Two novel diketopiperazines(1 and 5),along with ten known compounds(2−4,6−12)demonstrating significant skin inflammation inhibition,were isolated from a marine-derived fungus identified as Aspergillus sp.FAZW0001.The ...Two novel diketopiperazines(1 and 5),along with ten known compounds(2−4,6−12)demonstrating significant skin inflammation inhibition,were isolated from a marine-derived fungus identified as Aspergillus sp.FAZW0001.The structural elucidation and configurational reassessments of compounds 1−5 were established through comprehensive spectral analyses,with their absolute configurations determined via single crystal X-ray diffraction using Cu Kαradiation,Marfey’s method,and comparison between experimental and calculated electronic circular dichroism(ECD)spectra.Compounds 1,2,and 8 exhibited significant anti-inflammatory activities in Propionibacterium acnes(P.acnes)-induced human monocyte cell lines.Compound 8 demonstrated the ability to down-regulate interleukin-1β(IL-1β)expression by inhibiting Toll-like receptor 2(TLR2)expression and modulating the activation of myeloid differentiation factor 88(MyD88),mitogen-activated protein kinase(MAPK),and nuclear factorκB(NF-κB)signaling pathways,thus reducing the cellular inflammatory response induced by P.acnes.Additionally,compound 8 showed the capacity to suppress mitochondrial reactive oxygen species(ROS)production and nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3)inflammasome activation,thereby reducing IL-1βmaturation and secretion.A three-dimensional quantitative structure-activity relationships(3D-QSAR)model was applied to compounds 5−12 to analyze their anti-inflammatory structure-activity relationships.展开更多
Configurational information entropy(CIE)theory was employed to determine the neutron-skin thickness of neutron-rich calcium isotopes.The nuclear density distributions and fragment cross sections in 350 MeV/u ^(40-60)C...Configurational information entropy(CIE)theory was employed to determine the neutron-skin thickness of neutron-rich calcium isotopes.The nuclear density distributions and fragment cross sections in 350 MeV/u ^(40-60)Ca+^(9)Be projectile fragmentation reactions were calculated using a modified statistical abrasion-ablation model.CIE quantities were determined from the nuclear density,isotopic,mass,and charge distributions.The linear correlations between the CIE determined using the isotopic,mass,and charge distributions and the neutron-skin thickness of the projectile nucleus show that CIE provides new methods to extract the neutron-skin thickness of neutron-rich nuclei.展开更多
ABX_(2)(A=Ag,Na,Cu;B=Sb,Bi;X=S,Se,Te)(GroupsⅠ-Ⅴ-Ⅵ_(2))compounds,which are all characterized by the ultralow lattice thermal conductivity because of their strong lattice anharmonicity caused by lone-pair electrons,h...ABX_(2)(A=Ag,Na,Cu;B=Sb,Bi;X=S,Se,Te)(GroupsⅠ-Ⅴ-Ⅵ_(2))compounds,which are all characterized by the ultralow lattice thermal conductivity because of their strong lattice anharmonicity caused by lone-pair electrons,have aroused wide attention in thermoelectric community.The practical application of thermoelectric devices usually requires both the compatible n-type and p-type materials simultaneously.However,most ofⅠ-Ⅴ-Ⅵ_(2)compounds are intrinsic p-type semiconductors,lacking their n-type counterparts for thermoelectrics.Herein,in this work,we increase the configuration entropy of AgBiTe_(2)by alloying SnTe,in order to stabilize the cubic phase at room temperature.With further optimization of thermal and electrical performance,the thermoelectric performance could be improved simultaneously in both n-and p-type(AgBiTe_(2))_(1-x)(SnTe)_(x)(x=0.3,0.4)solid solutions.Finally,p-type compound with the nominal composition of(AgBi_(0.99)Cd_(0.01)Te_(2))_(0.6)(SnTe)_(0.4)and n-type of(AgBiTe_(2))_(0.7)(SnTe)_(0.3)~Br 6%show the maximum zT of~0.33 and~0.21,at 381 and 423 K,respectively.展开更多
Configurational information entropy(CIE)analysis has been shown to be applicable for determining the neutron skin thickness(δnp)of neutron-rich nuclei from fragment production in projectile fragmentation reactions.Th...Configurational information entropy(CIE)analysis has been shown to be applicable for determining the neutron skin thickness(δnp)of neutron-rich nuclei from fragment production in projectile fragmentation reactions.The BNN+FRACS machine learning model was adopted to predict the fragment mass cross-sections(σ_(A))of the projectile fragmentation reactions induced by calcium isotopes from ^(36)Ca to ^(56)Ca on a ^(9)Be target at 140MeV/u.The fast Fourier transform was adopted to decompose the possible information compositions inσA distributions and determine the quantity of CIE(S_(A)[f]).It was found that the range of fragments significantly influences the quantity of S_(A)[f],which results in different trends of S_(A)[f]~δnp correlation.The linear S_(A)[f]~δnp correlation in a previous study[Nucl.Sci.Tech.33,6(2022)]could be reproduced using fragments with relatively large mass fragments,which verifies that S_(A)[f]determined from fragmentσAis sensitive to the neutron skin thickness of neutron-rich isotopes.展开更多
The spinel-type LiMn_(2)O_(4) is a promising candidate as cathode material for rechargeable Li-ion batteries due to its good thermal stability and safety.Experimentally,it is observed that in this compound there occur...The spinel-type LiMn_(2)O_(4) is a promising candidate as cathode material for rechargeable Li-ion batteries due to its good thermal stability and safety.Experimentally,it is observed that in this compound there occur the structural phase transitions from cubic(Fd3m)to tetragonal(I4_(1)/amd)phase at slightly below room temperature.To understand the phase transition mechanism,we compare the Gibbs free energy between cubic phase and tetragonal phase by including the configurational entropy.Our results show that the configurational entropy contributes substantially to the stability of the cubic phase at room temperature due to the disordered Mn^(3+)/Mn^(4+)distribution as well as the orientation of the Jahn-Teller elongation of the Mn^(3+)O_(6) octahedron in the the spinel phase.Meanwhile,the phase transition temperature is predicted to be 267.8 K,which is comparable to the experimentally observed temperature.These results serve as a good complement to the experimental study,and are beneficial to the improving of the electrochemical performance of LiMn_(2)O_(4) cathode.展开更多
