In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways Hi...In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways High-Speed 5 Electric Multiple Unit and proposed a mathematical model and capacity optimization method for an onboard energy storage system using lithium batteries and supercapacitors as storage media.Firstly,considering the electrical characteristics,weight,and volume of the storage media,a mathematical model of the energy storage system was established.Secondly,to tackle problems related to energy consumption and power quality,an energy management strategy was proposed that comprehensively considers peak shaving and valley filling and power quality by controlling the charge/discharge thresholds of the storage system.Thecapacity optimization adopted a bilevel programming model,with the series/parallel number of storage modules as variables,considering constraints imposed by the Direct Current to Direct Current converter,train load,and space.An improved Particle Swarm Optimization algorithm and linear programming solver were used to solve specific cases.The results show that the proposed onboard energy storage system can effectively achieve energy savings,reduce consumption,and improve power qualitywhile meeting the load and space limitations of the train.展开更多
Hydroxyapatite nanoparticles(HAP NPs)were synthesized by a one‐step hydrothermal method.The surface of HAP NPs was grafted-SH and-COOH chelating groups via in situ surface‐modification with iminodiacetic acid(IDA)an...Hydroxyapatite nanoparticles(HAP NPs)were synthesized by a one‐step hydrothermal method.The surface of HAP NPs was grafted-SH and-COOH chelating groups via in situ surface‐modification with iminodiacetic acid(IDA)and 3‐mercaptopropyl trimethoxysilane(MPS)to afford dual surface‐capped nano‐amendment HAPIDA/MPS.The structure of HAP‐IDA/MPS was characterized,and its adsorption performance for Hg^(2+),Cu^(2+),Zn^(2+),Ni^(2+),Co^(2+),and Cd^(2+)was evaluated.The total adsorption capacity of 0.10 g HAP‐IDA/MPS nano‐amendment for Hg^(2+),Cu^(2+),Zn^(2+),Ni^(2+),Co^(2+),and Cd^(2+)with an initial mass concentration of 20 mg·L^(-1) reached 13.7 mg·g^(-1),about 4.3 times as much as that of HAP.Notably,HAP‐IDA/MPS nano‐amendment displayed the highest immobilization rate for Hg^(2+),possibly because of its chemical reaction with-SH to form sulfide,possessing the lowest solubility product constant among a variety of metal sulfides.展开更多
The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage...The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage systems is proposed in this study.Off-grid microgrids are self-sufficient electrical networks that are capable of effectively resolving electricity access problems in remote areas by providing stable and reliable power to local residents.A comprehensive review of the design,control strategies,energy management,and optimization of off-grid microgrids based on domestic and international research is presented in this study.It also explores the critical role of energy stor-age systems in enhancing microgrid stability and economic efficiency.Additionally,the capacity configurations of energy storage systems within off-grid networks are analyzed.Energy storage systems not only mitigate the intermittency and volatility of renewable energy gen-eration but also supply power support during peak demand periods,thereby improving grid stability and reliability.By comparing different energy storage technologies,such as lithium-ion batteries,pumped hydro storage,and compressed air energy storage,the optimal energy storage capacity configurations tailored to various application scenarios are proposed in this study.Finally,using a typical micro-grid as a case study,an empirical analysis of off-grid microgrids and energy storage integration has been conducted.The optimal con-figuration of energy storage systems is determined,and the impact of wind and solar power integration under various scenarios on grid balance is explored.It has been found that a rational configuration of energy storage systems can significantly enhance the utilization rate of renewable energy,reduce system operating costs,and strengthen grid resilience under extreme conditions.This study provides essential theoretical support and practical guidance for the design and implementation of off-grid microgrids in remote areas.展开更多
The low-energy excited states in the neutron-deficient nucleus^(91)Ru were populated via the^(58)Ni(^(36)Ar,2p1nγ)^(91)Ru reaction at a beam energy of 111 MeV.Charged particles,neutrons,andγrays were emitted in the ...The low-energy excited states in the neutron-deficient nucleus^(91)Ru were populated via the^(58)Ni(^(36)Ar,2p1nγ)^(91)Ru reaction at a beam energy of 111 MeV.Charged particles,neutrons,andγrays were emitted in the reactions and detected using a DIAMANT CsI ball,neutron wall,and EXOGAM Ge clover array,respectively.Angular-correlation and linear polarization measurements were performed to determine the spins and parities of the excited states unambiguously.In addition to the previously reported states,a new low-energy-level structure of^(91)Ru,including one 7/2^(+)and two 11/2^(+)states,was established.Similar structures have also been reported in lighter N=47 even-odd isotones down to85Sr,which were expected to come from the three-neutron-holevg_(9/2)^(-3)configuration.A semiempirical shell model was used to explain the level systematics of the N=47 even-odd isotones.Calculated results indicated that the 7/2^(+)and the vg_(9/2)^(-3)states~are mainly associated with the seniority-threeν(g_(9/2))-3excitations,while the vg_(9/2)^(-3)level is most likely interpreted as a seniorityυ=1 configuration of three neutron holes in theνg_(9∕2)orbital_weakly coupled to a 2^(+)excitation of the^(88)Sr core.A comparison between the calculation and experiment shows that the two 11/2^(+)excited states display an increase in mixing with proton number Z added from^(87)Zr up to^(91)Ru.展开更多
Microbial fuel cells(MFCs)face significant challenges related to low power output,which severely limits their practical applications.Coupling MFC with other technologies and stacking MFCs are feasible solutions to enh...Microbial fuel cells(MFCs)face significant challenges related to low power output,which severely limits their practical applications.Coupling MFC with other technologies and stacking MFCs are feasible solutions to enhance power output.In recent years,the coupling and stacking technology of MFCs has become a research hotspot in the field of environmental energy.This paper first outlines the basic configurations of MFCs and then analyzes the advantages and disadvantages of different setups in the context of coupling and stacking.Subsequently,it discusses in detail the coupling systems of MFC with other technologies,as well as several configurations of stacked MFCs and the phenomenon of voltage reversal.Based on these investigations,the paper proposes future research directions aimed at optimizing MFC performance,thereby enhancing their potential for energy recovery from wastewater and supporting the commercialization and scaling of MFC technology.展开更多
