The light-driven CO_(2)reduction reaction(CO_(2)RR)to CO is a very effective way to address global warming.To avoid competition with water photolysis,metal-free gas-solid CO_(2)RR catalysts should be investigated.Cova...The light-driven CO_(2)reduction reaction(CO_(2)RR)to CO is a very effective way to address global warming.To avoid competition with water photolysis,metal-free gas-solid CO_(2)RR catalysts should be investigated.Covalent organic frameworks(COFs)offer a promising approach for CO_(2)transformation but lack high efficiency and selectivity in the absence of metals.Here,we have incorporated a pyridine nitrogen component into the imine-COF conjugated structure(Tp Pym).This innovative system has set a record of producing a CO yield of 1565μmol g^(-1)within 6 h.The soft X-ray absorption fine structure measurement proves that Tp Pym has both better conjugation and electron cloud enrichment.The electronic structure distribution delays the charge-carrier recombination,as evidenced by femtosecond transient absorption spectroscopy.The energy band diagram and theoretical calculation show that the conduction-band potential of Tp Pym is lower and the reduction reaction of CO_(2)to CO is more likely to occur.展开更多
Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c...Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.展开更多
Sonodynamic therapy(SDT)is garnering considerable attention as a promising treatment for deep-seated tumors because of its strong tissue penetration ability,non-invasiveness,and controllability.However,the SDT efficie...Sonodynamic therapy(SDT)is garnering considerable attention as a promising treatment for deep-seated tumors because of its strong tissue penetration ability,non-invasiveness,and controllability.However,the SDT efficiency of traditional sonosensitizers including porphyrins and their derivatives are limited due to their poor water dissolubility,high aggregation,and low reactive oxygen species(ROS)production efficiency.Consequently,it is crucial to develop novel sonosensitizers with high yields of ROS,outstanding water solubility,and good biocompatibility.Herein,we constructed a new platform for SDT based on unimolecular porphyrin derivatives OPV-C_(3)-TPP.The probe OPV-C_(3)-TPP was synthesized by covalently linking conjugated oligomers(OPV)with 5,10,15,20-tetra(4-aminophenyl)porphyrin(TAPP).The introduction of OPV greatly improves the water solubility of the porphyrins and reduces the self-aggregation of the porphyrins.In addition,OPV-C_(3)-TPP has good intramolecular energy transfer efficiency,thus enhancing the yield of ROS.The experimental results show that OPV-C_(3)-TPP exhibits excellent ROS generation capacity under ultrasound(US)irradiation,which leads to apoptosis and necrosis of tumor cells.In vivo tumor growth is also significantly inhibited in the OPV-C_(3)-TPP t US group,exhibiting better SDT effects than TAPP.Therefore,the unimolecular OPV-C_(3)-TPP can be used as a potential sonosensitizer,providing a promising SDT for deep-tissue tumors.展开更多
Tuning the conjugated bridges between the electron-donor and electron-acceptor moieties plays a crucial role in enhancing the memristive properties of organic materials,yet it is rarely reported.Herein,we designed and...Tuning the conjugated bridges between the electron-donor and electron-acceptor moieties plays a crucial role in enhancing the memristive properties of organic materials,yet it is rarely reported.Herein,we designed and synthesized four donor-acceptor(D-A)organic small molecules,namely 4,7-bis(4-((9H-fluoren-9-ylidene)(phenyl)methyl)phenyl)benzo[c][1,2,5]thiadiazole(DF-BT),4,7-bis((4-((9H-fluoren-9-ylidene)(phenyl)methyl)phenyl)ethynyl)benzo[c][1,2,5]thiadiazole(DF-ynl-BT),4,7-bis(5-(4-((9H-fluoren-9-ylidene)(phenyl)methyl)phenyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole(DF-Th-BT),and 4,7-bis((5-(4-((9H-fluoren-9-ylidene)(phenyl)methyl)phenyl)thiophen-2-yl)ethynyl)benzo[c][1,2,5]thiadiazole(DF-Th-ynl-BT),featuring unique conjugated bridges.These molecules were employed as active layers in resistive random-access memory(RRAM)devices to systematically investigate the influence of conjugation bridges on the electrical parameters.The results revealed that devices based on DF-BT,DF-ynl-BT,and DF-Th-BT exhibited write-once-read-many-times(WORM)characteristics,while the DF-Th-ynl-BT-based device demonstrated stable Flash-type switching behavior.Compared to DF-BT,memory devices utilizing DF-ynl-BT,DF-Th-BT,and DF-Th-ynl-BT,which incorporate additional conjugated bridges,exhibited nonvolatile memory properties with reduced threshold voltages,an improved ON/OFF current ratio,enhanced stability,and better uniformity.These findings demonstrated that tailoring the conjugated bridges in D-A molecules can effectively modulate resistive memory behavior and enhance device performance.Furthermore,the DF-Th-ynl-BT-based device was successfully integrated into logic gate circuits and display functions,highlighting its significant potential for applications in artificial intelligence(AI)neural networks.展开更多
The global scarcity of clean water is an escalating issue due to climate change,population growth,and pollution.Traditional water purification technologies,while effective,often require significant energy input and co...The global scarcity of clean water is an escalating issue due to climate change,population growth,and pollution.Traditional water purification technologies,while effective,often require significant energy input and complex infrastructure,limiting their accessibility.This review explores the use of conjugated polymer hydrogels as a promising solution for solar water purification.Conjugated polymer hydrogels offer unique advantages,including high photothermal conversion efficiency,effective heat management,and rapid water transport,which are crucial for efficient solar-driven water evaporation.By leveraging the properties of these hydrogels,it is possible to significantly reduce the energy required for water evaporation,making them a cost-effective and scalable option for producing potable water from seawater or wastewater.This review discusses the principles of solar water purification using conjugated polymer hydrogels,strategies to enhance their performance through material and structural design,and their applications in pollutant removal and desalination.Additionally,it addresses the advantages and limitations of these materials,providing insights into their potential future development and applications in sustainable water purification technologies.展开更多
Precise control of luminescence in carbon quantum dots(CQDs),from single-color to full-color emission,is crucial for advancing their applications in biomedical imaging and display technologies.While CQDs luminescence ...Precise control of luminescence in carbon quantum dots(CQDs),from single-color to full-color emission,is crucial for advancing their applications in biomedical imaging and display technologies.While CQDs luminescence is primarily influenced by conjugated domains and surface states,the underlying interaction mechanisms remain poorly understood.This study explores a graded nitro-engineering approach to simultaneously regulate surface states and sp^(2)conjugated domains through nitro(-NO_(2))modulation,enabling comprehensive color tuning.Using o-phenylenediamine(o-PD)as the carbon source and adjusting nitric acid(HNO_(3))concentrations,we synthesized tricolor-emitting nitro-functionalized CQDs(NO_(2)-CQDs).At lower-NO_(2) concentrations,luminescence is mainly influenced by surface states,where the electron-withdrawing effect of-NO_(2) enhancesπ-electron delocalization and stabilizes sp^(2)conjugation.With increasing-NO_(2) content,the lowest unoccupied molecular orbital(LUMO)energy level decreases(-2.12 eV to-3.39 eV),resulting in a red-shift in fluorescence.At higher-NO_(2) concentrations,luminescence is primarily affected by the sp^(2)conjugated domain,where steric hindrance reduces molecular planarity and conjugation,leading to a blue-shift in fluorescence as the sp^(2)domain size decreases(4.03 nm to 2.83 nm).Combining experimental results with density functional theory(DFT)calculations,we reveal the dual role of-NO2in modulating CQDs luminescence,an approach rarely achieved through surface functionalization.This work presents a novel strategy for precise tuning of CQDs luminescence across the visible spectrum.展开更多
