Rotor-to-rotor interaction among neighboring rotors of a multirotor has great significance for aerodynamically efficient multirotor design. Current research is conducted to analyze aerodynamic performance of different...Rotor-to-rotor interaction among neighboring rotors of a multirotor has great significance for aerodynamically efficient multirotor design. Current research is conducted to analyze aerodynamic performance of different octocopter configurations amid hover and forward flight. Conventional and coaxial configurations are studied and a hybrid configuration is also proposed to rectify the disadvantages associated with the earlier two. Comparison is carried out for the aforementioned configurations along with comparison of coaxial and hybrid octocopters with bigger diameter rotors in the same confined space for high thrust requirement missions. Vertical spacing of coaxial configuration is also studied. Virtual Blade Method (VBM) is considered herein due to its great computational efficiency. The results show that there are 11.89% and 14.22% loss in thrust for coaxial octocopter compared to conventional and hybrid configurations with normal size rotors and 15.61% loss compared to hybrid configuration with bigger rotors in hover, whereas coaxial square configuration performs the worst in forward flight with a lift loss of 9.1%, 14.77% and 18.8% compared to coaxial diamond, conventional and hybrid configurations with normal size rotors and 9.96% and 17.82% loss compared to coaxial diamond and hybrid configurations with bigger rotors. Combined FM shows that hybrid configuration outperforms other octocopter configurations in overall aerodynamic performance.展开更多
A substation is a complex coupled system composed of various electrical equipment.Compared with standalone equipment,there is a significant coupling effect in the seismic response of interconnected equipment.To addres...A substation is a complex coupled system composed of various electrical equipment.Compared with standalone equipment,there is a significant coupling effect in the seismic response of interconnected equipment.To address this issue,this study investigates the seismic interaction of substation equipment with multiple electrical configurations and proposes an improved seismic design method.First,the concept of the coupling coefficient is introduced,which is used to improve the Newmark-βmethod and response spectrum method for the seismic design of standalone equipment.Then,the finite element models of a substation system with multiple configurations are established,and the vibration characteristics and seismic responses of the interconnected equipment are investigated.Finally,the coupling coefficients are obtained by kernel density estimation of the response results under twenty seismic ground motions,and the effectiveness of the proposed method is verified through two numerical examples.The results show that the frequency coupling coefficients vary from 0.69 to 1.42,while the seismic action coupling coefficient has a wider range,changing from 1.04 to 3.91.The coupling effect amplifies the seismic response of higher-frequency equipment,and the amplification degree varies among different configurations for the same type of equipment.展开更多
The influence of geometric configuration on the friction characteristics during incremental sheet forming of AA5052 was analyzed by integrating surface morphology and its characteristic parameters,along with plastic s...The influence of geometric configuration on the friction characteristics during incremental sheet forming of AA5052 was analyzed by integrating surface morphology and its characteristic parameters,along with plastic strain,contact pressure,and area.The interface promotes lubrication and support when wall angles were≤40°,a 0.5 mm-thin sheet was used,and a 10 mm-large tool radius was employed.This mainly results in micro-plowing and plastic extrusion flow,leading to lower friction coefficient.However,when wall angles exceed 40°,significant plastic strain roughening occurs,leading to inadequate lubrication on the newly formed surface.Increased sheet thickness and decreased tool radius elevate contact pressure.These actions trigger micro-cutting and adhesion,potentially leading to localized scuffing and dimple tears,and higher friction coefficient.The friction mechanisms remain unaffected by the part’s plane curve features.As the forming process progresses,abrasive wear intensifies,and surface morphology evolves unfavorably for lubrication and friction reduction.展开更多
Locomotion performance degradation after carrying payloads is a significant challenge for insect-scale microrobots.Previously,a legged microrobot named BHMbot with a high load-carrying capacity based on front-leg actu...Locomotion performance degradation after carrying payloads is a significant challenge for insect-scale microrobots.Previously,a legged microrobot named BHMbot with a high load-carrying capacity based on front-leg actuation configuration and efficient running gait was proposed.However,insects,mammals and reptiles in nature typically use their powerful rear legs to achieve rapid running gaits for predation or risk evasion.In this work,the load-carrying capacity of the BHMbots with front-leg actuation and rear-leg actuation configurations is comparatively studied.Simulations based on a dynamic model with four degrees of freedom,along with experiments,have been conducted to analyze the locomotion characteristics of the two configurations under different payload masses.Both simulation and experimental results indicate that the load-carrying capacity of the microrobots is closely related to their actuation configurations,which leads to different dynamic responses of the microrobots after carrying varying payload masses.For microrobots with body lengths of 15 mm,the rear-leg actuation configuration exhibits a 31.2%enhancement in running speed compared to the front-leg actuation configuration when unloaded.Conversely,when carrying payloads exceeding 5.7 times the body mass(350 mg),the rear-leg actuation configuration demonstrates an 80.1%reduction in running speed relative to the front-leg actuation configuration under the same payload conditions.展开更多