HOMER(Hybrid OptimizationModel for Electric Renewables)is an effective simulation and optimization platform for hybrid renewable energy.By inputting specific users’energy resource data(such as wind speed,solar radiat...HOMER(Hybrid OptimizationModel for Electric Renewables)is an effective simulation and optimization platform for hybrid renewable energy.By inputting specific users’energy resource data(such as wind speed,solar radiation,etc.)and load data,and by determining the types and models of components selected by the user,HOMER calculates and simulates the operational status of each component at every time step.Ultimately,it computes the energy balance of the system within specified constraints to simulate the overall system operation.This approach enables the reasonable determination of system component capacities,the evaluation of system feasibility,and the calculation of costs over the entire lifecycle of the system.In response to the challenges of matching capacities and high construction costs in wind-solar-storage multi-energy complementary power generation systems,This paper addresses issues such as difficulty in matching component capacities,high construction costs,and low system reliability in multi-energy complementary power generation systems.Using the HOMER hybrid renewable energy simulation and optimization platform,we constructed various hybrid energy systems for a specific region and considered multiple power supply modes.Thesoftware was used to solve for the optimal capacities and costs of each system.Four scenarios were analyzed:grid-only,grid-connected(purchase-sale)wind-solar-storage system,grid-connected(sale)wind-solar-storage system,and off-grid wind-solar-storage system.The results were compared and analyzed.HOMER can assess systemfeasibility and calculate the cost over its entire lifecycle.By inputting 8760 h of wind and solar resource data and load data for a specific region,and considering multiple system structures and power supply modes,the configuration results were evaluated using indicators such as cost and renewable energy utilization ratio.The simulation results indicate that the Net Present Cost(NPC)values across four different scenarios range from 1,877,292 CNY to 3,222,724 CNY,demonstrating significant cost differences.Among these scenarios,the grid-connected(purchase-sell)wind-solarstorage system exhibited the lowest NPC and the highest renewable energy utilization rate.Compared to a system relying solely on the grid,the NPC was reduced by 305,695 CNY,and the renewable energy utilization rate reached 74.7%.展开更多
Hybrid energy storage can enhance the economic performance and reliability of energy systems in industrial parks,while lowering the industrial parks’carbon emissions and accommodating diverse load demands from users....Hybrid energy storage can enhance the economic performance and reliability of energy systems in industrial parks,while lowering the industrial parks’carbon emissions and accommodating diverse load demands from users.However,most optimization research on hybrid energy storage has adopted rulebased passive-control principles,failing to fully leverage the advantages of active energy storage.To address this gap in the literature,this study develops a detailed model for an industrial park energy system with hybrid energy storage(IPES-HES),taking into account the operational characteristics of energy devices such as lithium batteries and thermal storage tanks.An active operation strategy for hybrid energy storage is proposed that uses decision variables based on hourly power outputs from the energy storage of the subsequent day.An optimization configuration model for an IPES-HES is formulated with the goals of reducing costs and lowering carbon emissions and is solved using the non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ).A method using the improved NSGA-Ⅱ is developed for day-ahead nonlinear scheduling,based on configuration optimization.The research findings indicate that the system energy bill and the peak power of the IPES-HES under the optimization-based operational strategy are reduced by 181.4 USD(5.5%)and 1600.3 kW(43.7%),respectively,compared with an operation strategy based on proportional electricity storage on a typical summer day.Overall,the day-ahead nonlinear optimal scheduling method developed in this study offers guidance to fully harness the advantages of active energy storage.展开更多
Integrated-energy systems(IESs)are key to advancing renewable-energy utilization and addressing environmental challenges.Key components of IESs include low-carbon,economic dispatch and demand response,for maximizing r...Integrated-energy systems(IESs)are key to advancing renewable-energy utilization and addressing environmental challenges.Key components of IESs include low-carbon,economic dispatch and demand response,for maximizing renewable-energy consumption and supporting sustainable-energy systems.User participation is central to demand response;however,many users are not inclined to engage actively;therefore,the full potential of demand response remains unrealized.User satisfaction must be prioritized in demand-response assessments.This study proposed a two-stage,capacity-optimization configuration method for user-level energy systems con-sidering thermal inertia and user satisfaction.This method addresses load coordination and complementary issues within the IES and seeks to minimize the annual,total cost for determining equipment capacity configurations while introducing models for system thermal inertia and user satisfaction.Indoor heating is adjusted,for optimizing device output and load profiles,with a focus on typical,daily,economic,and environmental objectives.The studyfindings indicate that the system thermal inertia optimizes energy-system scheduling considering user satisfaction.This optimization mitigates environmental concerns and enhances clean-energy integration.展开更多
The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain deg...The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries.This paper presents a novel model-free adaptive voltage controlembedded dung beetle-inspired heuristic optimization algorithmfor optimal SLBESS capacity configuration and power dispatch.To simultaneously address the computational complexity and ensure system stability,this paper develops a comprehensive bilevel optimization framework.At the upper level,a dung beetle optimization algorithmdetermines the optimal SLBESS capacity configuration byminimizing total lifecycle costswhile incorporating the charging/discharging power trajectories derived from the model-free adaptive voltage control strategy.At the lower level,a health-priority power dispatch optimization model intelligently allocates power demands among heterogeneous battery groups based on their real-time operational states,state-of-health variations,and degradation constraints.The proposed model-free approach circumvents the need for complex battery charging/discharging power controlmodels and extensive historical data requirements whilemaintaining system stability through adaptive controlmechanisms.A novel cycle life degradation model is developed to quantify the relationship between remaining useful life,depth of discharge,and operational patterns.The integrated framework enables simultaneous strategic planning and operational control,ensuring both economic efficiency and extended battery lifespan.The effectiveness of the proposed method is validated through comprehensive case studies on hybrid energy storage systems,demonstrating superior computational efficiency,robust performance across different network configurations,and significant improvements in battery utilization compared to conventional approaches.展开更多