Conjugated polymers(CPs)have emerged as an interesting class of materials in modern electronics and photonics,characterized by their unique delocalizedπ-electron systems that confer high flexibility,tunable electroni...Conjugated polymers(CPs)have emerged as an interesting class of materials in modern electronics and photonics,characterized by their unique delocalizedπ-electron systems that confer high flexibility,tunable electronic properties,and solution processability.These organic polymers present a compelling alternative to traditional inorganic semiconductors,offering the potential for a new generation of optoelectronic devices.This review explores the evolving role of CPs,exploring the molecular design strategies and innovative approaches that enhance their optoelectronic properties.We highlight notable progress toward developing faster,more efficient,and environmentally friendly devices by analyzing recent advancements in CP-based devices,including organic photovoltaics,field-effect transistors,and nonvolatile memories.The integration of CPs in flexible sustainable technologies underscores their potential to revolutionize future electronic and photonic systems.As ongoing research pushes the frontiers of molecular engineering and device architecture,CPs are poised to play an essential role in shaping next-generation technologies that prioritize performance,sustainability,and adaptability.展开更多
Exploration of new green polymerization strategies for the construction of conjugated polymers is important but challengeable.In this work,a multicomponent polymerization of acetylarenes,alkynones and ammonium acetate...Exploration of new green polymerization strategies for the construction of conjugated polymers is important but challengeable.In this work,a multicomponent polymerization of acetylarenes,alkynones and ammonium acetate for in situ construction of conjugated poly(triarylpyridine)s was developed.The polymerization reactions of diacetylarenes,aromatic dialkynones and NH_(4)OAc were performed in dimethylsulfoxide(DMSO)under heating in the presence of potassium tert-butoxide(t-BuOK),affording four conjugated poly(2,4,6-triarylpyridine)s(PTAPs)in satisfactory yields.The resulting PTAPs have good solubility in common organic solvents and high thermal stability with 5%weight loss temperatures reaching up to 460℃.They are also electrochemically active.The PTAPs incorporating tetraphenylethene units manifest aggregation-induced emission features.Moreover,through simply being doped into poly(vinyl alcohol)(PVA)matrix,the polymer and model compound containing triphenylamine moieties exhibit room-temperature phosphorescence properties with ultralong lifetimes up to 696.2 ms and high quantum yields up to 28.7%.This work not only provides a facile green synthetic route for conjugated polymers but also offers new insights into the design of advanced materials with unique photophysical properties.展开更多
Two-dimensional conjugated polymers(2DCPs)have received great interest in smart devices due to their unique physical properties associated with flexibility,nanosized thickness,and correlated quantum size effect.Contro...Two-dimensional conjugated polymers(2DCPs)have received great interest in smart devices due to their unique physical properties associated with flexibility,nanosized thickness,and correlated quantum size effect.Control of interlayer interactions of multilayer 2DCPs is crucial for modulating the confinement of charge carriers,heat,and photons to give remarkable properties because of the breaking of symmetry.However,to date,it is unclear how the multilayers of 2DCPs affect their physical properties.In this article,we for the first time perform a density functional theory calculation for the interlayer slipping effect on in-plane electronic properties of few-layer 2DCPs.Based on five homopolymers formed by C-C bonds with various stacking configurations beyond the inclined and serrated ones,results show that a moderate electric field causes the valence(conduction)band of few-layer 2DCPs to exhibit distinctive electrical characteristics which are dominated by the outermost two layers on hole(electron)enriched side.Analysis based on recombined molecular orbitals reveals that band properties are sensitive to the interlayer offsets when they result from the interference among multiple orbitals from each building block.This result provides a new guideline for manipulating charge transfer and spintronic properties of few-layer 2DCPs through an electric field to advance their various applications.展开更多
Adsorption-photocatalytic degradation of organic pollutants in water is an advantageous method for environmental purification.Herein,a feasible strategy is developed to construct a novel dual S-scheme heterojunctions ...Adsorption-photocatalytic degradation of organic pollutants in water is an advantageous method for environmental purification.Herein,a feasible strategy is developed to construct a novel dual S-scheme heterojunctions Cu_(7)S_(4)-TiO_(2)-conjugated polymer with a donor-acceptor structure.There are abundant adsorption active sites for adsorption in the porous structure of the composites,which can rapidly capture pollutants through hydrogen bonding and π-π interactions.In addition,the dual S-scheme heterojunctions effectively improve carrier separation while maintaining a strong redox ability.Thus,the optimized 1.5% CST-130 catalysts can adsorb 71% of 20 ppm BPA in 15 min and completely remove it within 30 min with high adsorption capacity and photodegradation efficiency.Therefore,this study provides a new inspiration for synergistic adsorption and degradation of BPA and the construction of dual S-scheme heterojunction.展开更多
Exploration of efficient and stable photocatalysts to mimic natural leaves for the conversion of atmospheric CO_(2)into hydrocarbons utilizing solar light is very important but remains a major challenge.Herein,we repo...Exploration of efficient and stable photocatalysts to mimic natural leaves for the conversion of atmospheric CO_(2)into hydrocarbons utilizing solar light is very important but remains a major challenge.Herein,we report the design of four novel metal-salen-incorporated conjugated microporous polymers as robust artificial leaves for photoreduction of atmospheric CO_(2)with gaseous water.Owing to the rich nitrogen and oxygen moieties in the polymeric frameworks,they show a maximum CO_(2)adsorption capacity of 46.1 cm3 g^(−1)and adsorption selectivity for CO_(2)/N_(2)of up to 82 at 273 K.Under air atmosphere and simulated solar light(100mWcm^(−2)),TEPT-Zn shows an excellent CO yield of 304.96μmol h^(−1)g^(−1)with a selectivity of approximately 100%,which represents one of the best results in terms of organic photocatalysts for gas-phase CO_(2)photoreduction so far.Furthermore,only small degradation in the CO yield is observed even after 120-h continuous illumination.More importantly,a good CO yield of 152.52μmol g^(−1)was achieved by directly exposing the photocatalytic reaction of TEPT-Zn in an outdoor environment for 3 h(25-28℃,52.3±7.9mWcm^(−2)).This work provides an avenue for the continued development of advanced polymers toward gas-phase photoconversion of CO_(2)from air.展开更多