As an important sustainable energy source,Li-ion batteries have been widely used in mobile phones,electric vehicles,large-scale energy storage and aerospace.However,due to the inevitable safety risks of traditional li...As an important sustainable energy source,Li-ion batteries have been widely used in mobile phones,electric vehicles,large-scale energy storage and aerospace.However,due to the inevitable safety risks of traditional liquid Li-ion batteries,the use of all-solid-state batteries to replace organic liquid electrolytes has become one of the most effective ways to solve safety problem.Solid-state electrolyte(SSE)is the core part of allsolid-state Li-ion battery,and ideal SSE has the characteristics of high ionic conductivity,wide enough electrochemical stability window,suitable mechanical strength and excellent chemical stability,the first among which is particularly an essential prerequisite.While,so far only a few SSEs exhibit the Li ionic conductivities higher than 10^(-4) S/cm at room temperature.展开更多
This study introduces a novel approach to addressing the challenges of high-dimensional variables and strong nonlinearity in reservoir production and layer configuration optimization.For the first time,relational mach...This study introduces a novel approach to addressing the challenges of high-dimensional variables and strong nonlinearity in reservoir production and layer configuration optimization.For the first time,relational machine learning models are applied in reservoir development optimization.Traditional regression-based models often struggle in complex scenarios,but the proposed relational and regression-based composite differential evolution(RRCODE)method combines a Gaussian naive Bayes relational model with a radial basis function network regression model.This integration effectively captures complex relationships in the optimization process,improving both accuracy and convergence speed.Experimental tests on a multi-layer multi-channel reservoir model,the Egg reservoir model,and a real-field reservoir model(the S reservoir)demonstrate that RRCODE significantly reduces water injection and production volumes while increasing economic returns and cumulative oil recovery.Moreover,the surrogate models employed in RRCODE exhibit lightweight characteristics with low computational overhead.These results highlight RRCODE's superior performance in the integrated optimization of reservoir production and layer configurations,offering more efficient and economically viable solutions for oilfield development.展开更多
The mechanical behaviour of Titanium-based Fiber Metal Laminates(FMLs)reinforced with Kevlar,Jute and the novel woven(Kevlar+Jute)fiber mat were evaluated through tensile,flexural,Charpy impact,and drop-weight tests.T...The mechanical behaviour of Titanium-based Fiber Metal Laminates(FMLs)reinforced with Kevlar,Jute and the novel woven(Kevlar+Jute)fiber mat were evaluated through tensile,flexural,Charpy impact,and drop-weight tests.The FMLs were fabricated with various stacking configurations(2/1,3/2,4/3,and 5/4)to examine their influence on mechanical properties.Kevlar-reinforced laminates consistently demonstrated superior tensile and flexural strengths,with the highest tensile strength of 772 MPa observed in the 3/2 configuration,attributed to Kevlar's excellent load-bearing capacity.Jute-reinforced laminates exhibited lower performance due to poor bonding and early delamination,while the FMLs reinforced with woven(Kevlar+Jute)fiber mat achieved a balance between mechanical strength and cost-effectiveness by attaining a tensile strength of 718 MPa in the 3/2 configuration.Impact energy absorption results revealed that Kevlar-reinforced FMLs provided the highest energy absorption under Charpy tests,reaching 13.5 J in the 3/2 configuration.The 4/3 configu ration exhibited superior resistance under drop-weight impacts,absorbing 104.7 J of energy.Failure analysis using SEM revealed key mechanisms such as fiber debonding,delamination,and fiber pull-out,with increased severity observed in laminates with a higher number of fiber-epoxy layers,especially in the 5/4 configuration.This study highlights the potential of Kevlar-Jute hybrid fiber-reinforced FMLs for applications requiring high mechanical performance and impact resistance.Future research should explore advanced surface treatments and the environmental durability of these laminates for aerospace and automotive applications.展开更多
Using an experimental setup, the series configurations (SC) and the parallel configurations (PC) of the PV cell connection are studied to compare their performance under the condition of partial shading s. The perform...Using an experimental setup, the series configurations (SC) and the parallel configurations (PC) of the PV cell connection are studied to compare their performance under the condition of partial shading s. The performance of the configurations is evaluated by comparing the open-circuit voltage, the short-circuit current, the maximum power point (MPP), the voltage and current corresponding to MPP, and the Fill Factor (FF). The variations of the series resistance and the shunt resistance of a PV module under different irradiance levels are also determined by considering the effect of thermal voltage. Finally, a comparison between the performance losses in the different configurations is presented. The results of this study show that the parallel configuration has the best performance under the conditions of partial shade in the context of this work.展开更多
Ion optics are crucial components of ion thrusters and the study of the different ion extraction solutions used since the beginning of the electric propulsion era is essential to understand the evolution of ion engine...Ion optics are crucial components of ion thrusters and the study of the different ion extraction solutions used since the beginning of the electric propulsion era is essential to understand the evolution of ion engines. This work describes ion engine grids' main functions, parameters and issues related to thermal expansion and sputter erosion, and then introduces a review of ion optics used for significant launched and tested ion thrusters since 1970. Configurations, geometries, materials and fabrication methods are analyzed to understand when typical ion thrusters use two or three grids, what are the thicknesses and aperture sizes of the screen, accelerator and decelerator grids, why molybdenum and carbon-based materials such as pyrolytic graphite and carbon–carbon are the best available options for ion optics and what is the manufacturing method for each material.展开更多