Metallic amorphous/crystalline(A/C)nanolaminates exhibit excellent ductility while retaining their high strength.However,the underlying physical mechanisms and the resultant structural changes during plastic deformati...Metallic amorphous/crystalline(A/C)nanolaminates exhibit excellent ductility while retaining their high strength.However,the underlying physical mechanisms and the resultant structural changes during plastic deformation still remain unclear.In the present work,the structure-property relationship of CuZr/Cu A/C nanolaminates is established through integrated high-throughput micro-compression tests and molecular dynamics simulations together with high-resolution transmission electron microcopy.The serrated flow of nanolaminates results from the formation of hexagonal-close-packed(HCP)-type stacking faults and twins inside the face-centered-cubic(FCC)Cu nano-grains,the body-centered-cubic(BCC)-type ordering at their grain boundaries,and the crystallization of the amorphous CuZr layers.The serration behavior of CuZr/Cu A/C nanolaminates is determined by several factors,including the formation of dense dislocation networks from the multiplication of initial dislocations that formed after yielding,weak-spots-related configurational-transitions and shear-transition-zone activities,and deformation-induced devitrification.The present work provides an insight into the heterogeneous deformation mechanism of A/C nanolaminates at the atomic scale,and mechanistic base for the microstructural design of self-toughening metallic-glass(MG)-based composites and A/C nanolaminates.展开更多
A full-relaxation optimization of molecule and the popular MM2 force field are employed to obtain the geometry parameters and the conformational energy surface of a meso or a racemic dyad of poly(methyl acrylate) (PMA...A full-relaxation optimization of molecule and the popular MM2 force field are employed to obtain the geometry parameters and the conformational energy surface of a meso or a racemic dyad of poly(methyl acrylate) (PMA) with a specified carbonyl-bond orientation in side-groups. It is found that the conformational energy maps calculated here considerably differ from those calculated with the rigid molecular model as reported in the earlier studies. The g(-) state cannot be omitted in the obtained contour maps. Two important conformers tg(-) and g(-t) with energy minima were newly detected for a racemic dyad. The analysis on the conformations with energy minima confirmed that the ester groups are not always perpendicular to the plane defined by the two adjacent skeletal bonds and may change their relative orientations to meet the requirement of lower energies during the conformational state transition. Instead of the early way of adjusting the interaction energy parameters to fit the experimental data, we attempt to predict unperturbed chain dimensions via the reliable force field and the configurational statistical mechanics. The proposed scheme with three rotational states identified from the contour maps allowed us to satisfactorily reproduce the experimental dimensions of random PMA chains.展开更多
The promotion of energy efficiency(EE)helps address energy constraints and promote environmental sustainability.This study comprehensively explores the spatiotemporal variations,influencing factors,and configuration p...The promotion of energy efficiency(EE)helps address energy constraints and promote environmental sustainability.This study comprehensively explores the spatiotemporal variations,influencing factors,and configuration promotion paths of EE in 284 Chinese cities during 2003‒2019 using the global super-efficiency minimum distance to strong efficient frontier(G-S-MinDS),exploratory spatial data analysis(ESDA),multiscale geographically weighted regression(MGWR),and fuzzy set qualitative comparative analysis(fsQCA)methods.The findings are:①China’s cities have an annual average EE of 0.658 with a growth rate of 0.53%,showing considerable promotion potential.②Industrial structure optimization,population agglomeration,economic development,and increased green coverage contribute positively,while government intervention and openness hinder China’s urban EE.③Four configurational promotion paths for enhancing China’s urban EE are identified,where among those paths population density is a core condition,while government intervention is not.This study provides valuable insights into substantially improving urban EE,emphasizing the need for targeted policies to address energy and environmental crises in China.展开更多
This paper concerns the theme of the universal accessibility to urban spaces, proposing the contribution of configurational approach to their inclusive design. Born in the first Nineties on the roots of the efforts an...This paper concerns the theme of the universal accessibility to urban spaces, proposing the contribution of configurational approach to their inclusive design. Born in the first Nineties on the roots of the efforts and the studies for reducing material and architectural barriers for disabled people, such discipline extends its sphere and purposes so as to mitigate the effects of spatial exclusion of a wider and wider variety of human categories, up to virtually include any potential urban user. Several questions persuade that a merely functional approach, essentially based on the position of the located activities, cannot be said satisfying: only a configurational approach can account for the effects of the grid configuration on the actual accessibility of its spaces. Our research focuses on Italian urban settlements, which appear as ideal case studies, due to the typical consistency of their urban spaces, which, especially in the inner historical cores, are densely build, geometrically irregular and hence generally far from actually providing a universal material accessibility. Here the impedance of space is much more than a theoretical hypothesis and concrete interventions are generally requested to eliminate or reduce its barriers and to make space actually and safely usable. Rather than at indicating the technical solution of single urban problems, which of course are strongly different each other, the research aims at defining a method suitable for any local context. Such method, integrating into a reliable tool the configurational vision with the functional and interactional approach, will provide a hierarchy of urban spaces with reference to the necessity of their universal accessibility.展开更多
Molecular photoswitches hold an important position in chemical research,and it is of significance to develop novel structures and mechanisms.Herein we report a new type of E/Z photoswitches in tellurazole/tellurazoliu...Molecular photoswitches hold an important position in chemical research,and it is of significance to develop novel structures and mechanisms.Herein we report a new type of E/Z photoswitches in tellurazole/tellurazolium-based olefin scaffolds,wherein intramolecular through-space n→π^(*)orbital interaction plays a stabilizing role in the Z isomer approaching quantitative conversion.The manipulation of diverse noncovalent interactions,including intermolecular chalcogen bonding,further provided versatile handles for regulating molecular recognition and multiaddressable switching.Despite bidirectional E/Z photoisomerization with neutral tellurazole derivatives,protonation-induced cationic tellurazoliums allowed significant enhancement in the efficiency of Z→E switching(E up to 73%)while maintaining high percentage E→Z switching(Z up to 95%),as chalcogen bonding with counteranions contributes to the stabilization of electron-accepting tellurazoliums affording a larger wavelength difference between E/Z isomers.Furthermore,the n→π^(*)orbital interaction enables the preference of Z isomer in the ground state for N-methyl tellurazoliums.Bidirectional E/Z photoswitching with high conversion(Z up to 99%,E up to 81%)was attained,and E→Z isomerization can also be invoked by nucleophilic catalysis,making N-methyl tellurazoliums as T-type photoswitches.The results showcase the power of noncovalent interactions for controlling molecular photoswitches and should set the scene for vip recognition,dynamic assemblies,and responsive materials.展开更多