Metal-organic frameworks(MOFs),assembled periodically by coordinating inorganic metal ions and organic motifs,have arisen widespread curiosity and intensive investigation owing to their tailorable electronic propertie...Metal-organic frameworks(MOFs),assembled periodically by coordinating inorganic metal ions and organic motifs,have arisen widespread curiosity and intensive investigation owing to their tailorable electronic properties and well-defined topological structure.However,the majority of MOFs are intrinsically dielectric or insulative[1]and typically form as 3D bulk or powder crystals,making them incompatible with complementary metal-oxide semiconductor(CMOS)techniques.In recent years,layer-stacked two-dimensional conjugated MOFs(2D c-MOFs),composed of planar conjugated ligands and linkages[2],have demonstrated high in-plane π conjugation and weak out-of-plane van der Waals interactions,due to their long-range electron delocalization over metal ions and ligands[3].As a result,highly tunable band gaps from semiconductor to conductor,modulable porosity from micropore to macropore and versatile processability into conductive 2D thin films with controllable lateral thickness and domain size are presented,rendering charming potential for applications in(opto-)electronics compared with classic 2D metal oxide,chalcogenide and crystalline polymer materials.To improve interfacial charge-transport and precisely tune the charge extraction and band alignment of 2D c-MOFs in(opto-)electronic devices[4],developing highly efficient synthetic methods of 2D c-MOFs is of utmost importance.展开更多
Aqueous zinc-ion batteries(AZIBs)have hugely latent advantages in large-scale energy storage due to its innate safety,reasonable price,and sustainability.However,most AZIB cathode materials suffer from short cycling l...Aqueous zinc-ion batteries(AZIBs)have hugely latent advantages in large-scale energy storage due to its innate safety,reasonable price,and sustainability.However,most AZIB cathode materials suffer from short cycling life and poor rate performance.Herein,a bipolar donor-acceptor(D-A)conjugated microporous polymer(PTZ-BDTB),consisting of electron-withdrawing benzo[1,2-b:4,5-b']dithiophene-4,8-dio ne(BDTB)units and electron-donating phenothiazine(PTZ)units,is developed as the cathode material of aqueous zinc dual-ion batteries(AZDIBs).The D-A type structure design could reduce the band gap,thus promoting electron transfer in the polymer framework.Therefore,the PTZ-BDTB cathode in a30 mol/kg(m)ZnCl_(2)water-in-salt electrolyte exhibits a high reversible capacity of 202 mA h g^(-1)at0.05 A g^(-1)with excellent rate performance(109 mA h g^(-1)at 15 A g^(-1)),which is far superior to its counterpart polymers PPTZ and PB-BDTB.Impressively,PTZ-BDTB shows ultra-stable cycle performance with capacity retention ratios of 76.2%after 460 cycles at 0.05 A g^(-1)and 96%after 27000 cycles at 5 A g^(-1).PTZBDTB also exhibits a low self-discharge ability with capacity retention about 76.4%after resting the battery for 28 days.These results demonstrate that D-A type structural design is a promising strategy for constructing high performance cathode materials for AZDIBs.展开更多
Fully conjugated covalent organic frameworks(COFs)are widely used in electrocatalysis.The COF with-ph-NH_(2)edge poly(1,4-phenyldiazo porphyrin cobalt)(A-PpazoPorCo)is synthesized by adjusting the molar ratio of the r...Fully conjugated covalent organic frameworks(COFs)are widely used in electrocatalysis.The COF with-ph-NH_(2)edge poly(1,4-phenyldiazo porphyrin cobalt)(A-PpazoPorCo)is synthesized by adjusting the molar ratio of the reaction material,and exhibits high delocalization energy to significantly enhance thermal stability.The nitrogen in the azo bond improves the adsorption capacity for ORR and OER catalytic intermediates,while the-ph-NH_(2)group further increases the electron cloud density at the Co-N_(4)center in A-PpazoPorCo.Density functional theory(DFT)calculations reveal that the strong electron-donating-ph-NH_(2)groups and the electron-donating azo bonds form an electron donor-π-electron acceptor(D-π-A)structure,which further enhances the electron cloud density.The strongπ-πinteraction between A-PpazoPorCo and three-dimensional graphene(3D-G)significantly boosts the oxygen catalytic performance of the A-PpazoPorCo/3D-G.The catalytic ORR half-wave potential(E_(1/2))of A-PpazoPorCo/3D-G can reach 0.880 V vs.RHE.The total overpotential(ΔE=E_(j=10)-E_(1/2))is 0.617 V,demonstrating excellent bifunctional oxygen catalytic performance.The efficient oxygen catalytic performance indicates that A-PpazoPorCo/3D-G has the potential for application in fuel cells cathodes and overall water splitting anodes.展开更多
The use of conjugated microporous polymers(CMPs)in photocatalytic CO_(2)reduction(CO_(2)RR),leveraging solar energy and water to generate carbon-based products,is attracting considerable attention.However,the amorphou...The use of conjugated microporous polymers(CMPs)in photocatalytic CO_(2)reduction(CO_(2)RR),leveraging solar energy and water to generate carbon-based products,is attracting considerable attention.However,the amorphous nature of most CMPs poses challenges for effective charge carrier separation,limiting their application in CO_(2)RR.In this study,we introduce an innovative approach utilizing donorπ-skeleton engineering to enhance skeleton coplanarity,thereby achieving highly crystalline CMPs.Advanced femtosecond transient absorption and temperature-dependent photoluminescence analyses reveal efficient exciton dissociation into free charge carriers that actively engage in surface reactions.Complementary theoretical calculations demonstrate that our highly crystalline CMP(Py-TDO)not only greatly improves the separation and transfer of photoexcited charge carriers but also introduces additional charge transport pathways via intermolecularπ-πstacking.Py-TDO exhibits outstanding photocatalytic CO_(2) reduction capabilities,achieving a remarkable CO generation rate of 223.97μmol g^(-1)h^(-1)without the addition of chemical scavengers.This work lays pioneering groundwork for the development of novel highly crystalline materials,advancing the field of solar-driven energy conversion.展开更多
Solar-driven hydrogen peroxide(H_(2)O_(2))production offers a sustainable and environmentally friendly alternative to the traditional anthraquinone oxidation method.Conjugated polymers(CPs)are emerging as promising ph...Solar-driven hydrogen peroxide(H_(2)O_(2))production offers a sustainable and environmentally friendly alternative to the traditional anthraquinone oxidation method.Conjugated polymers(CPs)are emerging as promising photocatalysts for H_(2)O_(2)production due to their unique electronic,optical properties,and tunable structures.However,the high exciton binding energy of CPs hinders efficient exciton dissociation and charge separation,limiting their photocatalytic performance.In this work,we synthesized scandium(Sc)atoms decorated CPs with enhanced ordered stacking and crystallinity by introducing benzaldehyde as an end-capping reagent.The strong interaction between charged Sc atoms and electrons facilitates exciton dissociation and improves charge transfer capability.Furthermore,the Lewis acidic nature of Sc atoms promotes oxygen adsorption and enhances the stabilization of superoxide anion intermediate(·O_(2)^(-)).As a result,the as-synthesized photocatalysts exhibit a high H_(2)O_(2)production rate of 18μmol h^(-1)in pure water,which is three times that of pristine CPs,This work provides valuable insights into the design of organic polymer photocatalysts for various photocatalytic reactions.展开更多