This paper presents a detailed investigation of unsteady supersonic flows around a typical two-body configuration, which consists of a capsule and a canopy. The cases with different trailing distances between the caps...This paper presents a detailed investigation of unsteady supersonic flows around a typical two-body configuration, which consists of a capsule and a canopy. The cases with different trailing distances between the capsule and canopy are simulated. The objective of this study is to examine the detailed effects of trailing distance on the flow fields and analyze the flow physics of the different flow modes around the parachute-like two-body model. The computational results show unsteady pulsating flow fields in the small trailing distance cases and are in reasonable agree- ment with the experimental data. As the trailing distance increases, this unsteady flow mode takes different forms along with the wake/shock and shock/shock interactions, and then gradually fades away and transits to oscillate mode, which is very different from the former. As the trailing distance keeps increasing, only the capsule wake/canopy shock interaction is present in the flow field around the two-body model, which reveals that the unsteady capsule shock/canopy shock interaction is a key mechanism for the pulsation mode.展开更多
This paper presents a general approach for determining the configuration number for any linkage: A kinematic cham (KC) can be divided into some basic kinematic chains (BKCs) and driving joints; there are only 33 kinds...This paper presents a general approach for determining the configuration number for any linkage: A kinematic cham (KC) can be divided into some basic kinematic chains (BKCs) and driving joints; there are only 33 kinds of BKCs with υ =1-4 independent loop, containing only R (revolute) joints and their configuration numbers are given; the configuration number of a KC equals to the multiplication of the configuration numbers of BKCs contained in the KC.展开更多
When the pressure ratio increases from the perfectly expanded condition to the third limited condition in which a normal shock is located on the exit plane, shock wave configurations outside the nozzle can be further ...When the pressure ratio increases from the perfectly expanded condition to the third limited condition in which a normal shock is located on the exit plane, shock wave configurations outside the nozzle can be further assorted as no shock wave on the perfectly expanded condition, weak oblique shock reflection in the regular reflection (RR) pressure ratio condition, shock reflection hysteresis in the dual-solution domain of pressure ratio condition, Mach disk configurations in the Mach reflection (MR) pressure ratio condition, the strong oblique shock wave configurations in the corresponding condition, and a normal shock forms on the exit plane in the third limited con- dition. Every critical pressure ratio, especially under regular reflection and Mach reflection pressure ratio conditions, is deduced in the paper according to shock wave reflection theory. A hysteresis phenomenon is also theoretically possible in the dual-solution domain. For a planar Laval nozzle with the cross-section area ratio being 5, different critical pressure ratios are counted in these con- ditions, and numerical simulations are made to demonstrate these various shock wave configurations outside the nozzle. Theoretical analysis and numerical simulations are made to get a more detailed understanding about the shock wave structures outside a Laval nozzle and the RR←→MR transition in the dual-solution domain.展开更多
Multihull ships are widely used for sea transportation, and those with four hulls are known as quadramarans. Hull position configurations of a quadramaran include the diamond, tetra, and slice. In general, multihull v...Multihull ships are widely used for sea transportation, and those with four hulls are known as quadramarans. Hull position configurations of a quadramaran include the diamond, tetra, and slice. In general, multihull vessels traveling at high speeds have better hydrodynamic efficiency than monohull ships. This study aims to identify possible effects of various quadramaran hull position configurations on ship resistance for hull dimensions of 2 m length, 0.21 m breadth, and 0.045 m thickness. We conducted a towing test in which we varied the hull spacing and speed at Fr values between 0.08 and 0.62 and measured the total resistance using a load cell transducer. The experimental results reveal that the lowest total resistance was achieved with a diamond quadramaran configuration at Fr = 0.1-0.6 and an effective interference factor of up to 0.35 with S/L = 3/10 and R/L = 1/2 at Fr = 0.62.展开更多
To investigate the flame and overpressure characteristics of methane–air explosion with different obstacle configurations,an experimental study has been conducted,taking account of the number of obstacles,obstacle di...To investigate the flame and overpressure characteristics of methane–air explosion with different obstacle configurations,an experimental study has been conducted,taking account of the number of obstacles,obstacle distance from ignition source,and stream-wise and cross-wise obstacle positions.The results show that the flame speed and peak overpressure increase with the increasing number of obstacles,while the time to reach the peak is not fully determined by it.And the configuration having the farthest obstacle produces a higher overpressure and takes a longer time to reach the peak,but a slower flame propagation speed is obtained.Similar explosion characteristics are also observed in the configurations with two obstacles fixed at different stream-wise positions.Furthermore,the experimental results demonstrate that the peak overpressures and flame speeds in configurations with central or staggered obstacles are relatively higher,which should to be avoided in practical processes to minimize the risk associated with methane–air explosion.展开更多
Two cases of the nested configurations in R3 consisting of two regular quadrilaterals are discussed. One case of them do not form central configuration, the other case can be central configuration. In the second case ...Two cases of the nested configurations in R3 consisting of two regular quadrilaterals are discussed. One case of them do not form central configuration, the other case can be central configuration. In the second case the existence and uniqueness of the central configuration are studied. If the configuration is a central configuration, then all masses of outside layer are equivalent, similar to the masses of inside layer. At the same time the following relation between r(the ratio of the sizes) and mass ratio b = m/m must be satisfied in which the masses at outside layer are not less than the masses at inside layer, and the solution of this kind of central configuration is unique for the given ratio (6) of masses.展开更多