High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic f...High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic features enable forming-free resistive switching,multilevel conductance modulation,and synaptic plasticity,making HEOs attractive for neuromorphic computing.This review outlines recent progress in HEO-based memristors across materials engineering,switching mechanisms,and synaptic emulation.Particular attention is given to vacancy migration,phase transitions,and valence-state dynamics—mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems.Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined.While encouraging results have been achieved at the device level,challenges remain in conductance precision,variability control,and scalable integration.Addressing these demands a concerted effort across materials design,interface optimization,and task-aware modeling.With such integration,HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics.展开更多
One sort of very important polyelectrolytes, polyacrylamide (PAA) and its copolymers with acrylic acid, on the one hand, have been widely applied as commercial products as flocculants and mobility control fluids in en...One sort of very important polyelectrolytes, polyacrylamide (PAA) and its copolymers with acrylic acid, on the one hand, have been widely applied as commercial products as flocculants and mobility control fluids in enhanced oil recovery. On the other hand, these polymers relate to the fundamental point of polymer physics, a configuration of very long chain molecules containing many hydrogen-bonding groups.展开更多
A novel malonamide-linked zinc bisporphyrinate[Zn_(2)-1]has been designed and synthesized.UV-vis and NMR spectroscopic studies suggest the molecule aggregates in solution.Such zinc bisporphyrinate is very CD-sensitive...A novel malonamide-linked zinc bisporphyrinate[Zn_(2)-1]has been designed and synthesized.UV-vis and NMR spectroscopic studies suggest the molecule aggregates in solution.Such zinc bisporphyrinate is very CD-sensitive when it is mixed with amino acid ethyl esters.The amplitude value of the induced circular dichroism(ICD)is up to ca.1500 L•mol^(−1)•cm^(−1).Further studies by ^(1)H NMR and UV-vis spectroscopies reveal amino acid esters function as monodentate ligands,and[Zn_(2)-1]interacts with amino acid ethyl esters through coordination and hydrogen bonding interactions.展开更多
It is well-known that the atomic-scale and nano-scale configuration of dopants can play a crucial role in determining the electronic properties of materials.However,predicting such effects is challenging due to the la...It is well-known that the atomic-scale and nano-scale configuration of dopants can play a crucial role in determining the electronic properties of materials.However,predicting such effects is challenging due to the large range of atomic configurations that are possible.Here,we present a case study of how deep learning algorithms can enable bandgap prediction in hybridized boron–nitrogen graphene with arbitrary supercell configurations.A material descriptor that enables correlation of structure and bandgap was developed for convolutional neural networks.Bandgaps calculated by ab initio calculations,and corresponding structures,were used as training datasets.The trained networks were then used to predict bandgaps of systems with various configurations.For 4×4 and 5×5 supercells they accurately predict bandgaps,with a R^(2) of >90% and root-mean-square error of~0.1 eV.The transfer learning was performed by leveraging data generated from small supercells to improve the prediction accuracy for 6×6 supercells.This work will pave a route to future investigation of configurationally hybridized graphene and other 2D materials.Moreover,given the ubiquitous existence of configurations in materials,this work may stimulate interest in applying deep learning algorithms for the configurational design of materials across different length scales.展开更多
The duality in China's traffic planning has given rise to the basic unit of urban form and function called the superblock,which is defined and bound by an arterial street network.The street network of China's ...The duality in China's traffic planning has given rise to the basic unit of urban form and function called the superblock,which is defined and bound by an arterial street network.The street network of China's superblock un derpins the coexiste nee and in teraction of global and local movement,the public and daily space,and affects place diversity and local characteristics.However,its configuration remains to be articulated because of the lack of a systematic representation method,and the associations between configuration and performance,cognition and design cannot be determi ned.This study proposes an improved representation method for the street network of China's superblocks based on Marshall's route structure analysis to explore the configurational characteristics and sustainability of the network.To fit local conditions,this study improves Marshall's route structure analysis from four perspectives,namely,the judgement of relative hierarchy,the node construction principle,and the deletion and addition of the original indicators.The improved method is then applied to calculate and compare the depth,connectivity,and complexity of the street networks of 10 sample superblocks in Nanjing,which are classified into six types by construction backgrounds,each having two seenarios differing by the level of publicity.Results indicate that the types formed in accordance with the"The Capital Plan"of the Republic of China,which presents a combination of fine orthogonal grids and radiations,and by the renewal of the traditional street-andlane network,which has the"characteristic structure" defined by Marshall,perform best in terms of configurational sustainability.The an alysis also reveals that the addition of semipublic streets formed mainly from the bottom up narrows the sustainability gap among the samples.This study provides a tool for elaborate urban study and design and provides in sights into the cognitive and practical aspects of China's urban planning and design.展开更多