Intelligent reflecting surface(IRS)is a newly emerged and promising paradigm to substantially improve the performance of wireless communications by constructing favorable communication channels via properly tuning mas...Intelligent reflecting surface(IRS)is a newly emerged and promising paradigm to substantially improve the performance of wireless communications by constructing favorable communication channels via properly tuning massive reflecting elements.This paper considers a distributed IRS aided decode-and-forward(DF)relaying system over Nakagami-m fading channels.Based on a tight approximation for the distribution of the received signalto-noise ratio(SNR),we first derive exact closed-form expressions of the outage probability,ergodic capacity,and energy efficiency for the considered system.Moreover,we propose the optimal IRS configuration considering the energy efficiency and pilot overhead.Finally,we compare the performance between the distributed IRS-aided DF relaying and multi-IRS-only systems,and verify the analytical results by using monte carlo simulations.展开更多
Water table configuration gives rise to hierarchically nested groundwater flow systems.However,there remains a lack of comprehensive understanding regarding the controlling factors of water table and its impact on flo...Water table configuration gives rise to hierarchically nested groundwater flow systems.However,there remains a lack of comprehensive understanding regarding the controlling factors of water table and its impact on flow systems.Moreover,it remains challenging to identify characteristics of water table space variation through limited groundwater observations at the regional scale.Based on two ideal two-dimensional cross-section analytical models,this study presents a simplified approach to preliminarily assess the nonlinear interactions between water table variation and three driving factors:Topography,geol-ogy and climate.Two criteria,C1 and C2,are utilized to address issues at different scales ranging from basin to local:(i)the influence of various factors on water table configuration;and(ii)the influence of water table on groundwater flow pattern.Then,the Ordos Plateau is taken as an example to explore the role of the water table in nested groundwater systems using the provided approach and criterion.The applica-tion of this approach in the Ordos Plateau demonstrates its appropriateness as a practical method for prelim-inarily determining the characteristics of water table configuration and its impact on flow systems.The study explores the mechanism influencing spatial variation in the water table and improves understanding of the interaction between topography,geology,and climate on groundwater flow patterns.展开更多
The present study analyses the differences between the subways systems of two cities, Lisbon (Portugal) and Brasília (Brazil), verifying the extent to which their subway systems are spatially integrated with the ...The present study analyses the differences between the subways systems of two cities, Lisbon (Portugal) and Brasília (Brazil), verifying the extent to which their subway systems are spatially integrated with the respective urban fabric-which would promote a better synchrony in terms of economy and sustainability. For interpreting the data, the methodology and tools of the Theory of the Social Logic of Space were used, by means of axial maps, researching the relationship between the constructed and empty (public spaces) areas of the urban structures. Based on the findings, meaningful differences between the subway systems and the configuration of urban spaces were observed, as a product of specific design matrixes. In Lisbon, the mobility associated to the subway seems to be encouraged by the integration of the system with the potential for movement provided by the urban tissue (making the secondary centralities articulated with the subway stations more dynamic). In Brasilia, however, there are several difficulties for such mobility, due to the predominant role of the empty spaces in the city which weakens the gathering potential of such areas, despite the fact that such articulation with secondary centralities is also present there.展开更多
Secure and high-speed optical communications are of primary focus in information transmission.Although it is widely accepted that chaotic secure communication can provide superior physical layer security,it is challen...Secure and high-speed optical communications are of primary focus in information transmission.Although it is widely accepted that chaotic secure communication can provide superior physical layer security,it is challenging to meet the demand for high-speed increasing communication rate.We theoretically propose and experimentally demonstrate a conceptual paradigm for orbital angular momentum(OAM)configured chaotic laser(OAM-CCL)that allows access to high-security and massivecapacity optical communications.Combining 11 OAM modes and an all-optical feedback chaotic laser,we are able to theoretically empower a well-defined optical communication system with a total transmission capacity of 100 Gb∕s and a bit error rate below the forward error correction threshold 3.8×10^(-3).Furthermore,the OAM-CCL-based communication system is robust to 3D misalignment by resorting to appropriate mode spacing and beam waist.Finally,the conceptual paradigm of the OAM-CCL-based communication system is verified.In contrast to existing systems(traditional free-space optical communication or chaotic optical communication),the OAM-CCL-based communication system has threein-one characteristics of high security,massive capacity,and robustness.The findings demonstrate that this will promote the applicable settings of chaotic laser and provide an alternative promising route to guide high-security and massive-capacity optical communications.展开更多
The effects of adjacent metal layers and space between metal lines on the temperature rise of multilevel ULSI interconnect lines are investigated by modeling a three-layer interconnect. The heat dissipation of various...The effects of adjacent metal layers and space between metal lines on the temperature rise of multilevel ULSI interconnect lines are investigated by modeling a three-layer interconnect. The heat dissipation of various metallization technologies concerning the metal and low-k dielectric employment is simulated in detail. The Joule heat generated in the interconnect is transferred mainly through the metal lines in each metal layer and through the path with the smallest thermal resistance in each Ield layer. The temperature rises of Al metallization are approximately pAl/pCu times higher than those of Cu metallization under the same conditions. In addition, a thermal problem in 0.13μm globe interconnects is studied for the worst case, in which there are no metal lines in the lower interconnect layers. Several types of dummy metal heat sinks are investigated and compared with regard to thermal efficiency,influence on parasitic capacitance,and optimal application by combined thermal and electrical simula- tion.展开更多
To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model...To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model mainly consists of two parts, the determination of initial configuration schemes according to user preference and the selection of the optimal scheme. The comprehensive evaluation index(CEI), which is acquired through the analytic hierarchy process(AHP) weight calculation method, is adopted as the evaluation criterion to rank the initial schemes. The optimal scheme is obtained according to the ranking results. The proposed model takes the diversity of different equipment parameters and investment cost into consideration and can give relatively suitable and economical suggestions for system configuration.Additionally, unlike Homer Pro, the proposed model considers the complementation of different renewable energy resources, and thus the rationality of the multi-energy DG system is improved compared with the single evaluation criterion method which only considers the total cost.展开更多