Experiments were conducted to determine the effects of the mixing section configurations on the Mg-CO_(2)Martian ramjet combustion efficiency.It was carried out at a mainstream mass flow rate of 110 g/s and a temperat...Experiments were conducted to determine the effects of the mixing section configurations on the Mg-CO_(2)Martian ramjet combustion efficiency.It was carried out at a mainstream mass flow rate of 110 g/s and a temperature of 810 K.The chamber pressure was measured under different configurations and Oxidizer to Fuel(O/F)ratios.Results showed that the engine achieved self-sustaining combustion and worked stably during experiments.The pre-combustion chamber is needed to increase the combustion efficiency and promote the full combustion of the powder.After the configuration of the pre-combustion chamber,the best combustion efficiency reached 80%when radial powder injection and lateral carbon dioxide intake were used.In addition,the O/F ratio in the pre-combustion chamber decreased from 0.67 to 0.31,resulting in an 8%increase in the combustion efficiency.It was speculated that different mixing section configurations and the variations in an O/F ratio within the pre-combustion chamber impacted the combustion efficiency and in essence,all affected the flow velocity and residence time of the two-phase flow in the com-bustion chamber.展开更多
The main purpose of the present work is to discuss whether or not the collective flows in heavy-ion collision at the Fermi energy can be taken as a tool to investigate the cluster configuration in light nuclei. In pra...The main purpose of the present work is to discuss whether or not the collective flows in heavy-ion collision at the Fermi energy can be taken as a tool to investigate the cluster configuration in light nuclei. In practice, within an extended quantum molecular dynamics model, four a-clustering (linear chain, kite, square and tetrahedron) configurations of 16O are employed in the initialization, 16O+16O around the Fermi energy (40-60 MeV/nucleon) with impact parameter 1-3fro are simulated, and the directed and elliptic flows are analyzed. It is found that collective flows are influenced by the different a-clustering configurations, and the directed flow of free protons is more sensitive to the initial cluster configuration than the elliptic flow. Nuclear reaction at the Fermi energy can be taken as a useful way to study cluster configuration in light nuclei.展开更多
Owing to the serious potential side-effects on the environment and human health,the rapid detection and removal of antibiotics have become an important research focus.In this work,four zinc-based metal-organic framewo...Owing to the serious potential side-effects on the environment and human health,the rapid detection and removal of antibiotics have become an important research focus.In this work,four zinc-based metal-organic frameworks(MOFs)with different functional groups,i.e.,Zn-MOF,Zn-MOF-CH_(3),Zn-MOF-NO_(2),Zn-MOF-COOH,were utilized for the construction of LDO/MOF composite materials with a nickel-iron-cobalt-based layered double oxide,NiFeCo-LDO.The results showed that the LDO/MOF composites not only had high sensitivity in detecting sulfonamide and quinolone antibiotics,but also had an appreciable ability to adsorb them from wastewater.The maximum adsorption capacities of all the four types of LDO@Zn-MOFs to all antibiotics can at least reach 150 mg/g,and the limits of detection in relation to all four antibiotics were at least as low as 100μg/L.Our work suggested the dual-function extraction performance can be attributed to the synergistic effects between the LDO and the MOFs.Moreover,the strong ferromagnetism derived from the LDO provided great convenience for the separation and regeneration of the LDO/MOF composites.展开更多
A new case configuration in R^3, the conjugate-nest consisted of one regular tetrahedron and one regular octahedron is discussed. If the configuration is a central configuration, then all masses of outside layer are e...A new case configuration in R^3, the conjugate-nest consisted of one regular tetrahedron and one regular octahedron is discussed. If the configuration is a central configuration, then all masses of outside layer are equivalent, the masses of inside layer are also equivalent. At the same time the following relation between ρ(r =√3/3ρ is the radius ratio of the sizes) and mass ratio τ=~↑m/m must be satisfied τ=~↑m/m=ρ(ρ+3)(3+2ρ+ρ^2)^-3/2+ρ(-ρ+3)(3-2ρ+ρ^2)^-3/2-4.2^-3/2ρ^-2-^-1ρ^-2/2(1+ρ)(3+2ρ+ρ^2)^-3/2+2(ρ-1)(3-2ρ+ρ^2)^-3/2-4(2√2)^-3ρ, and for any mass ratio τ, when mass ratio r is in the open interval (0, 0.03871633950 ... ), there exist three central configuration solutions(the initial configuration conditions who imply hamagraphic solutions) corresponding radius ratios are r1, r2, and r3, two of them in the interval (2.639300779… , +∞) and one is in the interval (0.7379549890…, 1.490942703… ). when mass ratio τ is in the open interval (130.8164950… , +∞), in the same way there have three corresponding radius ratios, two of them in the interval (0, 0.4211584789... ) and one is in the interval (0.7379549890…, 1.490942703…). When mass ratio τ is in the open interval (0.03871633950…, 130.8164950…), there has only one solution r in the interval (0.7379549890…, 1.490942703… ).展开更多
Numerical simulation methods of aerodynamic heating were compared by considering the inuence of numerical schemes and turbulence models,and attempting to investigate the applicability of numerical simulation methods o...Numerical simulation methods of aerodynamic heating were compared by considering the inuence of numerical schemes and turbulence models,and attempting to investigate the applicability of numerical simulation methods on predicting heat flux in engineering applications. For some typical cases provided with detailed experimental data,four spatial schemes and four turbulence models were adopted to calculate surface heat flux. By analyzing and comparing,some inuencing regularities of numerical schemes and turbulence models on calculating heat flux had been acquired. It is clear that AUSM+-up scheme with rapid compressibilitymodified high Reynolds number k鈥撓?model should be appropriate for calculating heat flux. The numerical methods selected as preference above were applied to calculate the heat flux of a 3-D complex geometry in high speed turbulent flows. The results indicated that numerical simulation can capture the complex flow phenomena and reveal the mechanism of aerodynamic heating. Especially,the numerical result of the heat flux at the stagnation point of the wedge was well in agreement with the prediction of Kemp鈥揜iddel formula,and the surface heat flux distribution was consistent with experiment results,which implied that numerical simulation can be introduced to predict heat flux in engineering applications.展开更多
基金supported by the National Natural Science Foundation of China(No.11972190).