Polaron defects are ubiquitous in materials and play an important role in many processes involving carrier mobility,charge transfer and surface reactivity.Determining small polarons’spatial distributions is essential...Polaron defects are ubiquitous in materials and play an important role in many processes involving carrier mobility,charge transfer and surface reactivity.Determining small polarons’spatial distributions is essential to understand materials properties and functionalities.However,the required exploration of the configurational space is computationally demanding when using first principles methods.Here,we propose a machine-learning(ML)accelerated search that determines the ground state polaronic configuration.The ML model is trained on databases of polaron configurations generated by density functional theory(DFT)via molecular dynamics or random sampling.To establish a mapping between configurations and their stability,we designed descriptors modelling the interactions among polarons and charged point defects.We used the DFT+ML protocol to explore the polaron configurational space for two surface-systems,reduced rutile TiO_(2)(110)and Nb-doped SrTiO_(3)(001).The ML-aided search proposes additional polaronic configurations and can be utilized to determine optimal polaron distributions at any charge concentration.展开更多
The prediction of configurational disorder properties,such as configurational entropy and orderdisorder phase transition temperature,of compound materials relies on efficient and accurate evaluations of configurationa...The prediction of configurational disorder properties,such as configurational entropy and orderdisorder phase transition temperature,of compound materials relies on efficient and accurate evaluations of configurational energies.Previous cluster expansion methods are not applicable to configurationally-complex material systems,including those with atomic distortions and long-range orders.In this work,we propose to leverage the versatile expressive capabilities of graph neural networks(GNNs)for efficient evaluations of configurational energies and present a workflow combining attention-based GNNs and Monte Carlo simulations to calculate the disorder properties.Using the dataset of face-centered tetragonal gold copper without and with local atomic distortions as an example,we demonstrate that the proposed data-driven framework enables the prediction of phase transition temperatures close to experimental values.We also elucidate that the variance of the energy deviations among configurations controls the prediction accuracy of disorder properties and can be used as the target loss function when training and selecting the GNN models.The work serves as a fundamental step toward a data-driven paradigm for the accelerated design of configurationallycomplex functional material systems.展开更多
The cluster expansion method(CEM)is a widely used lattice-based technique in the study of multicomponent alloys.Despite its prevalent use,a clear understanding of expansion terms is lacking.Wepresent amodern mathemati...The cluster expansion method(CEM)is a widely used lattice-based technique in the study of multicomponent alloys.Despite its prevalent use,a clear understanding of expansion terms is lacking.Wepresent amodern mathematical formalism of the CEM and introduce the cluster decomposition-a unique and basis-independent decomposition for functions of the atomic configuration in a crystal.展开更多
Solid oxide cells(SOCs),which include solid oxide fuel cells(SOFCs),symmetrical solid oxide cells(S-SOCs),and reversible solid oxide cells(R-SOCs),are considered key technologies for driving low-carbon and green revol...Solid oxide cells(SOCs),which include solid oxide fuel cells(SOFCs),symmetrical solid oxide cells(S-SOCs),and reversible solid oxide cells(R-SOCs),are considered key technologies for driving low-carbon and green revolution in the energy sector.Because of their clean,low-cost,and high-efficiency characteristics,SOCs have great potential for energy conversion and storage.However,the further development of SOC technologies faces challenges,such as a lack of long-term operational stability of the cell system,high material cost under high-temperature operating conditions,and limited catalytic effects at low temperatures.Recently,high-entropy materials(HEMs)have demonstrated excellent performance and wide application prospects in catalytic reactions,energy storage,supercapacitors,and other fields owing to their unique atomic arrangement and the four core effects(high mixed entropy stabilization effect,sluggish dif-fusion effect,lattice distortion effect,and“cocktail”effect).HEMs provide a new perspective for solving the aforementioned problems in the field of SOCs.This comprehensive review summarizes the applications of HEMs in the three fundamental components of SOCs:elec-trodes,electrolytes,and interconnects,focusing on the role of HEMs in enhancing catalytic activity and conductivity while mitigating harmful gas poisoning.In addition,this review proposes possible development directions for HEMs in SOCs based on the current re-search progress,providing valuable reference for high-entropy designs aimed at further enhancing the performance of SOCs.展开更多
High-temperature industries,as the primary consumers of energy,are greatly concerned with energy savings.Designing refractory linings with low thermal conductivity to reduce heat dissipation through high-temperature f...High-temperature industries,as the primary consumers of energy,are greatly concerned with energy savings.Designing refractory linings with low thermal conductivity to reduce heat dissipation through high-temperature furnace linings is a critical concern.In this study,a series of novel entropy-stabilized spinel materials are reported,and their potential applications in high-temperature industries are investigated.XRD and TEM results indicate that all materials possess a cubic spinel crystal structure with the■space group.Furthermore,these materials exhibit good phase stability at high temperatures.All entropy-stabilized spinel aggregates demonstrated high refractoriness(>1800℃)and a high load softening temperature(>1700℃).The impact of configurational entropy on the properties of entropy-stabilized spinel materials was also studied.As configurational entropy increased,the thermal conductivity of the entropy-stabilized spinel decreased,while slag corrosion resistance deteriorated.For the entropy-stabilized spinel with a configurational entropy value of 1.126R,it showed good high-temperature stability,reliable resistance to slag attack,and a low thermal conductivity of 2.776 W·m^(-1)·K^(-1)at 1000℃.展开更多
基金supported by the National Natural Science Foundation of China(Nos.41876189 and 81703388)the State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing Technology.
