However,due to abnormal responses to ENSO and systematic biases in model simulations,including jet and storm tracks,oceanic heat fluxes,ocean currents,and SST,the group-two models fail to reproduce the asymmetric connection between the Tasman Sea and ENSO.This study not only validates the observational asymmetric connection of SSTAs in the Tasman Sea with respect to the two opposite ENSO phases,but also provides evidence and clues to reduce the bias in group-two models.
基金Supported by the National Natural Science Foundation of China(No.61472256,61170277)the Hujiang Foundation(No.A14006).
文摘The primary objective of Chinese spelling correction(CSC)is to detect and correct erroneous characters in Chinese text,which can result from various factors,such as inaccuracies in pinyin representation,character resemblance,and semantic discrepancies.However,existing methods often struggle to fully address these types of errors,impacting the overall correction accuracy.This paper introduces a multi-modal feature encoder designed to efficiently extract features from three distinct modalities:pinyin,semantics,and character morphology.Unlike previous methods that rely on direct fusion or fixed-weight summation to integrate multi-modal information,our approach employs a multi-head attention mechanism to focuse more on relevant modal information while dis-regarding less pertinent data.To prevent issues such as gradient explosion or vanishing,the model incorporates a residual connection of the original text vector for fine-tuning.This approach ensures robust model performance by maintaining essential linguistic details throughout the correction process.Experimental evaluations on the SIGHAN benchmark dataset demonstrate that the pro-posed model outperforms baseline approaches across various metrics and datasets,confirming its effectiveness and feasibility.
基金supported by the National Natural Science Foundation of China(72101025,72271049),the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities,FRF-IDRY-24-024)the Hebei Natural Science Foundation(F2023501011)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-20-073A1)the R&D Program of Beijing Municipal Education Commission(KM202411232015).
文摘This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure.
基金supported by the Research Program of Wuhan Building Energy Efficiency Office(grant number 202331).
文摘Precast concrete pavements(PCPs)represent an innovative solution in the construction industry,addressing the need for rapid,intelligent,and low-carbon pavement technologies that significantly reduce construction time and environmental impact.However,the integration of prefabricated technology in pavement surface and base layers lacks systematic classification and understanding.This paper aims to fill this gap by introducing a detailed analysis of discretization and assembly connection technology for cement concrete pavement(CCP)structures.Through a comprehensive review of domestic and international literature,the study classifies prefabricated pavement technology based on discrete assembly structural layers and presents specific conclusions(i)surface layer discrete units are categorized into bottom plates,top plates,plate-rod separated assemblies,and prestressed connections,with optimal material compositions identified to enhance mechanical properties;(ii)base layer discrete units include block-type,plate-type,and beam-type elements,highlighting their contributions to sustainability by incorporating recycled materials(iii)planar assembly connection types are assessed,ranking them by load transfer efficiency,with specific dimensions provided for optimal performance;and(iv)vertical assembly connections are defined by their leveling and sealing layers,suitable for both new constructions and repairs of existing roads.The insights gained from this review not only clarify the distinctions between various structural layers but also provide practical guidelines for enhancing the design and implementation of PCP.This work contributes to advancing sustainable and resilient road construction practices,making it a significant reference for researchers and practitioners in the field.
基金2025 Meizhou Municipal Planning Project for Philosophy and Social Sciences(mzsklx2025101)。
文摘This paper focuses on the field of Hakka cuisine vocational education and conducts an in-depth study on the“Secondary Vocational-Higher Vocational-Post-Vocational Training”connection mechanism.By analyzing the necessity from multiple aspects,including the continuity of talent cultivation,the talent structure for industrial development,and the optimal allocation of educational resources,it reveals the significance of constructing this connection mechanism.In terms of the construction ideas,the paper proposes targeted and operable strategies from three key dimensions:the connection and integration of curriculum systems,the collaborative construction of teaching teams,and the sharing and expansion of practical platforms.Meanwhile,to ensure the effective implementation of the mechanism,it elaborates on safeguard measures such as policy support and guidance,the participation of industry associations,and quality monitoring and evaluation.This study holds important theoretical and practical value for improving the Hakka cuisine vocational education system,cultivating high-quality culinary talents that meet the needs of industrial development,and promoting the inheritance and innovation of Hakka cuisine culture.