文摘Rotor-to-rotor interaction among neighboring rotors of a multirotor has great significance for aerodynamically efficient multirotor design. Current research is conducted to analyze aerodynamic performance of different octocopter configurations amid hover and forward flight. Conventional and coaxial configurations are studied and a hybrid configuration is also proposed to rectify the disadvantages associated with the earlier two. Comparison is carried out for the aforementioned configurations along with comparison of coaxial and hybrid octocopters with bigger diameter rotors in the same confined space for high thrust requirement missions. Vertical spacing of coaxial configuration is also studied. Virtual Blade Method (VBM) is considered herein due to its great computational efficiency. The results show that there are 11.89% and 14.22% loss in thrust for coaxial octocopter compared to conventional and hybrid configurations with normal size rotors and 15.61% loss compared to hybrid configuration with bigger rotors in hover, whereas coaxial square configuration performs the worst in forward flight with a lift loss of 9.1%, 14.77% and 18.8% compared to coaxial diamond, conventional and hybrid configurations with normal size rotors and 9.96% and 17.82% loss compared to coaxial diamond and hybrid configurations with bigger rotors. Combined FM shows that hybrid configuration outperforms other octocopter configurations in overall aerodynamic performance.
基金National Natural Science Foundation of China under Grant No. 52378483the Fundamental Research Funds for the Central Universities under Grant No. DUT21JC07+1 种基金the Scientific Research Fund of Institute of Engineering MechanicsChina Earthquake Administration under Grant No. 2021D17
文摘A substation is a complex coupled system composed of various electrical equipment.Compared with standalone equipment,there is a significant coupling effect in the seismic response of interconnected equipment.To address this issue,this study investigates the seismic interaction of substation equipment with multiple electrical configurations and proposes an improved seismic design method.First,the concept of the coupling coefficient is introduced,which is used to improve the Newmark-βmethod and response spectrum method for the seismic design of standalone equipment.Then,the finite element models of a substation system with multiple configurations are established,and the vibration characteristics and seismic responses of the interconnected equipment are investigated.Finally,the coupling coefficients are obtained by kernel density estimation of the response results under twenty seismic ground motions,and the effectiveness of the proposed method is verified through two numerical examples.The results show that the frequency coupling coefficients vary from 0.69 to 1.42,while the seismic action coupling coefficient has a wider range,changing from 1.04 to 3.91.The coupling effect amplifies the seismic response of higher-frequency equipment,and the amplification degree varies among different configurations for the same type of equipment.
基金the support of the Key Research and Development Program of Shaanxi Province,China(No.2021GXLH-Z-049)。
文摘The influence of geometric configuration on the friction characteristics during incremental sheet forming of AA5052 was analyzed by integrating surface morphology and its characteristic parameters,along with plastic strain,contact pressure,and area.The interface promotes lubrication and support when wall angles were≤40°,a 0.5 mm-thin sheet was used,and a 10 mm-large tool radius was employed.This mainly results in micro-plowing and plastic extrusion flow,leading to lower friction coefficient.However,when wall angles exceed 40°,significant plastic strain roughening occurs,leading to inadequate lubrication on the newly formed surface.Increased sheet thickness and decreased tool radius elevate contact pressure.These actions trigger micro-cutting and adhesion,potentially leading to localized scuffing and dimple tears,and higher friction coefficient.The friction mechanisms remain unaffected by the part’s plane curve features.As the forming process progresses,abrasive wear intensifies,and surface morphology evolves unfavorably for lubrication and friction reduction.
基金supported in part by Beijing Natural Science Foundation under Grant 3232010in part by the National Natural Science Foundation of China under Grant 12002017+2 种基金in part by AECC Industry-university Collocation Fund under Grant HFZL2023CXY026in part by Beihang Outstanding Young Scholars Project under Grant YWF-23-L-1201in part by 111 Project under Grant B08009.
文摘Locomotion performance degradation after carrying payloads is a significant challenge for insect-scale microrobots.Previously,a legged microrobot named BHMbot with a high load-carrying capacity based on front-leg actuation configuration and efficient running gait was proposed.However,insects,mammals and reptiles in nature typically use their powerful rear legs to achieve rapid running gaits for predation or risk evasion.In this work,the load-carrying capacity of the BHMbots with front-leg actuation and rear-leg actuation configurations is comparatively studied.Simulations based on a dynamic model with four degrees of freedom,along with experiments,have been conducted to analyze the locomotion characteristics of the two configurations under different payload masses.Both simulation and experimental results indicate that the load-carrying capacity of the microrobots is closely related to their actuation configurations,which leads to different dynamic responses of the microrobots after carrying varying payload masses.For microrobots with body lengths of 15 mm,the rear-leg actuation configuration exhibits a 31.2%enhancement in running speed compared to the front-leg actuation configuration when unloaded.Conversely,when carrying payloads exceeding 5.7 times the body mass(350 mg),the rear-leg actuation configuration demonstrates an 80.1%reduction in running speed relative to the front-leg actuation configuration under the same payload conditions.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR2020MB049)the Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai(No.AMGM2023A07)。
文摘As an important sustainable energy source,Li-ion batteries have been widely used in mobile phones,electric vehicles,large-scale energy storage and aerospace.However,due to the inevitable safety risks of traditional liquid Li-ion batteries,the use of all-solid-state batteries to replace organic liquid electrolytes has become one of the most effective ways to solve safety problem.Solid-state electrolyte(SSE)is the core part of allsolid-state Li-ion battery,and ideal SSE has the characteristics of high ionic conductivity,wide enough electrochemical stability window,suitable mechanical strength and excellent chemical stability,the first among which is particularly an essential prerequisite.While,so far only a few SSEs exhibit the Li ionic conductivities higher than 10^(-4) S/cm at room temperature.