The utilization of covalent organic frameworks(COFs)holds great potential for achieving tailorable tuning of catalytic performance through bottom-up modulation of the reticular structure.In this work,we show that a si...The utilization of covalent organic frameworks(COFs)holds great potential for achieving tailorable tuning of catalytic performance through bottom-up modulation of the reticular structure.In this work,we show that a single-point structural alteration in the linkage within a nickel phthalocyanine(NiPc)-based series effectively modulates the catalytic performance of the COFs in electrochemical CO_(2)reduction reaction(CO_(2)RR).A Ni Pc-based COF series with three members which possess the same Ni Pc unit but different linkages,including piperazine,dioxin,and dithiine,have been constructed by nucleophilic aromatic substitution reaction between octafluorophthalocyanine nickel and tetrasubstituted benzene linkers with different bridging groups.Among these COFs,the dioxin-linked COF showed the best activity of CO_(2)RR with a current density of CO(j_(CO))=-27.99 m A cm^(-2)at-1.0 V(versus reversible hydrogen electrode,RHE),while the COF with piperazine linkage demonstrated an excellent selectivity of Faradaic efficiency for CO(FECO)up to 90.7%at a pretty low overpotential of 0.39 V.In addition,both a high FECO value close to 100%and a reasonable jCO of-8.20 m A cm^(-2)at the potential of-0.8 V(versus RHE)were obtained by the piperazine-linked COF,making it one of the most competitive candidates among COF-based materials.Mechanistic studies exhibited that single-point structural alteration could tailor the electron density in Ni sites and alter the interaction between the active sites and the key intermediates adsorbed and desorbed,thereby tuning the electrochemical performance during CO_(2)RR process.展开更多
The metal complex 5-(4-aminophenyl)-10,15,20-triphenylporphyrin copper (CuAPTPP) was covalently linked on the surface of TiO2 microspheres by using toluene disocyanate (TDI) as a bridging bond unit. The hydroxyl...The metal complex 5-(4-aminophenyl)-10,15,20-triphenylporphyrin copper (CuAPTPP) was covalently linked on the surface of TiO2 microspheres by using toluene disocyanate (TDI) as a bridging bond unit. The hydroxyl group (-OH) of TiO2 microspheres surface and the amino group (-NH2) of CuAPTPP reacted respectively with the active -NCO groups of TDI to form a surface conjugated microsphere CuAPTPP-TDI-TiO2 that was confirmed by FT-IR spectra. The CuAPTPP-TDI-TiO2 microspheres were characterized with UV-visible, elemental analysis, XRD, SEM, and UV-Vis diffuse reflectance spectra. The effect of amounts of linked TDI on the performance of photocatalytic microspheres was discussed, and the optimal molar ratio of TDI:TiO2 was established. The photocatalytic activity of CuAPTPP- TDI-TiO2 was evaluated using the photocatalytic degradation of methylene blue (MB) under visible-light irradiation. The results showed that, TDI, as a bond unit, was used to form a steady chemical brigdging bond linking CuAPTPP and the surface of TiO2 microspheres, and the prepared catalyst exhibited higher photocatalytic activity under visible-light irradiation for MB degradation. The degradation rate of 20 mg/L MB could reach 98.7% under Xe- lamp (150 W) irradiation in 120 rain. The degradation of MB followed the first-order reaction model under visible light irradiation, and the rate constant of 5.1× 10^-2 min-1 and the half- life of 11.3 min were achieved. And the new photocatalyst can be recycled for 4 times, remaining 90.0% MB degradation rate.展开更多
π-Conjugated donor-acceptor-donor-acceptor-donor(D-A-D-A-D)type pyrenoviologens(PyV^(2+)),with the 2,7 positions of pyrene serving as connection bridges,were synthesized through SN2 reactions.Specifically,pyrenoviolo...π-Conjugated donor-acceptor-donor-acceptor-donor(D-A-D-A-D)type pyrenoviologens(PyV^(2+)),with the 2,7 positions of pyrene serving as connection bridges,were synthesized through SN2 reactions.Specifically,pyrenoviologen 3c was modified with a methylnaphthalene group,while 3a and 3b were modified with methyl and benzyl groups,respectively,for comparison.These pyrenoviologens exhibit reversible redox properties and strong fluorescence emission.Electrochromic devices(ECDs)were prepared using pyrenoviologens as the active materials.Notably,naphthalene-containing pyrenoviologen 3c,with its DA-D-A-D conjugated structure,possesses more stable free radicals,enabling it to maintain the radical color for a longer duration after power loss.A series of color-changing devices were successfully assembled.Due to the strong fluorescence of pyrenoviologens and the unique electron transfer effect between them and picric acid(PA),a sensor film with good selectivity and high sensitivity for PA in aqueous solution was prepared using pyrenoviologens as the fluorescent probe.Specifically,3c exhibited the highest sensitivity to PA due to its lowest energy gap.The introduction of the D-A-D-A-D structure is a strategic approach to enhancing photoelectric performance and broadening the application of viologens.展开更多
The asymmetric conjugate additions of aryl Grignard reagents to trisubstituted enones by chiral P,N ligand L6 with low catalyst loading(0.25–1.0 mol%)are disclosed.Chiral 2-ester chromanone and its analogs bearing a ...The asymmetric conjugate additions of aryl Grignard reagents to trisubstituted enones by chiral P,N ligand L6 with low catalyst loading(0.25–1.0 mol%)are disclosed.Chiral 2-ester chromanone and its analogs bearing a quaternary stereogenic centers at C2 position were produced in high to excellent yields,enantioselectivities and high turnover number.The notable features of this reaction include its broad substrate scope,complete 1,4-addition regioselectivities,applicability to both batch and flow for large scale synthesis.This report develops an efficient strategy to apply aryl Grignard reagents in asymmetric 1,4-conjugation reactions and provides a direct method to incorporate quaternary chiral centers toward the synthesis of biologically relevant chromanone derivatives.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22375031,22202037,22472023)the Fundamental Research Funds for the Central Universities(Nos.2412023YQ001,2412023QD019,2412024QD014)+1 种基金supported by grants from the seventh batch of Jilin Province Youth Science and Technology Talent Lifting Project(No.QT202305)Science and Technology Development Plan Project of Jilin Province,China(No.20240101192JC)。
文摘The light-driven CO_(2)reduction reaction(CO_(2)RR)to CO is a very effective way to address global warming.To avoid competition with water photolysis,metal-free gas-solid CO_(2)RR catalysts should be investigated.Covalent organic frameworks(COFs)offer a promising approach for CO_(2)transformation but lack high efficiency and selectivity in the absence of metals.Here,we have incorporated a pyridine nitrogen component into the imine-COF conjugated structure(Tp Pym).This innovative system has set a record of producing a CO yield of 1565μmol g^(-1)within 6 h.The soft X-ray absorption fine structure measurement proves that Tp Pym has both better conjugation and electron cloud enrichment.The electronic structure distribution delays the charge-carrier recombination,as evidenced by femtosecond transient absorption spectroscopy.The energy band diagram and theoretical calculation show that the conduction-band potential of Tp Pym is lower and the reduction reaction of CO_(2)to CO is more likely to occur.