文摘Congenital heart disease(CHD)stands as the most common cardiovascular disorder among children,exerting a profound impact on the growth,development,and quality of life of the affected pediatric population.The modified Fontan procedure,the total cavopulmonary connection(TCPC),has become a pivotal palliative or definitive surgical method for treating complex CHD cases,including single ventricle and tricuspid valve atresia.Through staged surgical processes,this technique directly diverts vena cava blood into the pulmonary artery,thus improving the patient’s oxygenation status.Despite the initial success of the Fontan circulation in providing a means for survival in patients with complex CHD,a significant proportion of patients will eventually experience Fontan failure.Fontan failure is a complex syndrome characterized by a constellation of symptoms and signs,including heart failure,arrhythmia,protein-losing enteropathy,and plastic bronchitis.Understanding the contemporary management of failing modified Fontan after TCPC is crucial for optimizing patient outcomes,as the number of adult patients with Fontan circulation continues to grow due to improved surgical techniques and postoperative care.
基金Fundamental Research Funds for the Central Universities,China(223202023G-23)Funds of State Key Laboratory of Advanced Fiber Materials,China(KF2203)。
文摘Carbon fiber reinforced polymer(CFRP)-aluminum alloys have the advantages of both CFRP and aluminum alloys,but their different properties make the connection challenging.In this study,the response surface method(RSM)was used to optimize the laser and plasma processing parameters for treating the 6061 aluminum alloy(AA 6061)surface.The AA 6061 surface was subjected to laser-plasma co-treatment with the optimized parameters.The CFRP-AA 6061 were prepared by the co-curing method.The interface properties of the CFRP-AA 6061 were evaluated by using the climbing drum peel(CDP)test.The single lap layer shear(SLLS)strengths of different treatment procedures under different service aging conditions were investigated.The optimal laser processing parameters included a laser scanning line spacing of 0.115 mm,a laser scanning rate of 102.719 mm/s and a laser frequency of 10.763 kHz,resulting in an average peel strength of 103.76(N·mm)/mm.The optimal plasma processing parameters included a gas flow rate of 597.383 L/h,a processing distance of 5.821 mm and a processing time of 173.132 s,resulting in an average peel strength of 66.39(N·mm)/mm.Under the optimal laser-plasma co-treatment condition,the average peel strength can reach 113.02(N·mm)/mm,and the interfacial connection is better under different service aging conditions.This research can provide a reference for the interface treatment of composite-metal heterogeneous connections.
文摘In petroleum extraction,the sealing surfaces of bolted joints are susceptible to damage due to the high-temperature and high-pressure conditions in wellbores.This damage adversely affects sealing performance,consequently leading to the failure and damage of threaded connections.In severe cases,it can result in considerable economic losses and trigger safety accidents.The sealing performance of special bolted joints holds crucial importance for production efficiency,output,equipment lifespan,and cost control.Enhancing the sealing perfor-mance of threaded connections can have a positive impact on industrial production and environmental protection.The existing research on American Petroleum Institute threaded joints has been thorough and has obtained a series of excellent results.However,the research on the sealing damage mechanism of threaded connections under complex well conditions lacks sufficient depth and that on new sealing technology is scarce.This study proposes a half-size evaluation test to address the abovementioned problem.Based on this test,an investigation into the sealing performance of threaded connections under high-temperature,cyclic loading,and high-temperature creep conditions is conducted.This study uses a combined approach of finite element methods and experiments to investigate the impact of different makeup torques on the sealing performance of premium threaded connections(PTCs).The results of the half-size evaluation test indicate that temperature notably influences the sealing performance of threaded connections.The continuous action of high temperatures causes contact pressure and sealing performance to decrease,and sealing contact pressure increases after cooling.Finite element and test results show that for a certain joint A,the greater the torque,the higher the critical sealing pressure of the thread,and the better the sealing performance.The research on the sealing damage mechanism of PTCs provides a scientific basis and theoretical guidance for the further optimization and development of PTCs.