At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that targe...At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that target penetrates the defended area along any flight path is established by the state analysis and statistical equilibrium analysis of stochastic service system theory. The simulated annealing algorithm is an enlightening random search method based on Monte Carlo recursion, and it can find global optimal solution by simulating annealing process. Combining stochastic model to compete the probability and simulated annealing algorithm, this paper establishes the method to solve problem quantitatively about combat configuration optimization of weapon systems. The calculated result shows that the perfect configuration for fire cells of the weapon is fast found by using this method, and this quantificational method for combat configuration is faster and more scientific than previous one based on principle via map fire field.展开更多
The effect of realistic topology configuration of intercellular connections on the response ability in coupled cell system is numerically investigated by using the Hindmarsh-Rose model. For the proper coupling intensi...The effect of realistic topology configuration of intercellular connections on the response ability in coupled cell system is numerically investigated by using the Hindmarsh-Rose model. For the proper coupling intensity, we set the control parameter to be near the critical value, and the external stimulus is introduced to the first cell in coupled system. It is found that, on one hand, when the cells are coupled with some proper topological structures, the external stimulus could transmit through the system, and shows better response ability and higher sensitivity. On the other hand, the influence of topological configuration on the synchronous ability and selection effect of neural system are also discussed. Our results display that the topology of coupled system may play an important role in the process of signal propagation, which could help us to understand the coordinated performance of cells in tissue.展开更多
Dense cropping increases crop yield but intensifies resource competition,which reduces single plant yield and limits potential yield growth.Optimizing canopy spacing could enhance resource utilization,support crop mor...Dense cropping increases crop yield but intensifies resource competition,which reduces single plant yield and limits potential yield growth.Optimizing canopy spacing could enhance resource utilization,support crop morphological development and increase yield.Here,a three-year study was performed to verify the feasibility of adjusting row spacing to further enhance yield in densely planted soybeans.Of three row-spacing configurations(40-40,20-40,and 20-60 cm)and two planting densities(normal 180,000 plants ha 1 and high 270,000 plants ha 1).The differences in canopy structure,plant morphological development,photosynthetic capacity and their impact on yield were analyzed.Row spacing configurations have a significant effect on canopy transmittance(CT).The 20-60 cm row spacing configuration increased CT and creates a favorable canopy light environment,in which plant height is reduced,while branching is promoted.This approach reduces plant competition,optimizes the developments of leaf area per plant,specific leaf area,leaf area development rate,leaf area duration and photosynthetic physiological indices(F_(v)/F_(m),ETR,P_(n)).The significant increase of 11.9%-34.2%in canopy apparent photosynthesis(CAP)is attributed to the significant optimization of plant growth and photosynthetic physiology through CT,an important contributing factor to yield increases.The yield in the 20-60 cm treatment is 4.0%higher than in equidistant planting under normal planting density,but 5.9%under high density,primarily driven by CAP and pod number.These findings suggest that suitable row spacing configurations optimize the light environment for plants,promote source-sink transformation in soybeans,and further improve yield.In practice,a 20-60 cm row spacing configuration could be employed for high-density soybean planting to achieve a more substantial yield gain.展开更多
High-temperature industries,as the primary consumers of energy,are greatly concerned with energy savings.Designing refractory linings with low thermal conductivity to reduce heat dissipation through high-temperature f...High-temperature industries,as the primary consumers of energy,are greatly concerned with energy savings.Designing refractory linings with low thermal conductivity to reduce heat dissipation through high-temperature furnace linings is a critical concern.In this study,a series of novel entropy-stabilized spinel materials are reported,and their potential applications in high-temperature industries are investigated.XRD and TEM results indicate that all materials possess a cubic spinel crystal structure with the■space group.Furthermore,these materials exhibit good phase stability at high temperatures.All entropy-stabilized spinel aggregates demonstrated high refractoriness(>1800℃)and a high load softening temperature(>1700℃).The impact of configurational entropy on the properties of entropy-stabilized spinel materials was also studied.As configurational entropy increased,the thermal conductivity of the entropy-stabilized spinel decreased,while slag corrosion resistance deteriorated.For the entropy-stabilized spinel with a configurational entropy value of 1.126R,it showed good high-temperature stability,reliable resistance to slag attack,and a low thermal conductivity of 2.776 W·m^(-1)·K^(-1)at 1000℃.展开更多
Solid oxide cells(SOCs),which include solid oxide fuel cells(SOFCs),symmetrical solid oxide cells(S-SOCs),and reversible solid oxide cells(R-SOCs),are considered key technologies for driving low-carbon and green revol...Solid oxide cells(SOCs),which include solid oxide fuel cells(SOFCs),symmetrical solid oxide cells(S-SOCs),and reversible solid oxide cells(R-SOCs),are considered key technologies for driving low-carbon and green revolution in the energy sector.Because of their clean,low-cost,and high-efficiency characteristics,SOCs have great potential for energy conversion and storage.However,the further development of SOC technologies faces challenges,such as a lack of long-term operational stability of the cell system,high material cost under high-temperature operating conditions,and limited catalytic effects at low temperatures.Recently,high-entropy materials(HEMs)have demonstrated excellent performance and wide application prospects in catalytic reactions,energy storage,supercapacitors,and other fields owing to their unique atomic arrangement and the four core effects(high mixed entropy stabilization effect,sluggish dif-fusion effect,lattice distortion effect,and“cocktail”effect).HEMs provide a new perspective for solving the aforementioned problems in the field of SOCs.This comprehensive review summarizes the applications of HEMs in the three fundamental components of SOCs:elec-trodes,electrolytes,and interconnects,focusing on the role of HEMs in enhancing catalytic activity and conductivity while mitigating harmful gas poisoning.In addition,this review proposes possible development directions for HEMs in SOCs based on the current re-search progress,providing valuable reference for high-entropy designs aimed at further enhancing the performance of SOCs.展开更多
基金funded by the National Natural Science Foundation of China(52167013)the Key Program of Natural Science Foundation of Gansu Province(24JRRA225)Natural Science Foundation of Gansu Province(23JRRA891).