基金financially supported by the Sichuan Science and Technology Program(2022YFS0025 and 2024YFFK0133)supported by the“Fundamental Research Funds for the Central Universities of China.”。
文摘Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins.
基金supported by the National Natural Science Foundation of China(22274095 and 21974084)the Fundamental Research Funds for the Central Universities(GK202302004).
文摘Sonodynamic therapy(SDT)is garnering considerable attention as a promising treatment for deep-seated tumors because of its strong tissue penetration ability,non-invasiveness,and controllability.However,the SDT efficiency of traditional sonosensitizers including porphyrins and their derivatives are limited due to their poor water dissolubility,high aggregation,and low reactive oxygen species(ROS)production efficiency.Consequently,it is crucial to develop novel sonosensitizers with high yields of ROS,outstanding water solubility,and good biocompatibility.Herein,we constructed a new platform for SDT based on unimolecular porphyrin derivatives OPV-C_(3)-TPP.The probe OPV-C_(3)-TPP was synthesized by covalently linking conjugated oligomers(OPV)with 5,10,15,20-tetra(4-aminophenyl)porphyrin(TAPP).The introduction of OPV greatly improves the water solubility of the porphyrins and reduces the self-aggregation of the porphyrins.In addition,OPV-C_(3)-TPP has good intramolecular energy transfer efficiency,thus enhancing the yield of ROS.The experimental results show that OPV-C_(3)-TPP exhibits excellent ROS generation capacity under ultrasound(US)irradiation,which leads to apoptosis and necrosis of tumor cells.In vivo tumor growth is also significantly inhibited in the OPV-C_(3)-TPP t US group,exhibiting better SDT effects than TAPP.Therefore,the unimolecular OPV-C_(3)-TPP can be used as a potential sonosensitizer,providing a promising SDT for deep-tissue tumors.
基金supported by the financial support from the National Natural Science Foundation of China(Grant Nos.:62174116 and 61774109)the start-up fund from Shanghai University.
文摘Tuning the conjugated bridges between the electron-donor and electron-acceptor moieties plays a crucial role in enhancing the memristive properties of organic materials,yet it is rarely reported.Herein,we designed and synthesized four donor-acceptor(D-A)organic small molecules,namely 4,7-bis(4-((9H-fluoren-9-ylidene)(phenyl)methyl)phenyl)benzo[c][1,2,5]thiadiazole(DF-BT),4,7-bis((4-((9H-fluoren-9-ylidene)(phenyl)methyl)phenyl)ethynyl)benzo[c][1,2,5]thiadiazole(DF-ynl-BT),4,7-bis(5-(4-((9H-fluoren-9-ylidene)(phenyl)methyl)phenyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole(DF-Th-BT),and 4,7-bis((5-(4-((9H-fluoren-9-ylidene)(phenyl)methyl)phenyl)thiophen-2-yl)ethynyl)benzo[c][1,2,5]thiadiazole(DF-Th-ynl-BT),featuring unique conjugated bridges.These molecules were employed as active layers in resistive random-access memory(RRAM)devices to systematically investigate the influence of conjugation bridges on the electrical parameters.The results revealed that devices based on DF-BT,DF-ynl-BT,and DF-Th-BT exhibited write-once-read-many-times(WORM)characteristics,while the DF-Th-ynl-BT-based device demonstrated stable Flash-type switching behavior.Compared to DF-BT,memory devices utilizing DF-ynl-BT,DF-Th-BT,and DF-Th-ynl-BT,which incorporate additional conjugated bridges,exhibited nonvolatile memory properties with reduced threshold voltages,an improved ON/OFF current ratio,enhanced stability,and better uniformity.These findings demonstrated that tailoring the conjugated bridges in D-A molecules can effectively modulate resistive memory behavior and enhance device performance.Furthermore,the DF-Th-ynl-BT-based device was successfully integrated into logic gate circuits and display functions,highlighting its significant potential for applications in artificial intelligence(AI)neural networks.
基金funded by the National Natural Science Foundation of China,grant numbers 52373184&52473179the Key Research and Development Program of Jiangxi Province,grant number 20223BBE51023+1 种基金the Natural Science Foundation of Jiangxi Province,grant numbers 20232ACB204002&20232BAB202044the Jiangxi Provincial Key Laboratory of Flexible Electronics,grant numbers 20212BCD42004&20242BCC32010.
文摘The global scarcity of clean water is an escalating issue due to climate change,population growth,and pollution.Traditional water purification technologies,while effective,often require significant energy input and complex infrastructure,limiting their accessibility.This review explores the use of conjugated polymer hydrogels as a promising solution for solar water purification.Conjugated polymer hydrogels offer unique advantages,including high photothermal conversion efficiency,effective heat management,and rapid water transport,which are crucial for efficient solar-driven water evaporation.By leveraging the properties of these hydrogels,it is possible to significantly reduce the energy required for water evaporation,making them a cost-effective and scalable option for producing potable water from seawater or wastewater.This review discusses the principles of solar water purification using conjugated polymer hydrogels,strategies to enhance their performance through material and structural design,and their applications in pollutant removal and desalination.Additionally,it addresses the advantages and limitations of these materials,providing insights into their potential future development and applications in sustainable water purification technologies.