文摘Two novel diketopiperazines(1 and 5),along with ten known compounds(2−4,6−12)demonstrating significant skin inflammation inhibition,were isolated from a marine-derived fungus identified as Aspergillus sp.FAZW0001.The structural elucidation and configurational reassessments of compounds 1−5 were established through comprehensive spectral analyses,with their absolute configurations determined via single crystal X-ray diffraction using Cu Kαradiation,Marfey’s method,and comparison between experimental and calculated electronic circular dichroism(ECD)spectra.Compounds 1,2,and 8 exhibited significant anti-inflammatory activities in Propionibacterium acnes(P.acnes)-induced human monocyte cell lines.Compound 8 demonstrated the ability to down-regulate interleukin-1β(IL-1β)expression by inhibiting Toll-like receptor 2(TLR2)expression and modulating the activation of myeloid differentiation factor 88(MyD88),mitogen-activated protein kinase(MAPK),and nuclear factorκB(NF-κB)signaling pathways,thus reducing the cellular inflammatory response induced by P.acnes.Additionally,compound 8 showed the capacity to suppress mitochondrial reactive oxygen species(ROS)production and nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3)inflammasome activation,thereby reducing IL-1βmaturation and secretion.A three-dimensional quantitative structure-activity relationships(3D-QSAR)model was applied to compounds 5−12 to analyze their anti-inflammatory structure-activity relationships.
基金supported by the National Natural Science Foundation of China(Nos.11975091 and U1732135)the Program for Innovative Research Team(in Science and Technology)in University of Henan Province,China(No.21IRTSTHN011)。
文摘Configurational information entropy(CIE)theory was employed to determine the neutron-skin thickness of neutron-rich calcium isotopes.The nuclear density distributions and fragment cross sections in 350 MeV/u ^(40-60)Ca+^(9)Be projectile fragmentation reactions were calculated using a modified statistical abrasion-ablation model.CIE quantities were determined from the nuclear density,isotopic,mass,and charge distributions.The linear correlations between the CIE determined using the isotopic,mass,and charge distributions and the neutron-skin thickness of the projectile nucleus show that CIE provides new methods to extract the neutron-skin thickness of neutron-rich nuclei.
基金financially supported by the National Natural Science Foundation of China(Nos.51772035 and 11874356)the Fundamental Research Funds for the Central Universities(No.2020CDJ-LHZZ-011)Chongqing Entrepreneurship and Innovation Program for the Returned Overseas Chinese Scholars(No.cx2019002)
文摘ABX_(2)(A=Ag,Na,Cu;B=Sb,Bi;X=S,Se,Te)(GroupsⅠ-Ⅴ-Ⅵ_(2))compounds,which are all characterized by the ultralow lattice thermal conductivity because of their strong lattice anharmonicity caused by lone-pair electrons,have aroused wide attention in thermoelectric community.The practical application of thermoelectric devices usually requires both the compatible n-type and p-type materials simultaneously.However,most ofⅠ-Ⅴ-Ⅵ_(2)compounds are intrinsic p-type semiconductors,lacking their n-type counterparts for thermoelectrics.Herein,in this work,we increase the configuration entropy of AgBiTe_(2)by alloying SnTe,in order to stabilize the cubic phase at room temperature.With further optimization of thermal and electrical performance,the thermoelectric performance could be improved simultaneously in both n-and p-type(AgBiTe_(2))_(1-x)(SnTe)_(x)(x=0.3,0.4)solid solutions.Finally,p-type compound with the nominal composition of(AgBi_(0.99)Cd_(0.01)Te_(2))_(0.6)(SnTe)_(0.4)and n-type of(AgBiTe_(2))_(0.7)(SnTe)_(0.3)~Br 6%show the maximum zT of~0.33 and~0.21,at 381 and 423 K,respectively.
基金the National Natural Science Foundation of China(No.11975091)the Program for Innovative Research Team(in Science and Technology)in the University of Henan Province,China(No.21IRTSTHN011).
文摘Configurational information entropy(CIE)analysis has been shown to be applicable for determining the neutron skin thickness(δnp)of neutron-rich nuclei from fragment production in projectile fragmentation reactions.The BNN+FRACS machine learning model was adopted to predict the fragment mass cross-sections(σ_(A))of the projectile fragmentation reactions induced by calcium isotopes from ^(36)Ca to ^(56)Ca on a ^(9)Be target at 140MeV/u.The fast Fourier transform was adopted to decompose the possible information compositions inσA distributions and determine the quantity of CIE(S_(A)[f]).It was found that the range of fragments significantly influences the quantity of S_(A)[f],which results in different trends of S_(A)[f]~δnp correlation.The linear S_(A)[f]~δnp correlation in a previous study[Nucl.Sci.Tech.33,6(2022)]could be reproduced using fragments with relatively large mass fragments,which verifies that S_(A)[f]determined from fragmentσAis sensitive to the neutron skin thickness of neutron-rich isotopes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12174162,51962010,12064015,and 12064014).
文摘The spinel-type LiMn_(2)O_(4) is a promising candidate as cathode material for rechargeable Li-ion batteries due to its good thermal stability and safety.Experimentally,it is observed that in this compound there occur the structural phase transitions from cubic(Fd3m)to tetragonal(I4_(1)/amd)phase at slightly below room temperature.To understand the phase transition mechanism,we compare the Gibbs free energy between cubic phase and tetragonal phase by including the configurational entropy.Our results show that the configurational entropy contributes substantially to the stability of the cubic phase at room temperature due to the disordered Mn^(3+)/Mn^(4+)distribution as well as the orientation of the Jahn-Teller elongation of the Mn^(3+)O_(6) octahedron in the the spinel phase.Meanwhile,the phase transition temperature is predicted to be 267.8 K,which is comparable to the experimentally observed temperature.These results serve as a good complement to the experimental study,and are beneficial to the improving of the electrochemical performance of LiMn_(2)O_(4) cathode.