文摘Accurate water level measurement in nuclear reactors,particularly in PWRs(pressurized water reactors)and BWRs(boiling water reactors),is essential for ensuring the safety and efficiency of reactor operations.K-type HJTCs(heated junction thermocouples)are widely used for this purpose due to their ability to withstand extreme temperatures and radiation conditions.This article explores the role of HJTCs in reactor water level measurement and compares the performance of 2-wire and 3-wire connections.While the 2-wire connection is simple and cost-effective,it can introduce measurement inaccuracies due to wire resistance.In contrast,the 3-wire connection compensates for lead resistance,offering more precise and reliable measurements,particularly in long-distance applications.This paper discusses the operational considerations of these wiring configurations in the context of nuclear reactors and highlights the importance of choosing the appropriate connection type to optimize safety and measurement accuracy in PWR and BWR reactors.
基金financial support from the subprojects of the Natural Science Foundation of China(No.42302326)the Shenzhen Science and Technology Program(JCYJ20220530113612028)+1 种基金the National Key Research and Development Program of China(Grant No.2023YFC3707905)the Fundamental Research Funds for the Central Universities(JZ2025HGTB0191)。
文摘Hydraulic fracturing techniques are commonly used to enhance the production of tight reservoirs.Generally,the effect of hydraulic fracturing can be appraised through hydraulic fracturing experiments in the laboratory,in which acoustic emission(AE)is often used to monitor the fracturing process.At present,the number of AE events and spatial distribution of AE locations are the two main factors commonly conside red in hydraulic fracturing effectiveness evaluatio n.Howeve r,these commonly used evaluation methods overlook two crucial aspects:the connectivity among fractures and the tensile and shear properties of fractures induced by hydraulic fracturing.In this technical note,we consider the influence of these two previously overlooked aspects on the evaluation of hydraulic fracturing effectiveness by establishing a connected fracture model using AE data.The proposed approach links up AE events based on their spatio-temporal relationship and builds a fracture network called the connection model.Then,the characteristic of the fracture network is represented by the fractal dimension to reveal the complexity of fractures in the network.We extract the tensile-shear properties of each fracture based on the inversion of AE events'focal mechanism.Finally,based on the pre-known fracturing effectiveness of a fracture network,we compare the connection model of AE events in several triaxial hydraulic experiments.Our findings indicate that a comprehensive evaluation of hydraulic fracturing effectiveness can be achieved by considering both the connectivity of AE locations and the tensile-shear properties of AE events.This work aims to provide a more rational method for characterizing rock fracture networks and evaluating rock fracturing effects using AE data.
文摘Duangsamorn Wattanapathitiwong—usually called by her Chinese name Wang Ximei these days—never expected a Chinese television drama to lead her to a life in China,a marriage rooted in cross-cultural understanding,and a profession that now bridges two nations.From a university student in Thailand puzzled by Chinese dialogue to a Thai language lecturer in China influencing the next generation of Thailand-China communicators,Wang’s journey is a story of resilience,romance,and responsibility.
基金financial support provided by Lehigh University,the Advanced Technology for Large Structural Systems(ATLSS)Engineering Research Center,and the Department of Structural Engineering at the University of California,San Diegolarge research team led by Professor Robert B.Fleischman under the project“NEESR:Inertial Force-Limiting Floor Anchorage Systems for Seismic Resistant Building Structures”with the support of grants from the National Science Foundation,award no.CMMI-1135033in the George E.Brown,Jr.Network for Earthquake gineering En-Simulation Research(NEESR)program and award no.CMMI-0402490 for the George E.Brown,Jr.Network for Earthquake ing Engineer-Simulation(NEES)consortium operations.