文摘In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways High-Speed 5 Electric Multiple Unit and proposed a mathematical model and capacity optimization method for an onboard energy storage system using lithium batteries and supercapacitors as storage media.Firstly,considering the electrical characteristics,weight,and volume of the storage media,a mathematical model of the energy storage system was established.Secondly,to tackle problems related to energy consumption and power quality,an energy management strategy was proposed that comprehensively considers peak shaving and valley filling and power quality by controlling the charge/discharge thresholds of the storage system.Thecapacity optimization adopted a bilevel programming model,with the series/parallel number of storage modules as variables,considering constraints imposed by the Direct Current to Direct Current converter,train load,and space.An improved Particle Swarm Optimization algorithm and linear programming solver were used to solve specific cases.The results show that the proposed onboard energy storage system can effectively achieve energy savings,reduce consumption,and improve power qualitywhile meeting the load and space limitations of the train.
文摘Hydroxyapatite nanoparticles(HAP NPs)were synthesized by a one‐step hydrothermal method.The surface of HAP NPs was grafted-SH and-COOH chelating groups via in situ surface‐modification with iminodiacetic acid(IDA)and 3‐mercaptopropyl trimethoxysilane(MPS)to afford dual surface‐capped nano‐amendment HAPIDA/MPS.The structure of HAP‐IDA/MPS was characterized,and its adsorption performance for Hg^(2+),Cu^(2+),Zn^(2+),Ni^(2+),Co^(2+),and Cd^(2+)was evaluated.The total adsorption capacity of 0.10 g HAP‐IDA/MPS nano‐amendment for Hg^(2+),Cu^(2+),Zn^(2+),Ni^(2+),Co^(2+),and Cd^(2+)with an initial mass concentration of 20 mg·L^(-1) reached 13.7 mg·g^(-1),about 4.3 times as much as that of HAP.Notably,HAP‐IDA/MPS nano‐amendment displayed the highest immobilization rate for Hg^(2+),possibly because of its chemical reaction with-SH to form sulfide,possessing the lowest solubility product constant among a variety of metal sulfides.
基金funded by Humanities and Social Sciences of Ministry of Education Planning Fund of China(21YJA790009)National Natural Science Foundation of China(72140001).
文摘The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage systems is proposed in this study.Off-grid microgrids are self-sufficient electrical networks that are capable of effectively resolving electricity access problems in remote areas by providing stable and reliable power to local residents.A comprehensive review of the design,control strategies,energy management,and optimization of off-grid microgrids based on domestic and international research is presented in this study.It also explores the critical role of energy stor-age systems in enhancing microgrid stability and economic efficiency.Additionally,the capacity configurations of energy storage systems within off-grid networks are analyzed.Energy storage systems not only mitigate the intermittency and volatility of renewable energy gen-eration but also supply power support during peak demand periods,thereby improving grid stability and reliability.By comparing different energy storage technologies,such as lithium-ion batteries,pumped hydro storage,and compressed air energy storage,the optimal energy storage capacity configurations tailored to various application scenarios are proposed in this study.Finally,using a typical micro-grid as a case study,an empirical analysis of off-grid microgrids and energy storage integration has been conducted.The optimal con-figuration of energy storage systems is determined,and the impact of wind and solar power integration under various scenarios on grid balance is explored.It has been found that a rational configuration of energy storage systems can significantly enhance the utilization rate of renewable energy,reduce system operating costs,and strengthen grid resilience under extreme conditions.This study provides essential theoretical support and practical guidance for the design and implementation of off-grid microgrids in remote areas.
文摘The low-energy excited states in the neutron-deficient nucleus^(91)Ru were populated via the^(58)Ni(^(36)Ar,2p1nγ)^(91)Ru reaction at a beam energy of 111 MeV.Charged particles,neutrons,andγrays were emitted in the reactions and detected using a DIAMANT CsI ball,neutron wall,and EXOGAM Ge clover array,respectively.Angular-correlation and linear polarization measurements were performed to determine the spins and parities of the excited states unambiguously.In addition to the previously reported states,a new low-energy-level structure of^(91)Ru,including one 7/2^(+)and two 11/2^(+)states,was established.Similar structures have also been reported in lighter N=47 even-odd isotones down to85Sr,which were expected to come from the three-neutron-holevg_(9/2)^(-3)configuration.A semiempirical shell model was used to explain the level systematics of the N=47 even-odd isotones.Calculated results indicated that the 7/2^(+)and the vg_(9/2)^(-3)states~are mainly associated with the seniority-threeν(g_(9/2))-3excitations,while the vg_(9/2)^(-3)level is most likely interpreted as a seniorityυ=1 configuration of three neutron holes in theνg_(9∕2)orbital_weakly coupled to a 2^(+)excitation of the^(88)Sr core.A comparison between the calculation and experiment shows that the two 11/2^(+)excited states display an increase in mixing with proton number Z added from^(87)Zr up to^(91)Ru.
基金supported by the National Natural Science Foundation of China(No.52270078)the Fundamental Research Funds for the Central Universities(No.xzy022023039).
文摘Microbial fuel cells(MFCs)face significant challenges related to low power output,which severely limits their practical applications.Coupling MFC with other technologies and stacking MFCs are feasible solutions to enhance power output.In recent years,the coupling and stacking technology of MFCs has become a research hotspot in the field of environmental energy.This paper first outlines the basic configurations of MFCs and then analyzes the advantages and disadvantages of different setups in the context of coupling and stacking.Subsequently,it discusses in detail the coupling systems of MFC with other technologies,as well as several configurations of stacked MFCs and the phenomenon of voltage reversal.Based on these investigations,the paper proposes future research directions aimed at optimizing MFC performance,thereby enhancing their potential for energy recovery from wastewater and supporting the commercialization and scaling of MFC technology.
基金supported in part by the Inner Mongolia Autonomous Region Science and Technology Project Fund(2021GG0336)Inner Mongolia Natural Science Fund(2023ZD20).