基金financially supported by the National Natural Science Foundation of China(Nos.51690163 and 51601147)the Science Challenge Project(No.TZZT2019-D1.5)+4 种基金the Ministry of Science and Technology of China(No.2017YFA0700700)the United States National Science Foundation(Nos.DMR-1006557,1611180,and 1809640)the Fundamental Research Funds for the Central Universities in China(No.G2016KY0302)the CyberStar cluster funded by NSF through grant No.OCI-0821527the XSEDE clusters supported by NSF through Grant No.ACI-1053575。
文摘Metallic amorphous/crystalline(A/C)nanolaminates exhibit excellent ductility while retaining their high strength.However,the underlying physical mechanisms and the resultant structural changes during plastic deformation still remain unclear.In the present work,the structure-property relationship of CuZr/Cu A/C nanolaminates is established through integrated high-throughput micro-compression tests and molecular dynamics simulations together with high-resolution transmission electron microcopy.The serrated flow of nanolaminates results from the formation of hexagonal-close-packed(HCP)-type stacking faults and twins inside the face-centered-cubic(FCC)Cu nano-grains,the body-centered-cubic(BCC)-type ordering at their grain boundaries,and the crystallization of the amorphous CuZr layers.The serration behavior of CuZr/Cu A/C nanolaminates is determined by several factors,including the formation of dense dislocation networks from the multiplication of initial dislocations that formed after yielding,weak-spots-related configurational-transitions and shear-transition-zone activities,and deformation-induced devitrification.The present work provides an insight into the heterogeneous deformation mechanism of A/C nanolaminates at the atomic scale,and mechanistic base for the microstructural design of self-toughening metallic-glass(MG)-based composites and A/C nanolaminates.
基金This work has been supported by the National Science Foundation of China,the Youth Science Foundation of Academia Sinica,the China Postdoctoral Science Foundation and Polymer Physics Laboratory, Academia Sinica.
文摘A full-relaxation optimization of molecule and the popular MM2 force field are employed to obtain the geometry parameters and the conformational energy surface of a meso or a racemic dyad of poly(methyl acrylate) (PMA) with a specified carbonyl-bond orientation in side-groups. It is found that the conformational energy maps calculated here considerably differ from those calculated with the rigid molecular model as reported in the earlier studies. The g(-) state cannot be omitted in the obtained contour maps. Two important conformers tg(-) and g(-t) with energy minima were newly detected for a racemic dyad. The analysis on the conformations with energy minima confirmed that the ester groups are not always perpendicular to the plane defined by the two adjacent skeletal bonds and may change their relative orientations to meet the requirement of lower energies during the conformational state transition. Instead of the early way of adjusting the interaction energy parameters to fit the experimental data, we attempt to predict unperturbed chain dimensions via the reliable force field and the configurational statistical mechanics. The proposed scheme with three rotational states identified from the contour maps allowed us to satisfactorily reproduce the experimental dimensions of random PMA chains.
基金the financial support provided by the National Natural Science Foundation of China[Grant No.72373138 and 71973131]Major Project of National Social Science Foundation of China[Grant No.19VHQ002].
文摘The promotion of energy efficiency(EE)helps address energy constraints and promote environmental sustainability.This study comprehensively explores the spatiotemporal variations,influencing factors,and configuration promotion paths of EE in 284 Chinese cities during 2003‒2019 using the global super-efficiency minimum distance to strong efficient frontier(G-S-MinDS),exploratory spatial data analysis(ESDA),multiscale geographically weighted regression(MGWR),and fuzzy set qualitative comparative analysis(fsQCA)methods.The findings are:①China’s cities have an annual average EE of 0.658 with a growth rate of 0.53%,showing considerable promotion potential.②Industrial structure optimization,population agglomeration,economic development,and increased green coverage contribute positively,while government intervention and openness hinder China’s urban EE.③Four configurational promotion paths for enhancing China’s urban EE are identified,where among those paths population density is a core condition,while government intervention is not.This study provides valuable insights into substantially improving urban EE,emphasizing the need for targeted policies to address energy and environmental crises in China.
文摘This paper concerns the theme of the universal accessibility to urban spaces, proposing the contribution of configurational approach to their inclusive design. Born in the first Nineties on the roots of the efforts and the studies for reducing material and architectural barriers for disabled people, such discipline extends its sphere and purposes so as to mitigate the effects of spatial exclusion of a wider and wider variety of human categories, up to virtually include any potential urban user. Several questions persuade that a merely functional approach, essentially based on the position of the located activities, cannot be said satisfying: only a configurational approach can account for the effects of the grid configuration on the actual accessibility of its spaces. Our research focuses on Italian urban settlements, which appear as ideal case studies, due to the typical consistency of their urban spaces, which, especially in the inner historical cores, are densely build, geometrically irregular and hence generally far from actually providing a universal material accessibility. Here the impedance of space is much more than a theoretical hypothesis and concrete interventions are generally requested to eliminate or reduce its barriers and to make space actually and safely usable. Rather than at indicating the technical solution of single urban problems, which of course are strongly different each other, the research aims at defining a method suitable for any local context. Such method, integrating into a reliable tool the configurational vision with the functional and interactional approach, will provide a hierarchy of urban spaces with reference to the necessity of their universal accessibility.
基金financially supported by the National Natural Science Foundation of China(grant nos.92156010,22071247,22101283,and 22101284)the Strategic Priority Research Program(grant no.XDB20000000)+1 种基金the Key Research Program of Frontier Sciences(grant no.QYZDB-SSW-SLH030)of Chinese Academy of Sciences,Natural Science Foundation of Fujian Province(grant nos.2020J06035 and 2022J05085)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(grant no.2021ZR112)for support.