基金supported by National Natural Science Foundation of China(No.51873085)Natural Science Foundation of Liaoning Province-Outstanding Youth Foundation(No.2022-YQ-14)+2 种基金Liaoning Revitalization Talents Program(No.XLYC2007056)China Scholarship Council(CSC Scholarship,No.202006800009)the Shenyang Science and Technology Project(No.RC230707)。
文摘Precise control of luminescence in carbon quantum dots(CQDs),from single-color to full-color emission,is crucial for advancing their applications in biomedical imaging and display technologies.While CQDs luminescence is primarily influenced by conjugated domains and surface states,the underlying interaction mechanisms remain poorly understood.This study explores a graded nitro-engineering approach to simultaneously regulate surface states and sp^(2)conjugated domains through nitro(-NO_(2))modulation,enabling comprehensive color tuning.Using o-phenylenediamine(o-PD)as the carbon source and adjusting nitric acid(HNO_(3))concentrations,we synthesized tricolor-emitting nitro-functionalized CQDs(NO_(2)-CQDs).At lower-NO_(2) concentrations,luminescence is mainly influenced by surface states,where the electron-withdrawing effect of-NO_(2) enhancesπ-electron delocalization and stabilizes sp^(2)conjugation.With increasing-NO_(2) content,the lowest unoccupied molecular orbital(LUMO)energy level decreases(-2.12 eV to-3.39 eV),resulting in a red-shift in fluorescence.At higher-NO_(2) concentrations,luminescence is primarily affected by the sp^(2)conjugated domain,where steric hindrance reduces molecular planarity and conjugation,leading to a blue-shift in fluorescence as the sp^(2)domain size decreases(4.03 nm to 2.83 nm).Combining experimental results with density functional theory(DFT)calculations,we reveal the dual role of-NO2in modulating CQDs luminescence,an approach rarely achieved through surface functionalization.This work presents a novel strategy for precise tuning of CQDs luminescence across the visible spectrum.
基金Khalifa University,Abu Dhabi,for the generous support of this researchthe financial support from the Khalifa University Research&Innovation Grant(RIG-2023-005)。
文摘Conjugated polymers(CPs)have emerged as an interesting class of materials in modern electronics and photonics,characterized by their unique delocalizedπ-electron systems that confer high flexibility,tunable electronic properties,and solution processability.These organic polymers present a compelling alternative to traditional inorganic semiconductors,offering the potential for a new generation of optoelectronic devices.This review explores the evolving role of CPs,exploring the molecular design strategies and innovative approaches that enhance their optoelectronic properties.We highlight notable progress toward developing faster,more efficient,and environmentally friendly devices by analyzing recent advancements in CP-based devices,including organic photovoltaics,field-effect transistors,and nonvolatile memories.The integration of CPs in flexible sustainable technologies underscores their potential to revolutionize future electronic and photonic systems.As ongoing research pushes the frontiers of molecular engineering and device architecture,CPs are poised to play an essential role in shaping next-generation technologies that prioritize performance,sustainability,and adaptability.
基金supported by the National Natural Science Foundation of China(No.22071166)the Priority Academic Program Development of Jiangsu High Education Institutions(PAPD).
文摘Exploration of new green polymerization strategies for the construction of conjugated polymers is important but challengeable.In this work,a multicomponent polymerization of acetylarenes,alkynones and ammonium acetate for in situ construction of conjugated poly(triarylpyridine)s was developed.The polymerization reactions of diacetylarenes,aromatic dialkynones and NH_(4)OAc were performed in dimethylsulfoxide(DMSO)under heating in the presence of potassium tert-butoxide(t-BuOK),affording four conjugated poly(2,4,6-triarylpyridine)s(PTAPs)in satisfactory yields.The resulting PTAPs have good solubility in common organic solvents and high thermal stability with 5%weight loss temperatures reaching up to 460℃.They are also electrochemically active.The PTAPs incorporating tetraphenylethene units manifest aggregation-induced emission features.Moreover,through simply being doped into poly(vinyl alcohol)(PVA)matrix,the polymer and model compound containing triphenylamine moieties exhibit room-temperature phosphorescence properties with ultralong lifetimes up to 696.2 ms and high quantum yields up to 28.7%.This work not only provides a facile green synthetic route for conjugated polymers but also offers new insights into the design of advanced materials with unique photophysical properties.
基金supported by the National Natural Science Foundation of China(52233010)CAS Project for Young Scientists in Basic Research(YSBR-053)。
文摘Two-dimensional conjugated polymers(2DCPs)have received great interest in smart devices due to their unique physical properties associated with flexibility,nanosized thickness,and correlated quantum size effect.Control of interlayer interactions of multilayer 2DCPs is crucial for modulating the confinement of charge carriers,heat,and photons to give remarkable properties because of the breaking of symmetry.However,to date,it is unclear how the multilayers of 2DCPs affect their physical properties.In this article,we for the first time perform a density functional theory calculation for the interlayer slipping effect on in-plane electronic properties of few-layer 2DCPs.Based on five homopolymers formed by C-C bonds with various stacking configurations beyond the inclined and serrated ones,results show that a moderate electric field causes the valence(conduction)band of few-layer 2DCPs to exhibit distinctive electrical characteristics which are dominated by the outermost two layers on hole(electron)enriched side.Analysis based on recombined molecular orbitals reveals that band properties are sensitive to the interlayer offsets when they result from the interference among multiple orbitals from each building block.This result provides a new guideline for manipulating charge transfer and spintronic properties of few-layer 2DCPs through an electric field to advance their various applications.
基金supports provided by the National Key R&D Program of China (2020YFC1808401, 2020YFC1808403)National Natural Science Foundation of China (22078213, 21938006, 51973148)+3 种基金Basic Research Project of Cutting-Edge Technology in Jiangsu Province, China (BK20202012)Prospective Application Research Project of Suzhou, China (SYC2022042)Water Research and Technology Project of Suzhou, China (2022006)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD)。
文摘Adsorption-photocatalytic degradation of organic pollutants in water is an advantageous method for environmental purification.Herein,a feasible strategy is developed to construct a novel dual S-scheme heterojunctions Cu_(7)S_(4)-TiO_(2)-conjugated polymer with a donor-acceptor structure.There are abundant adsorption active sites for adsorption in the porous structure of the composites,which can rapidly capture pollutants through hydrogen bonding and π-π interactions.In addition,the dual S-scheme heterojunctions effectively improve carrier separation while maintaining a strong redox ability.Thus,the optimized 1.5% CST-130 catalysts can adsorb 71% of 20 ppm BPA in 15 min and completely remove it within 30 min with high adsorption capacity and photodegradation efficiency.Therefore,this study provides a new inspiration for synergistic adsorption and degradation of BPA and the construction of dual S-scheme heterojunction.
基金Research Foundation for Advanced Talents of East China University of Technology,Grant/Award Number:DHBK201927Excellent Youth Foundation of Jiangxi Scientific Committee,Grant/Award Number:20232ACB213012+2 种基金National Science Foundation for Young Scientists of China,Grant/Award Number:21905122National Science Foundation for Young Scientists,Grant/Award Number:21905147Jiangxi Talent Program,Grant/Award Number:DHSQT32022005.
文摘Exploration of efficient and stable photocatalysts to mimic natural leaves for the conversion of atmospheric CO_(2)into hydrocarbons utilizing solar light is very important but remains a major challenge.Herein,we report the design of four novel metal-salen-incorporated conjugated microporous polymers as robust artificial leaves for photoreduction of atmospheric CO_(2)with gaseous water.Owing to the rich nitrogen and oxygen moieties in the polymeric frameworks,they show a maximum CO_(2)adsorption capacity of 46.1 cm3 g^(−1)and adsorption selectivity for CO_(2)/N_(2)of up to 82 at 273 K.Under air atmosphere and simulated solar light(100mWcm^(−2)),TEPT-Zn shows an excellent CO yield of 304.96μmol h^(−1)g^(−1)with a selectivity of approximately 100%,which represents one of the best results in terms of organic photocatalysts for gas-phase CO_(2)photoreduction so far.Furthermore,only small degradation in the CO yield is observed even after 120-h continuous illumination.More importantly,a good CO yield of 152.52μmol g^(−1)was achieved by directly exposing the photocatalytic reaction of TEPT-Zn in an outdoor environment for 3 h(25-28℃,52.3±7.9mWcm^(−2)).This work provides an avenue for the continued development of advanced polymers toward gas-phase photoconversion of CO_(2)from air.