基金supported by the National Natural Science Foundation of China under Grant 52325402,52274057,and 52074340the National Key R&D Program of China under Grant 2023YFB4104200+2 种基金the Major Scientific and Technological Projects of CNOOC under Grant CCL2022RCPS0397RSN111 Project under Grant B08028China Scholarship Council under Grant 202306450108.
文摘This study introduces a novel approach to addressing the challenges of high-dimensional variables and strong nonlinearity in reservoir production and layer configuration optimization.For the first time,relational machine learning models are applied in reservoir development optimization.Traditional regression-based models often struggle in complex scenarios,but the proposed relational and regression-based composite differential evolution(RRCODE)method combines a Gaussian naive Bayes relational model with a radial basis function network regression model.This integration effectively captures complex relationships in the optimization process,improving both accuracy and convergence speed.Experimental tests on a multi-layer multi-channel reservoir model,the Egg reservoir model,and a real-field reservoir model(the S reservoir)demonstrate that RRCODE significantly reduces water injection and production volumes while increasing economic returns and cumulative oil recovery.Moreover,the surrogate models employed in RRCODE exhibit lightweight characteristics with low computational overhead.These results highlight RRCODE's superior performance in the integrated optimization of reservoir production and layer configurations,offering more efficient and economically viable solutions for oilfield development.
基金the aid of Research and Development Fund-Seed Money provided by Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology。
文摘The mechanical behaviour of Titanium-based Fiber Metal Laminates(FMLs)reinforced with Kevlar,Jute and the novel woven(Kevlar+Jute)fiber mat were evaluated through tensile,flexural,Charpy impact,and drop-weight tests.The FMLs were fabricated with various stacking configurations(2/1,3/2,4/3,and 5/4)to examine their influence on mechanical properties.Kevlar-reinforced laminates consistently demonstrated superior tensile and flexural strengths,with the highest tensile strength of 772 MPa observed in the 3/2 configuration,attributed to Kevlar's excellent load-bearing capacity.Jute-reinforced laminates exhibited lower performance due to poor bonding and early delamination,while the FMLs reinforced with woven(Kevlar+Jute)fiber mat achieved a balance between mechanical strength and cost-effectiveness by attaining a tensile strength of 718 MPa in the 3/2 configuration.Impact energy absorption results revealed that Kevlar-reinforced FMLs provided the highest energy absorption under Charpy tests,reaching 13.5 J in the 3/2 configuration.The 4/3 configu ration exhibited superior resistance under drop-weight impacts,absorbing 104.7 J of energy.Failure analysis using SEM revealed key mechanisms such as fiber debonding,delamination,and fiber pull-out,with increased severity observed in laminates with a higher number of fiber-epoxy layers,especially in the 5/4 configuration.This study highlights the potential of Kevlar-Jute hybrid fiber-reinforced FMLs for applications requiring high mechanical performance and impact resistance.Future research should explore advanced surface treatments and the environmental durability of these laminates for aerospace and automotive applications.
文摘Using an experimental setup, the series configurations (SC) and the parallel configurations (PC) of the PV cell connection are studied to compare their performance under the condition of partial shading s. The performance of the configurations is evaluated by comparing the open-circuit voltage, the short-circuit current, the maximum power point (MPP), the voltage and current corresponding to MPP, and the Fill Factor (FF). The variations of the series resistance and the shunt resistance of a PV module under different irradiance levels are also determined by considering the effect of thermal voltage. Finally, a comparison between the performance losses in the different configurations is presented. The results of this study show that the parallel configuration has the best performance under the conditions of partial shade in the context of this work.
文摘Ion optics are crucial components of ion thrusters and the study of the different ion extraction solutions used since the beginning of the electric propulsion era is essential to understand the evolution of ion engines. This work describes ion engine grids' main functions, parameters and issues related to thermal expansion and sputter erosion, and then introduces a review of ion optics used for significant launched and tested ion thrusters since 1970. Configurations, geometries, materials and fabrication methods are analyzed to understand when typical ion thrusters use two or three grids, what are the thicknesses and aperture sizes of the screen, accelerator and decelerator grids, why molybdenum and carbon-based materials such as pyrolytic graphite and carbon–carbon are the best available options for ion optics and what is the manufacturing method for each material.