文摘Molecular photoswitches hold an important position in chemical research,and it is of significance to develop novel structures and mechanisms.Herein we report a new type of E/Z photoswitches in tellurazole/tellurazolium-based olefin scaffolds,wherein intramolecular through-space n→π^(*)orbital interaction plays a stabilizing role in the Z isomer approaching quantitative conversion.The manipulation of diverse noncovalent interactions,including intermolecular chalcogen bonding,further provided versatile handles for regulating molecular recognition and multiaddressable switching.Despite bidirectional E/Z photoisomerization with neutral tellurazole derivatives,protonation-induced cationic tellurazoliums allowed significant enhancement in the efficiency of Z→E switching(E up to 73%)while maintaining high percentage E→Z switching(Z up to 95%),as chalcogen bonding with counteranions contributes to the stabilization of electron-accepting tellurazoliums affording a larger wavelength difference between E/Z isomers.Furthermore,the n→π^(*)orbital interaction enables the preference of Z isomer in the ground state for N-methyl tellurazoliums.Bidirectional E/Z photoswitching with high conversion(Z up to 99%,E up to 81%)was attained,and E→Z isomerization can also be invoked by nucleophilic catalysis,making N-methyl tellurazoliums as T-type photoswitches.The results showcase the power of noncovalent interactions for controlling molecular photoswitches and should set the scene for vip recognition,dynamic assemblies,and responsive materials.
基金financially supported by the National Natural Science Foundation of China(Grant No.12172093)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515012607)。
文摘High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic features enable forming-free resistive switching,multilevel conductance modulation,and synaptic plasticity,making HEOs attractive for neuromorphic computing.This review outlines recent progress in HEO-based memristors across materials engineering,switching mechanisms,and synaptic emulation.Particular attention is given to vacancy migration,phase transitions,and valence-state dynamics—mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems.Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined.While encouraging results have been achieved at the device level,challenges remain in conductance precision,variability control,and scalable integration.Addressing these demands a concerted effort across materials design,interface optimization,and task-aware modeling.With such integration,HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics.
基金National Natural Science Foundation of ChinaChina Postdoctoral Science Foundation+1 种基金Youth Science Foundation of Academia SinicaPolymer Physics Laboratory, Academia Sinica.
文摘One sort of very important polyelectrolytes, polyacrylamide (PAA) and its copolymers with acrylic acid, on the one hand, have been widely applied as commercial products as flocculants and mobility control fluids in enhanced oil recovery. On the other hand, these polymers relate to the fundamental point of polymer physics, a configuration of very long chain molecules containing many hydrogen-bonding groups.
基金This work was supported by the Natural Science Foundation of China(No.21271133)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘A novel malonamide-linked zinc bisporphyrinate[Zn_(2)-1]has been designed and synthesized.UV-vis and NMR spectroscopic studies suggest the molecule aggregates in solution.Such zinc bisporphyrinate is very CD-sensitive when it is mixed with amino acid ethyl esters.The amplitude value of the induced circular dichroism(ICD)is up to ca.1500 L•mol^(−1)•cm^(−1).Further studies by ^(1)H NMR and UV-vis spectroscopies reveal amino acid esters function as monodentate ligands,and[Zn_(2)-1]interacts with amino acid ethyl esters through coordination and hydrogen bonding interactions.
基金J.L.acknowledges financial support from University of Missouri-Columbia start-up fund,NASA Missouri Space Consortium(Project:00049784)Unite States Department of Agriculture(Award number:2018-67017-27880)+2 种基金This material is based upon work partially supported by the Department of Energy National Energy Technology Laboratory under Award Number DE-FE0031645J.C.acknowledges National Science Foundation(Award numbers:DBI1759934 and IIS1763246)The computations were performed on the HPC resources at the University of Missouri Bioinformatics Consortium(UMBC),supported in part by NSF(award number:1429294).
文摘It is well-known that the atomic-scale and nano-scale configuration of dopants can play a crucial role in determining the electronic properties of materials.However,predicting such effects is challenging due to the large range of atomic configurations that are possible.Here,we present a case study of how deep learning algorithms can enable bandgap prediction in hybridized boron–nitrogen graphene with arbitrary supercell configurations.A material descriptor that enables correlation of structure and bandgap was developed for convolutional neural networks.Bandgaps calculated by ab initio calculations,and corresponding structures,were used as training datasets.The trained networks were then used to predict bandgaps of systems with various configurations.For 4×4 and 5×5 supercells they accurately predict bandgaps,with a R^(2) of >90% and root-mean-square error of~0.1 eV.The transfer learning was performed by leveraging data generated from small supercells to improve the prediction accuracy for 6×6 supercells.This work will pave a route to future investigation of configurationally hybridized graphene and other 2D materials.Moreover,given the ubiquitous existence of configurations in materials,this work may stimulate interest in applying deep learning algorithms for the configurational design of materials across different length scales.
基金sponsored by the National Natural Science Foundation of China(NSFC#51578123)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYLX16_0234).
文摘The duality in China's traffic planning has given rise to the basic unit of urban form and function called the superblock,which is defined and bound by an arterial street network.The street network of China's superblock un derpins the coexiste nee and in teraction of global and local movement,the public and daily space,and affects place diversity and local characteristics.However,its configuration remains to be articulated because of the lack of a systematic representation method,and the associations between configuration and performance,cognition and design cannot be determi ned.This study proposes an improved representation method for the street network of China's superblocks based on Marshall's route structure analysis to explore the configurational characteristics and sustainability of the network.To fit local conditions,this study improves Marshall's route structure analysis from four perspectives,namely,the judgement of relative hierarchy,the node construction principle,and the deletion and addition of the original indicators.The improved method is then applied to calculate and compare the depth,connectivity,and complexity of the street networks of 10 sample superblocks in Nanjing,which are classified into six types by construction backgrounds,each having two seenarios differing by the level of publicity.Results indicate that the types formed in accordance with the"The Capital Plan"of the Republic of China,which presents a combination of fine orthogonal grids and radiations,and by the renewal of the traditional street-andlane network,which has the"characteristic structure" defined by Marshall,perform best in terms of configurational sustainability.The an alysis also reveals that the addition of semipublic streets formed mainly from the bottom up narrows the sustainability gap among the samples.This study provides a tool for elaborate urban study and design and provides in sights into the cognitive and practical aspects of China's urban planning and design.