基金supported by the National Natural Science Foundation of China(Nos.22201086,22471084,92261204,21925104,and 22431005).
文摘Metal-organic frameworks(MOFs),assembled periodically by coordinating inorganic metal ions and organic motifs,have arisen widespread curiosity and intensive investigation owing to their tailorable electronic properties and well-defined topological structure.However,the majority of MOFs are intrinsically dielectric or insulative[1]and typically form as 3D bulk or powder crystals,making them incompatible with complementary metal-oxide semiconductor(CMOS)techniques.In recent years,layer-stacked two-dimensional conjugated MOFs(2D c-MOFs),composed of planar conjugated ligands and linkages[2],have demonstrated high in-plane π conjugation and weak out-of-plane van der Waals interactions,due to their long-range electron delocalization over metal ions and ligands[3].As a result,highly tunable band gaps from semiconductor to conductor,modulable porosity from micropore to macropore and versatile processability into conductive 2D thin films with controllable lateral thickness and domain size are presented,rendering charming potential for applications in(opto-)electronics compared with classic 2D metal oxide,chalcogenide and crystalline polymer materials.To improve interfacial charge-transport and precisely tune the charge extraction and band alignment of 2D c-MOFs in(opto-)electronic devices[4],developing highly efficient synthetic methods of 2D c-MOFs is of utmost importance.
基金financial supported by the National Natural Science Foundation of China(22175110&22375076,52103264)the Hubei Provincial Natural Science Foundation of China(2024AFA031)the Key Research and Development Program of Wuhan(2024010802030157)。
文摘Aqueous zinc-ion batteries(AZIBs)have hugely latent advantages in large-scale energy storage due to its innate safety,reasonable price,and sustainability.However,most AZIB cathode materials suffer from short cycling life and poor rate performance.Herein,a bipolar donor-acceptor(D-A)conjugated microporous polymer(PTZ-BDTB),consisting of electron-withdrawing benzo[1,2-b:4,5-b']dithiophene-4,8-dio ne(BDTB)units and electron-donating phenothiazine(PTZ)units,is developed as the cathode material of aqueous zinc dual-ion batteries(AZDIBs).The D-A type structure design could reduce the band gap,thus promoting electron transfer in the polymer framework.Therefore,the PTZ-BDTB cathode in a30 mol/kg(m)ZnCl_(2)water-in-salt electrolyte exhibits a high reversible capacity of 202 mA h g^(-1)at0.05 A g^(-1)with excellent rate performance(109 mA h g^(-1)at 15 A g^(-1)),which is far superior to its counterpart polymers PPTZ and PB-BDTB.Impressively,PTZ-BDTB shows ultra-stable cycle performance with capacity retention ratios of 76.2%after 460 cycles at 0.05 A g^(-1)and 96%after 27000 cycles at 5 A g^(-1).PTZBDTB also exhibits a low self-discharge ability with capacity retention about 76.4%after resting the battery for 28 days.These results demonstrate that D-A type structural design is a promising strategy for constructing high performance cathode materials for AZDIBs.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.22172093 and 21776167)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2023MB061)。
文摘Fully conjugated covalent organic frameworks(COFs)are widely used in electrocatalysis.The COF with-ph-NH_(2)edge poly(1,4-phenyldiazo porphyrin cobalt)(A-PpazoPorCo)is synthesized by adjusting the molar ratio of the reaction material,and exhibits high delocalization energy to significantly enhance thermal stability.The nitrogen in the azo bond improves the adsorption capacity for ORR and OER catalytic intermediates,while the-ph-NH_(2)group further increases the electron cloud density at the Co-N_(4)center in A-PpazoPorCo.Density functional theory(DFT)calculations reveal that the strong electron-donating-ph-NH_(2)groups and the electron-donating azo bonds form an electron donor-π-electron acceptor(D-π-A)structure,which further enhances the electron cloud density.The strongπ-πinteraction between A-PpazoPorCo and three-dimensional graphene(3D-G)significantly boosts the oxygen catalytic performance of the A-PpazoPorCo/3D-G.The catalytic ORR half-wave potential(E_(1/2))of A-PpazoPorCo/3D-G can reach 0.880 V vs.RHE.The total overpotential(ΔE=E_(j=10)-E_(1/2))is 0.617 V,demonstrating excellent bifunctional oxygen catalytic performance.The efficient oxygen catalytic performance indicates that A-PpazoPorCo/3D-G has the potential for application in fuel cells cathodes and overall water splitting anodes.
基金supported by the National Natural Science Foundation of China(Grant Nos.22379105 and 22102112)the Natural Science Foundation of Shanxi Province(Grant Nos.20210302123110)。
文摘The use of conjugated microporous polymers(CMPs)in photocatalytic CO_(2)reduction(CO_(2)RR),leveraging solar energy and water to generate carbon-based products,is attracting considerable attention.However,the amorphous nature of most CMPs poses challenges for effective charge carrier separation,limiting their application in CO_(2)RR.In this study,we introduce an innovative approach utilizing donorπ-skeleton engineering to enhance skeleton coplanarity,thereby achieving highly crystalline CMPs.Advanced femtosecond transient absorption and temperature-dependent photoluminescence analyses reveal efficient exciton dissociation into free charge carriers that actively engage in surface reactions.Complementary theoretical calculations demonstrate that our highly crystalline CMP(Py-TDO)not only greatly improves the separation and transfer of photoexcited charge carriers but also introduces additional charge transport pathways via intermolecularπ-πstacking.Py-TDO exhibits outstanding photocatalytic CO_(2) reduction capabilities,achieving a remarkable CO generation rate of 223.97μmol g^(-1)h^(-1)without the addition of chemical scavengers.This work lays pioneering groundwork for the development of novel highly crystalline materials,advancing the field of solar-driven energy conversion.