基金supported by the National Natural Science Foundation of China(No.11702332)
文摘This paper presents a detailed investigation of unsteady supersonic flows around a typical two-body configuration, which consists of a capsule and a canopy. The cases with different trailing distances between the capsule and canopy are simulated. The objective of this study is to examine the detailed effects of trailing distance on the flow fields and analyze the flow physics of the different flow modes around the parachute-like two-body model. The computational results show unsteady pulsating flow fields in the small trailing distance cases and are in reasonable agree- ment with the experimental data. As the trailing distance increases, this unsteady flow mode takes different forms along with the wake/shock and shock/shock interactions, and then gradually fades away and transits to oscillate mode, which is very different from the former. As the trailing distance keeps increasing, only the capsule wake/canopy shock interaction is present in the flow field around the two-body model, which reveals that the unsteady capsule shock/canopy shock interaction is a key mechanism for the pulsation mode.
文摘This paper presents a general approach for determining the configuration number for any linkage: A kinematic cham (KC) can be divided into some basic kinematic chains (BKCs) and driving joints; there are only 33 kinds of BKCs with υ =1-4 independent loop, containing only R (revolute) joints and their configuration numbers are given; the configuration number of a KC equals to the multiplication of the configuration numbers of BKCs contained in the KC.
基金supported by the National Natural Science Foundation of China (No. 10702009)
文摘When the pressure ratio increases from the perfectly expanded condition to the third limited condition in which a normal shock is located on the exit plane, shock wave configurations outside the nozzle can be further assorted as no shock wave on the perfectly expanded condition, weak oblique shock reflection in the regular reflection (RR) pressure ratio condition, shock reflection hysteresis in the dual-solution domain of pressure ratio condition, Mach disk configurations in the Mach reflection (MR) pressure ratio condition, the strong oblique shock wave configurations in the corresponding condition, and a normal shock forms on the exit plane in the third limited con- dition. Every critical pressure ratio, especially under regular reflection and Mach reflection pressure ratio conditions, is deduced in the paper according to shock wave reflection theory. A hysteresis phenomenon is also theoretically possible in the dual-solution domain. For a planar Laval nozzle with the cross-section area ratio being 5, different critical pressure ratios are counted in these con- ditions, and numerical simulations are made to demonstrate these various shock wave configurations outside the nozzle. Theoretical analysis and numerical simulations are made to get a more detailed understanding about the shock wave structures outside a Laval nozzle and the RR←→MR transition in the dual-solution domain.
基金sponsored by the Directorate of Research and Community Services,University of Indonesia(Hibah PUPT-Tambahan UI 2015)
文摘Multihull ships are widely used for sea transportation, and those with four hulls are known as quadramarans. Hull position configurations of a quadramaran include the diamond, tetra, and slice. In general, multihull vessels traveling at high speeds have better hydrodynamic efficiency than monohull ships. This study aims to identify possible effects of various quadramaran hull position configurations on ship resistance for hull dimensions of 2 m length, 0.21 m breadth, and 0.045 m thickness. We conducted a towing test in which we varied the hull spacing and speed at Fr values between 0.08 and 0.62 and measured the total resistance using a load cell transducer. The experimental results reveal that the lowest total resistance was achieved with a diamond quadramaran configuration at Fr = 0.1-0.6 and an effective interference factor of up to 0.35 with S/L = 3/10 and R/L = 1/2 at Fr = 0.62.
基金supported by the National Natural Science Foundation of China (Nos.51106044 and 51176021)the Research Foundation of Education Bureau of Henan Province of China (No.14A410007)
文摘To investigate the flame and overpressure characteristics of methane–air explosion with different obstacle configurations,an experimental study has been conducted,taking account of the number of obstacles,obstacle distance from ignition source,and stream-wise and cross-wise obstacle positions.The results show that the flame speed and peak overpressure increase with the increasing number of obstacles,while the time to reach the peak is not fully determined by it.And the configuration having the farthest obstacle produces a higher overpressure and takes a longer time to reach the peak,but a slower flame propagation speed is obtained.Similar explosion characteristics are also observed in the configurations with two obstacles fixed at different stream-wise positions.Furthermore,the experimental results demonstrate that the peak overpressures and flame speeds in configurations with central or staggered obstacles are relatively higher,which should to be avoided in practical processes to minimize the risk associated with methane–air explosion.
基金Supported by the NSF of China(10231010)Supported by the NSF of CQSXXY (20030104)
文摘Two cases of the nested configurations in R3 consisting of two regular quadrilaterals are discussed. One case of them do not form central configuration, the other case can be central configuration. In the second case the existence and uniqueness of the central configuration are studied. If the configuration is a central configuration, then all masses of outside layer are equivalent, similar to the masses of inside layer. At the same time the following relation between r(the ratio of the sizes) and mass ratio b = m/m must be satisfied in which the masses at outside layer are not less than the masses at inside layer, and the solution of this kind of central configuration is unique for the given ratio (6) of masses.
基金supported by the Fund of Advance Research Projects of Manned Spaceflight,China(No.050303).