文摘HOMER(Hybrid OptimizationModel for Electric Renewables)is an effective simulation and optimization platform for hybrid renewable energy.By inputting specific users’energy resource data(such as wind speed,solar radiation,etc.)and load data,and by determining the types and models of components selected by the user,HOMER calculates and simulates the operational status of each component at every time step.Ultimately,it computes the energy balance of the system within specified constraints to simulate the overall system operation.This approach enables the reasonable determination of system component capacities,the evaluation of system feasibility,and the calculation of costs over the entire lifecycle of the system.In response to the challenges of matching capacities and high construction costs in wind-solar-storage multi-energy complementary power generation systems,This paper addresses issues such as difficulty in matching component capacities,high construction costs,and low system reliability in multi-energy complementary power generation systems.Using the HOMER hybrid renewable energy simulation and optimization platform,we constructed various hybrid energy systems for a specific region and considered multiple power supply modes.Thesoftware was used to solve for the optimal capacities and costs of each system.Four scenarios were analyzed:grid-only,grid-connected(purchase-sale)wind-solar-storage system,grid-connected(sale)wind-solar-storage system,and off-grid wind-solar-storage system.The results were compared and analyzed.HOMER can assess systemfeasibility and calculate the cost over its entire lifecycle.By inputting 8760 h of wind and solar resource data and load data for a specific region,and considering multiple system structures and power supply modes,the configuration results were evaluated using indicators such as cost and renewable energy utilization ratio.The simulation results indicate that the Net Present Cost(NPC)values across four different scenarios range from 1,877,292 CNY to 3,222,724 CNY,demonstrating significant cost differences.Among these scenarios,the grid-connected(purchase-sell)wind-solarstorage system exhibited the lowest NPC and the highest renewable energy utilization rate.Compared to a system relying solely on the grid,the NPC was reduced by 305,695 CNY,and the renewable energy utilization rate reached 74.7%.
基金supported by National Key Research and Development Program of China(2022YFB4201003)the National Natural Science Foundation of China(52278104 and 52108076)the Science and Technology Innovation Program of Hunan Province(2023RC1042).
文摘Hybrid energy storage can enhance the economic performance and reliability of energy systems in industrial parks,while lowering the industrial parks’carbon emissions and accommodating diverse load demands from users.However,most optimization research on hybrid energy storage has adopted rulebased passive-control principles,failing to fully leverage the advantages of active energy storage.To address this gap in the literature,this study develops a detailed model for an industrial park energy system with hybrid energy storage(IPES-HES),taking into account the operational characteristics of energy devices such as lithium batteries and thermal storage tanks.An active operation strategy for hybrid energy storage is proposed that uses decision variables based on hourly power outputs from the energy storage of the subsequent day.An optimization configuration model for an IPES-HES is formulated with the goals of reducing costs and lowering carbon emissions and is solved using the non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ).A method using the improved NSGA-Ⅱ is developed for day-ahead nonlinear scheduling,based on configuration optimization.The research findings indicate that the system energy bill and the peak power of the IPES-HES under the optimization-based operational strategy are reduced by 181.4 USD(5.5%)and 1600.3 kW(43.7%),respectively,compared with an operation strategy based on proportional electricity storage on a typical summer day.Overall,the day-ahead nonlinear optimal scheduling method developed in this study offers guidance to fully harness the advantages of active energy storage.
基金supported by the science and technology foundation of Guizhou province[2022]general 013the science and technology foundation of Guizhou province[2022]general 014+1 种基金the science and technology foundation of Guizhou province GCC[2022]016-1the educational technology foundation of Guizhou province[2022]043.
文摘Integrated-energy systems(IESs)are key to advancing renewable-energy utilization and addressing environmental challenges.Key components of IESs include low-carbon,economic dispatch and demand response,for maximizing renewable-energy consumption and supporting sustainable-energy systems.User participation is central to demand response;however,many users are not inclined to engage actively;therefore,the full potential of demand response remains unrealized.User satisfaction must be prioritized in demand-response assessments.This study proposed a two-stage,capacity-optimization configuration method for user-level energy systems con-sidering thermal inertia and user satisfaction.This method addresses load coordination and complementary issues within the IES and seeks to minimize the annual,total cost for determining equipment capacity configurations while introducing models for system thermal inertia and user satisfaction.Indoor heating is adjusted,for optimizing device output and load profiles,with a focus on typical,daily,economic,and environmental objectives.The studyfindings indicate that the system thermal inertia optimizes energy-system scheduling considering user satisfaction.This optimization mitigates environmental concerns and enhances clean-energy integration.
基金Financial support was provided by the State Grid Sichuan Electric Power Company Science and Technology Project“Key Research on Development Path Planning and Key Operation Technologies of New Rural Electrification Construction”under Grant No.52199623000G.
文摘The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries.This paper presents a novel model-free adaptive voltage controlembedded dung beetle-inspired heuristic optimization algorithmfor optimal SLBESS capacity configuration and power dispatch.To simultaneously address the computational complexity and ensure system stability,this paper develops a comprehensive bilevel optimization framework.At the upper level,a dung beetle optimization algorithmdetermines the optimal SLBESS capacity configuration byminimizing total lifecycle costswhile incorporating the charging/discharging power trajectories derived from the model-free adaptive voltage control strategy.At the lower level,a health-priority power dispatch optimization model intelligently allocates power demands among heterogeneous battery groups based on their real-time operational states,state-of-health variations,and degradation constraints.The proposed model-free approach circumvents the need for complex battery charging/discharging power controlmodels and extensive historical data requirements whilemaintaining system stability through adaptive controlmechanisms.A novel cycle life degradation model is developed to quantify the relationship between remaining useful life,depth of discharge,and operational patterns.The integrated framework enables simultaneous strategic planning and operational control,ensuring both economic efficiency and extended battery lifespan.The effectiveness of the proposed method is validated through comprehensive case studies on hybrid energy storage systems,demonstrating superior computational efficiency,robust performance across different network configurations,and significant improvements in battery utilization compared to conventional approaches.