基金This work was supported by the Austrian Science Fund(FWF)project POLOX(Grant No.I 2460-N36),project Super(Grant No.P 32148-N36),the SFB-F81 project TACO.
文摘Polaron defects are ubiquitous in materials and play an important role in many processes involving carrier mobility,charge transfer and surface reactivity.Determining small polarons’spatial distributions is essential to understand materials properties and functionalities.However,the required exploration of the configurational space is computationally demanding when using first principles methods.Here,we propose a machine-learning(ML)accelerated search that determines the ground state polaronic configuration.The ML model is trained on databases of polaron configurations generated by density functional theory(DFT)via molecular dynamics or random sampling.To establish a mapping between configurations and their stability,we designed descriptors modelling the interactions among polarons and charged point defects.We used the DFT+ML protocol to explore the polaron configurational space for two surface-systems,reduced rutile TiO_(2)(110)and Nb-doped SrTiO_(3)(001).The ML-aided search proposes additional polaronic configurations and can be utilized to determine optimal polaron distributions at any charge concentration.
基金funding support from the U.S.Department of Energy,Office of Science,Basic Energy Sciences,under Award No.DE-SC0023664。
文摘The prediction of configurational disorder properties,such as configurational entropy and orderdisorder phase transition temperature,of compound materials relies on efficient and accurate evaluations of configurational energies.Previous cluster expansion methods are not applicable to configurationally-complex material systems,including those with atomic distortions and long-range orders.In this work,we propose to leverage the versatile expressive capabilities of graph neural networks(GNNs)for efficient evaluations of configurational energies and present a workflow combining attention-based GNNs and Monte Carlo simulations to calculate the disorder properties.Using the dataset of face-centered tetragonal gold copper without and with local atomic distortions as an example,we demonstrate that the proposed data-driven framework enables the prediction of phase transition temperatures close to experimental values.We also elucidate that the variance of the energy deviations among configurations controls the prediction accuracy of disorder properties and can be used as the target loss function when training and selecting the GNN models.The work serves as a fundamental step toward a data-driven paradigm for the accelerated design of configurationallycomplex functional material systems.
基金funded by the U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences,Materials Sciences and Engineering Division under Contract No.DE-AC02-05-CH11231(Materials Project program KC23MP)。
文摘The cluster expansion method(CEM)is a widely used lattice-based technique in the study of multicomponent alloys.Despite its prevalent use,a clear understanding of expansion terms is lacking.Wepresent amodern mathematical formalism of the CEM and introduce the cluster decomposition-a unique and basis-independent decomposition for functions of the atomic configuration in a crystal.
基金supported by the Industrial Foresight Projects and Common Key Technologies of Zhenjiang(No.GY2024028)The authors also acknowledged the support of the Marine Equipment and Technology Institute,Jiangsu University of Science and Technology(No.XTCX202404).
文摘Solid oxide cells(SOCs),which include solid oxide fuel cells(SOFCs),symmetrical solid oxide cells(S-SOCs),and reversible solid oxide cells(R-SOCs),are considered key technologies for driving low-carbon and green revolution in the energy sector.Because of their clean,low-cost,and high-efficiency characteristics,SOCs have great potential for energy conversion and storage.However,the further development of SOC technologies faces challenges,such as a lack of long-term operational stability of the cell system,high material cost under high-temperature operating conditions,and limited catalytic effects at low temperatures.Recently,high-entropy materials(HEMs)have demonstrated excellent performance and wide application prospects in catalytic reactions,energy storage,supercapacitors,and other fields owing to their unique atomic arrangement and the four core effects(high mixed entropy stabilization effect,sluggish dif-fusion effect,lattice distortion effect,and“cocktail”effect).HEMs provide a new perspective for solving the aforementioned problems in the field of SOCs.This comprehensive review summarizes the applications of HEMs in the three fundamental components of SOCs:elec-trodes,electrolytes,and interconnects,focusing on the role of HEMs in enhancing catalytic activity and conductivity while mitigating harmful gas poisoning.In addition,this review proposes possible development directions for HEMs in SOCs based on the current re-search progress,providing valuable reference for high-entropy designs aimed at further enhancing the performance of SOCs.
基金financially supported by the National Natural Science Foundation of China(Nos.52472032 and 52172023)the Key Program of Natural Science Foundation of Hubei Province(No.2024AFA083)
文摘High-temperature industries,as the primary consumers of energy,are greatly concerned with energy savings.Designing refractory linings with low thermal conductivity to reduce heat dissipation through high-temperature furnace linings is a critical concern.In this study,a series of novel entropy-stabilized spinel materials are reported,and their potential applications in high-temperature industries are investigated.XRD and TEM results indicate that all materials possess a cubic spinel crystal structure with the■space group.Furthermore,these materials exhibit good phase stability at high temperatures.All entropy-stabilized spinel aggregates demonstrated high refractoriness(>1800℃)and a high load softening temperature(>1700℃).The impact of configurational entropy on the properties of entropy-stabilized spinel materials was also studied.As configurational entropy increased,the thermal conductivity of the entropy-stabilized spinel decreased,while slag corrosion resistance deteriorated.For the entropy-stabilized spinel with a configurational entropy value of 1.126R,it showed good high-temperature stability,reliable resistance to slag attack,and a low thermal conductivity of 2.776 W·m^(-1)·K^(-1)at 1000℃.