基金supported by the Natural Science Foundation of China(22408278,22275139,21971190,U21A2077)the Key Project of Natural Science Foundation of Tianjin City(Contract No.22JCZDJC00510)Key Laboratory of Functional Inorganic Material Chemistry(Heilongjiang University),Ministry of Education。
文摘Solar-driven hydrogen peroxide(H_(2)O_(2))production offers a sustainable and environmentally friendly alternative to the traditional anthraquinone oxidation method.Conjugated polymers(CPs)are emerging as promising photocatalysts for H_(2)O_(2)production due to their unique electronic,optical properties,and tunable structures.However,the high exciton binding energy of CPs hinders efficient exciton dissociation and charge separation,limiting their photocatalytic performance.In this work,we synthesized scandium(Sc)atoms decorated CPs with enhanced ordered stacking and crystallinity by introducing benzaldehyde as an end-capping reagent.The strong interaction between charged Sc atoms and electrons facilitates exciton dissociation and improves charge transfer capability.Furthermore,the Lewis acidic nature of Sc atoms promotes oxygen adsorption and enhances the stabilization of superoxide anion intermediate(·O_(2)^(-)).As a result,the as-synthesized photocatalysts exhibit a high H_(2)O_(2)production rate of 18μmol h^(-1)in pure water,which is three times that of pristine CPs,This work provides valuable insights into the design of organic polymer photocatalysts for various photocatalytic reactions.
基金supported by the National Natural Science Foundation of China(22305238)the Anhui Provincial Natural Science Foundation(2308085MB35)。
文摘The utilization of covalent organic frameworks(COFs)holds great potential for achieving tailorable tuning of catalytic performance through bottom-up modulation of the reticular structure.In this work,we show that a single-point structural alteration in the linkage within a nickel phthalocyanine(NiPc)-based series effectively modulates the catalytic performance of the COFs in electrochemical CO_(2)reduction reaction(CO_(2)RR).A Ni Pc-based COF series with three members which possess the same Ni Pc unit but different linkages,including piperazine,dioxin,and dithiine,have been constructed by nucleophilic aromatic substitution reaction between octafluorophthalocyanine nickel and tetrasubstituted benzene linkers with different bridging groups.Among these COFs,the dioxin-linked COF showed the best activity of CO_(2)RR with a current density of CO(j_(CO))=-27.99 m A cm^(-2)at-1.0 V(versus reversible hydrogen electrode,RHE),while the COF with piperazine linkage demonstrated an excellent selectivity of Faradaic efficiency for CO(FECO)up to 90.7%at a pretty low overpotential of 0.39 V.In addition,both a high FECO value close to 100%and a reasonable jCO of-8.20 m A cm^(-2)at the potential of-0.8 V(versus RHE)were obtained by the piperazine-linked COF,making it one of the most competitive candidates among COF-based materials.Mechanistic studies exhibited that single-point structural alteration could tailor the electron density in Ni sites and alter the interaction between the active sites and the key intermediates adsorbed and desorbed,thereby tuning the electrochemical performance during CO_(2)RR process.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.21276208), the Doctor Fundation of Education Ministry of China (No.20096118110008), the Special Research Fund of Shaanxi Provincial Department of Education of China (No.12JK0606), and the Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology (No.207-002J1304).
文摘The metal complex 5-(4-aminophenyl)-10,15,20-triphenylporphyrin copper (CuAPTPP) was covalently linked on the surface of TiO2 microspheres by using toluene disocyanate (TDI) as a bridging bond unit. The hydroxyl group (-OH) of TiO2 microspheres surface and the amino group (-NH2) of CuAPTPP reacted respectively with the active -NCO groups of TDI to form a surface conjugated microsphere CuAPTPP-TDI-TiO2 that was confirmed by FT-IR spectra. The CuAPTPP-TDI-TiO2 microspheres were characterized with UV-visible, elemental analysis, XRD, SEM, and UV-Vis diffuse reflectance spectra. The effect of amounts of linked TDI on the performance of photocatalytic microspheres was discussed, and the optimal molar ratio of TDI:TiO2 was established. The photocatalytic activity of CuAPTPP- TDI-TiO2 was evaluated using the photocatalytic degradation of methylene blue (MB) under visible-light irradiation. The results showed that, TDI, as a bond unit, was used to form a steady chemical brigdging bond linking CuAPTPP and the surface of TiO2 microspheres, and the prepared catalyst exhibited higher photocatalytic activity under visible-light irradiation for MB degradation. The degradation rate of 20 mg/L MB could reach 98.7% under Xe- lamp (150 W) irradiation in 120 rain. The degradation of MB followed the first-order reaction model under visible light irradiation, and the rate constant of 5.1× 10^-2 min-1 and the half- life of 11.3 min were achieved. And the new photocatalyst can be recycled for 4 times, remaining 90.0% MB degradation rate.
基金supported by the Shaanxi Province Technological Innovation Guidance Special(No.2022QFY08-01)the National Key Research and Development Program of China(No.2021YFB3200702)+5 种基金Natural Science Foundation of China(Nos.22201228,22205172,52203240 and 22175138)China Postdoctoral Science Foundation(Nos.2022M712530,2023T160506,and 2022M712497)Fundamental Research Funds for the Central Universities(No.xzy012022017)Young Talent Fund of Association for Science and Technology in Shaanxi(No.20230624)Shaanxi Province Postdoctoral Science Foundation(No.2023b SHTBZZ04)the Youth Innovation Team of Shaanxi Universities。
文摘π-Conjugated donor-acceptor-donor-acceptor-donor(D-A-D-A-D)type pyrenoviologens(PyV^(2+)),with the 2,7 positions of pyrene serving as connection bridges,were synthesized through SN2 reactions.Specifically,pyrenoviologen 3c was modified with a methylnaphthalene group,while 3a and 3b were modified with methyl and benzyl groups,respectively,for comparison.These pyrenoviologens exhibit reversible redox properties and strong fluorescence emission.Electrochromic devices(ECDs)were prepared using pyrenoviologens as the active materials.Notably,naphthalene-containing pyrenoviologen 3c,with its DA-D-A-D conjugated structure,possesses more stable free radicals,enabling it to maintain the radical color for a longer duration after power loss.A series of color-changing devices were successfully assembled.Due to the strong fluorescence of pyrenoviologens and the unique electron transfer effect between them and picric acid(PA),a sensor film with good selectivity and high sensitivity for PA in aqueous solution was prepared using pyrenoviologens as the fluorescent probe.Specifically,3c exhibited the highest sensitivity to PA due to its lowest energy gap.The introduction of the D-A-D-A-D structure is a strategic approach to enhancing photoelectric performance and broadening the application of viologens.
基金the financial support from the Sichuan Science and Technology Program(No.2022NSFSC0619)。
文摘The asymmetric conjugate additions of aryl Grignard reagents to trisubstituted enones by chiral P,N ligand L6 with low catalyst loading(0.25–1.0 mol%)are disclosed.Chiral 2-ester chromanone and its analogs bearing a quaternary stereogenic centers at C2 position were produced in high to excellent yields,enantioselectivities and high turnover number.The notable features of this reaction include its broad substrate scope,complete 1,4-addition regioselectivities,applicability to both batch and flow for large scale synthesis.This report develops an efficient strategy to apply aryl Grignard reagents in asymmetric 1,4-conjugation reactions and provides a direct method to incorporate quaternary chiral centers toward the synthesis of biologically relevant chromanone derivatives.