基金supported in part by National Natural Science Foundation of China under Grant 62371262 and 61971467in part by the Key Research and Development Program of Jiangsu Province of China under Grant BE2021013-1+1 种基金in part by the Qinlan Project of Jiangsu Provincein part by the Scientific Research Program of Nantong under Grant JC22022026
文摘Intelligent reflecting surface(IRS)is a newly emerged and promising paradigm to substantially improve the performance of wireless communications by constructing favorable communication channels via properly tuning massive reflecting elements.This paper considers a distributed IRS aided decode-and-forward(DF)relaying system over Nakagami-m fading channels.Based on a tight approximation for the distribution of the received signalto-noise ratio(SNR),we first derive exact closed-form expressions of the outage probability,ergodic capacity,and energy efficiency for the considered system.Moreover,we propose the optimal IRS configuration considering the energy efficiency and pilot overhead.Finally,we compare the performance between the distributed IRS-aided DF relaying and multi-IRS-only systems,and verify the analytical results by using monte carlo simulations.
基金funded by the Inner Mongolia Autonomous Region Science and Technology Program(2021GG0198)Shaanxi Science,Technology Department(No.2021ZDLSF05-01,2022SF-327)China Geological Survey(DD20190351,DD20221751).
文摘Water table configuration gives rise to hierarchically nested groundwater flow systems.However,there remains a lack of comprehensive understanding regarding the controlling factors of water table and its impact on flow systems.Moreover,it remains challenging to identify characteristics of water table space variation through limited groundwater observations at the regional scale.Based on two ideal two-dimensional cross-section analytical models,this study presents a simplified approach to preliminarily assess the nonlinear interactions between water table variation and three driving factors:Topography,geol-ogy and climate.Two criteria,C1 and C2,are utilized to address issues at different scales ranging from basin to local:(i)the influence of various factors on water table configuration;and(ii)the influence of water table on groundwater flow pattern.Then,the Ordos Plateau is taken as an example to explore the role of the water table in nested groundwater systems using the provided approach and criterion.The applica-tion of this approach in the Ordos Plateau demonstrates its appropriateness as a practical method for prelim-inarily determining the characteristics of water table configuration and its impact on flow systems.The study explores the mechanism influencing spatial variation in the water table and improves understanding of the interaction between topography,geology,and climate on groundwater flow patterns.
基金the financial support during the Doctorate internship carried out at IST-UTL(Lisbon/Portugal).
文摘The present study analyses the differences between the subways systems of two cities, Lisbon (Portugal) and Brasília (Brazil), verifying the extent to which their subway systems are spatially integrated with the respective urban fabric-which would promote a better synchrony in terms of economy and sustainability. For interpreting the data, the methodology and tools of the Theory of the Social Logic of Space were used, by means of axial maps, researching the relationship between the constructed and empty (public spaces) areas of the urban structures. Based on the findings, meaningful differences between the subway systems and the configuration of urban spaces were observed, as a product of specific design matrixes. In Lisbon, the mobility associated to the subway seems to be encouraged by the integration of the system with the potential for movement provided by the urban tissue (making the secondary centralities articulated with the subway stations more dynamic). In Brasilia, however, there are several difficulties for such mobility, due to the predominant role of the empty spaces in the city which weakens the gathering potential of such areas, despite the fact that such articulation with secondary centralities is also present there.
基金supported by the National Natural Science Foundation of China(Grant Nos.61927811,62035009,and 11974258)the Fundamental Research Program of Shanxi Province(Grant No.202103021224038)+3 种基金the Development Fund in Science and Technology of Shanxi Province(Grant No.YDZJSX2021A009)the Open Fund of State Key Laboratory of Applied Optics(Grant No.SKLAO2022001A09)the Science and Technology Foundation of Guizhou Province(Grant Nos.ZK[2021]031 and ZK[2023]049)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams.
文摘Secure and high-speed optical communications are of primary focus in information transmission.Although it is widely accepted that chaotic secure communication can provide superior physical layer security,it is challenging to meet the demand for high-speed increasing communication rate.We theoretically propose and experimentally demonstrate a conceptual paradigm for orbital angular momentum(OAM)configured chaotic laser(OAM-CCL)that allows access to high-security and massivecapacity optical communications.Combining 11 OAM modes and an all-optical feedback chaotic laser,we are able to theoretically empower a well-defined optical communication system with a total transmission capacity of 100 Gb∕s and a bit error rate below the forward error correction threshold 3.8×10^(-3).Furthermore,the OAM-CCL-based communication system is robust to 3D misalignment by resorting to appropriate mode spacing and beam waist.Finally,the conceptual paradigm of the OAM-CCL-based communication system is verified.In contrast to existing systems(traditional free-space optical communication or chaotic optical communication),the OAM-CCL-based communication system has threein-one characteristics of high security,massive capacity,and robustness.The findings demonstrate that this will promote the applicable settings of chaotic laser and provide an alternative promising route to guide high-security and massive-capacity optical communications.
文摘The effects of adjacent metal layers and space between metal lines on the temperature rise of multilevel ULSI interconnect lines are investigated by modeling a three-layer interconnect. The heat dissipation of various metallization technologies concerning the metal and low-k dielectric employment is simulated in detail. The Joule heat generated in the interconnect is transferred mainly through the metal lines in each metal layer and through the path with the smallest thermal resistance in each Ield layer. The temperature rises of Al metallization are approximately pAl/pCu times higher than those of Cu metallization under the same conditions. In addition, a thermal problem in 0.13μm globe interconnects is studied for the worst case, in which there are no metal lines in the lower interconnect layers. Several types of dummy metal heat sinks are investigated and compared with regard to thermal efficiency,influence on parasitic capacitance,and optimal application by combined thermal and electrical simula- tion.
基金The National Natural Science Foundation of China(No.51377021)the Science and Technology Project of State Grid Corporation of China(No.SGTJDK00DWJS1600014)
文摘To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model mainly consists of two parts, the determination of initial configuration schemes according to user preference and the selection of the optimal scheme. The comprehensive evaluation index(CEI), which is acquired through the analytic hierarchy process(AHP) weight calculation method, is adopted as the evaluation criterion to rank the initial schemes. The optimal scheme is obtained according to the ranking results. The proposed model takes the diversity of different equipment parameters and investment cost into consideration and can give relatively suitable and economical suggestions for system configuration.Additionally, unlike Homer Pro, the proposed model considers the complementation of different renewable energy resources, and thus the rationality of the multi-energy DG system is improved compared with the single evaluation criterion method which only considers the total cost.