文摘This study numerically investigates the seismic response of a nine-story self-centering concentrically braced frame building incorporating force-limiting connections between the floor system and the lateral force-resisting system.Nonlinear earthquake simulations are conducted under design basis earthquake ground motions,and the results are compared against a baseline model with rigid-elastic connections.The study discusses connection design considerations and evaluates the effectiveness of force-limiting connections in mitigating higher-mode effects.The findings show that force-limiting connections significantly reduce the magnitude and variability of floor accelerations,brace forces,and connection forces,while maintaining comparable story drifts.limiting Force-connections primarily reduce the contribution of higher-mode responses,while the controlled rocking base mechanism modifies the first-mode response.Overall,the reduced dispersion in structural response improves the reliability of seismic design and enhances resilience by minimizing damage to both structural components and acceleration-sensitive nonstructural elements.
基金Science and Technology Planning Project of Zunyi City of China(Project No.:Zun Shi Ke He HZ Zi[2022]121)College Students’Innovation and Entrepreneurship Training Program(Project No.:202310664031)+1 种基金Guizhou Provincial First-Class Undergraduate Major“Civil Engineering”(Project No.:Qian Jiao Han[2022]No.61)Guizhou Provincial First-Class Course Construction Project(Project No.:2022JKXX0165,2024JKXN0064)。
文摘As iconic structures in Dong ethnic villages of Guizhou,drum towers hold significant cultural and architectural value.However,research on their mechanical behavior,particularly the mechanical performance of their joints,remains limited,with numerical simulation studies lagging behind theoretical and experimental investigations.This study first establishes an orthotropic elastoplastic constitutive model for timber based on experimental data from Chuandou-style timber structures,determining key parameters such as elastic modulus,shear strength,and plastic strain.Subsequently,a refined finite element model was established using ABAQUS,and its reliability was validated through comparative analysis of stress nephograms,skeleton curves,and other key outcomes with experimental data.The findings provide valuable references for engineering design.
基金Supported by National Natural Science Foundation of China(Grant No.11771070).
文摘In this paper,we compute sub-Riemannian limits of some important curvature variants associated with the connection with torsion for four dimensional twisted BCV spaces and derive a Gauss-Bonnet theorem for four dimensional twisted BCV spaces.
文摘The Arctic plays a pivotal role in the Earth’s climate system,with its rapid transformation exerting profound impacts on global climate dynamics,ecosystems,and human societies.In recent decades,Arctic warming has significantly outpaced the global mean temperature increase,driving the enhanced sea ice decline,the accelerated mass loss of the Greenland Ice Sheet,permafrost degradation,and glacier retreat.These changes modulate atmospheric and oceanic circulation patterns,establishing teleconnections with mid-and low-latitude climate systems.Investigating the historical evolution,current state,and projected future trends of the Arctic climate system,as well as its global impacts,is crucial for elucidating the mechanisms underlying Arctic amplification,refining climate change projections,attributing extreme weather and climate events,and informing sustainable development strategies.
文摘On November 3,the Philippine Embassy in China and the Philippine Department of Tourism jointly launched the Philippine e-visa system in Beijing,aiming to make travel more convenient for Chinese visitors and promote people-to-people exchange between the two countries.Philippine Ambassador to China Jaime FlorCruz said the government launched the program to ensure a smoother visa experience for Chinese applicants.
文摘The effects of random long-range connections (shortcuts) on the transitions of neural firing patterns in coupled Hindmarsh-Rose neurons are investigated, where each neuron is subjected to an external current. It is found that, on one hand, the system can achieve the transition of neural firing patterns from the fewer-period state to the multi-period one, when the number of the added shortcuts in the neural network is greater than a threshold value, indicating the occurrence of in-transition of neural firing patterns. On the other hand, for a stronger coupling strength, we can also find the similar but reverse results by adding some proper random connections. In addition, the influences of system size and coupling strength on such transition behavior, as well as the internality between the transition degree of firing patterns and its critical characteristics for different external stimulation current, are also discussed.