文摘Experiments were conducted to determine the effects of the mixing section configurations on the Mg-CO_(2)Martian ramjet combustion efficiency.It was carried out at a mainstream mass flow rate of 110 g/s and a temperature of 810 K.The chamber pressure was measured under different configurations and Oxidizer to Fuel(O/F)ratios.Results showed that the engine achieved self-sustaining combustion and worked stably during experiments.The pre-combustion chamber is needed to increase the combustion efficiency and promote the full combustion of the powder.After the configuration of the pre-combustion chamber,the best combustion efficiency reached 80%when radial powder injection and lateral carbon dioxide intake were used.In addition,the O/F ratio in the pre-combustion chamber decreased from 0.67 to 0.31,resulting in an 8%increase in the combustion efficiency.It was speculated that different mixing section configurations and the variations in an O/F ratio within the pre-combustion chamber impacted the combustion efficiency and in essence,all affected the flow velocity and residence time of the two-phase flow in the com-bustion chamber.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11421505,11220101005,11305239 and 11605270the Major State Basic Research Development Program of China under Grant No 2014CB845401+1 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences under Grant No QYZDJ-SSW-SLH002the China Postdoctoral Science Foundation under Grant No 2016M591730
文摘The main purpose of the present work is to discuss whether or not the collective flows in heavy-ion collision at the Fermi energy can be taken as a tool to investigate the cluster configuration in light nuclei. In practice, within an extended quantum molecular dynamics model, four a-clustering (linear chain, kite, square and tetrahedron) configurations of 16O are employed in the initialization, 16O+16O around the Fermi energy (40-60 MeV/nucleon) with impact parameter 1-3fro are simulated, and the directed and elliptic flows are analyzed. It is found that collective flows are influenced by the different a-clustering configurations, and the directed flow of free protons is more sensitive to the initial cluster configuration than the elliptic flow. Nuclear reaction at the Fermi energy can be taken as a useful way to study cluster configuration in light nuclei.
基金support from the National Natural Science Foundation of China(Nos.22276080,21605105)the Foreign Expert Project,China(No.G2022014096L)+1 种基金the Natural Science Foundation of Jiangsu Province,China(No.BK20211340)Graduate Research and Practice Innovation Program of Jiangsu Province,China(No.KYCX22_3835).
文摘Owing to the serious potential side-effects on the environment and human health,the rapid detection and removal of antibiotics have become an important research focus.In this work,four zinc-based metal-organic frameworks(MOFs)with different functional groups,i.e.,Zn-MOF,Zn-MOF-CH_(3),Zn-MOF-NO_(2),Zn-MOF-COOH,were utilized for the construction of LDO/MOF composite materials with a nickel-iron-cobalt-based layered double oxide,NiFeCo-LDO.The results showed that the LDO/MOF composites not only had high sensitivity in detecting sulfonamide and quinolone antibiotics,but also had an appreciable ability to adsorb them from wastewater.The maximum adsorption capacities of all the four types of LDO@Zn-MOFs to all antibiotics can at least reach 150 mg/g,and the limits of detection in relation to all four antibiotics were at least as low as 100μg/L.Our work suggested the dual-function extraction performance can be attributed to the synergistic effects between the LDO and the MOFs.Moreover,the strong ferromagnetism derived from the LDO provided great convenience for the separation and regeneration of the LDO/MOF composites.
基金NSF of China(10231010)NSF of Chongqing EducationCommittee(071105)NSF of SXXYYB(070X)
文摘A new case configuration in R^3, the conjugate-nest consisted of one regular tetrahedron and one regular octahedron is discussed. If the configuration is a central configuration, then all masses of outside layer are equivalent, the masses of inside layer are also equivalent. At the same time the following relation between ρ(r =√3/3ρ is the radius ratio of the sizes) and mass ratio τ=~↑m/m must be satisfied τ=~↑m/m=ρ(ρ+3)(3+2ρ+ρ^2)^-3/2+ρ(-ρ+3)(3-2ρ+ρ^2)^-3/2-4.2^-3/2ρ^-2-^-1ρ^-2/2(1+ρ)(3+2ρ+ρ^2)^-3/2+2(ρ-1)(3-2ρ+ρ^2)^-3/2-4(2√2)^-3ρ, and for any mass ratio τ, when mass ratio r is in the open interval (0, 0.03871633950 ... ), there exist three central configuration solutions(the initial configuration conditions who imply hamagraphic solutions) corresponding radius ratios are r1, r2, and r3, two of them in the interval (2.639300779… , +∞) and one is in the interval (0.7379549890…, 1.490942703… ). when mass ratio τ is in the open interval (130.8164950… , +∞), in the same way there have three corresponding radius ratios, two of them in the interval (0, 0.4211584789... ) and one is in the interval (0.7379549890…, 1.490942703…). When mass ratio τ is in the open interval (0.03871633950…, 130.8164950…), there has only one solution r in the interval (0.7379549890…, 1.490942703… ).
文摘Numerical simulation methods of aerodynamic heating were compared by considering the inuence of numerical schemes and turbulence models,and attempting to investigate the applicability of numerical simulation methods on predicting heat flux in engineering applications. For some typical cases provided with detailed experimental data,four spatial schemes and four turbulence models were adopted to calculate surface heat flux. By analyzing and comparing,some inuencing regularities of numerical schemes and turbulence models on calculating heat flux had been acquired. It is clear that AUSM+-up scheme with rapid compressibilitymodified high Reynolds number k鈥撓?model should be appropriate for calculating heat flux. The numerical methods selected as preference above were applied to calculate the heat flux of a 3-D complex geometry in high speed turbulent flows. The results indicated that numerical simulation can capture the complex flow phenomena and reveal the mechanism of aerodynamic heating. Especially,the numerical result of the heat flux at the stagnation point of the wedge was well in agreement with the prediction of Kemp鈥揜iddel formula,and the surface heat flux distribution was consistent with experiment results,which implied that numerical simulation can be introduced to predict heat flux in engineering applications.