文摘At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that target penetrates the defended area along any flight path is established by the state analysis and statistical equilibrium analysis of stochastic service system theory. The simulated annealing algorithm is an enlightening random search method based on Monte Carlo recursion, and it can find global optimal solution by simulating annealing process. Combining stochastic model to compete the probability and simulated annealing algorithm, this paper establishes the method to solve problem quantitatively about combat configuration optimization of weapon systems. The calculated result shows that the perfect configuration for fire cells of the weapon is fast found by using this method, and this quantificational method for combat configuration is faster and more scientific than previous one based on principle via map fire field.
文摘The effect of realistic topology configuration of intercellular connections on the response ability in coupled cell system is numerically investigated by using the Hindmarsh-Rose model. For the proper coupling intensity, we set the control parameter to be near the critical value, and the external stimulus is introduced to the first cell in coupled system. It is found that, on one hand, when the cells are coupled with some proper topological structures, the external stimulus could transmit through the system, and shows better response ability and higher sensitivity. On the other hand, the influence of topological configuration on the synchronous ability and selection effect of neural system are also discussed. Our results display that the topology of coupled system may play an important role in the process of signal propagation, which could help us to understand the coordinated performance of cells in tissue.
基金supported by the Biological Breeding-National Science and Technology Major Project(2023ZD0403305)National Natural Science Foundation of China(32101845)+1 种基金the National Key Research and Development Program of China(2023YFE0105000)the China Agriculture Research System(CARS-04).
文摘Dense cropping increases crop yield but intensifies resource competition,which reduces single plant yield and limits potential yield growth.Optimizing canopy spacing could enhance resource utilization,support crop morphological development and increase yield.Here,a three-year study was performed to verify the feasibility of adjusting row spacing to further enhance yield in densely planted soybeans.Of three row-spacing configurations(40-40,20-40,and 20-60 cm)and two planting densities(normal 180,000 plants ha 1 and high 270,000 plants ha 1).The differences in canopy structure,plant morphological development,photosynthetic capacity and their impact on yield were analyzed.Row spacing configurations have a significant effect on canopy transmittance(CT).The 20-60 cm row spacing configuration increased CT and creates a favorable canopy light environment,in which plant height is reduced,while branching is promoted.This approach reduces plant competition,optimizes the developments of leaf area per plant,specific leaf area,leaf area development rate,leaf area duration and photosynthetic physiological indices(F_(v)/F_(m),ETR,P_(n)).The significant increase of 11.9%-34.2%in canopy apparent photosynthesis(CAP)is attributed to the significant optimization of plant growth and photosynthetic physiology through CT,an important contributing factor to yield increases.The yield in the 20-60 cm treatment is 4.0%higher than in equidistant planting under normal planting density,but 5.9%under high density,primarily driven by CAP and pod number.These findings suggest that suitable row spacing configurations optimize the light environment for plants,promote source-sink transformation in soybeans,and further improve yield.In practice,a 20-60 cm row spacing configuration could be employed for high-density soybean planting to achieve a more substantial yield gain.
基金financially supported by the National Natural Science Foundation of China(Nos.52472032 and 52172023)the Key Program of Natural Science Foundation of Hubei Province(No.2024AFA083)
文摘High-temperature industries,as the primary consumers of energy,are greatly concerned with energy savings.Designing refractory linings with low thermal conductivity to reduce heat dissipation through high-temperature furnace linings is a critical concern.In this study,a series of novel entropy-stabilized spinel materials are reported,and their potential applications in high-temperature industries are investigated.XRD and TEM results indicate that all materials possess a cubic spinel crystal structure with the■space group.Furthermore,these materials exhibit good phase stability at high temperatures.All entropy-stabilized spinel aggregates demonstrated high refractoriness(>1800℃)and a high load softening temperature(>1700℃).The impact of configurational entropy on the properties of entropy-stabilized spinel materials was also studied.As configurational entropy increased,the thermal conductivity of the entropy-stabilized spinel decreased,while slag corrosion resistance deteriorated.For the entropy-stabilized spinel with a configurational entropy value of 1.126R,it showed good high-temperature stability,reliable resistance to slag attack,and a low thermal conductivity of 2.776 W·m^(-1)·K^(-1)at 1000℃.
基金supported by the Industrial Foresight Projects and Common Key Technologies of Zhenjiang(No.GY2024028)The authors also acknowledged the support of the Marine Equipment and Technology Institute,Jiangsu University of Science and Technology(No.XTCX202404).
文摘Solid oxide cells(SOCs),which include solid oxide fuel cells(SOFCs),symmetrical solid oxide cells(S-SOCs),and reversible solid oxide cells(R-SOCs),are considered key technologies for driving low-carbon and green revolution in the energy sector.Because of their clean,low-cost,and high-efficiency characteristics,SOCs have great potential for energy conversion and storage.However,the further development of SOC technologies faces challenges,such as a lack of long-term operational stability of the cell system,high material cost under high-temperature operating conditions,and limited catalytic effects at low temperatures.Recently,high-entropy materials(HEMs)have demonstrated excellent performance and wide application prospects in catalytic reactions,energy storage,supercapacitors,and other fields owing to their unique atomic arrangement and the four core effects(high mixed entropy stabilization effect,sluggish dif-fusion effect,lattice distortion effect,and“cocktail”effect).HEMs provide a new perspective for solving the aforementioned problems in the field of SOCs.This comprehensive review summarizes the applications of HEMs in the three fundamental components of SOCs:elec-trodes,electrolytes,and interconnects,focusing on the role of HEMs in enhancing catalytic activity and conductivity while mitigating harmful gas poisoning.In addition,this review proposes possible development directions for HEMs in SOCs based on the current re-search progress,providing valuable reference for high-entropy designs aimed at further enhancing the performance of SOCs.